用户名: 密码: 验证码:
全光交换双波长并行缓存控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信技术的发展,网络能够提供越来越宽的带宽,由于网络节点处上下路设备本身带宽的限制形成了网络节点的电子速率“瓶颈”,克服电子瓶颈的方法是直接进行光信号处理,即建设全光通信网。全光包交换(OPS)属分组级的光信号处理,能够有效利用带宽,提高带宽资源的利用率,将成为未来高速全光网络的必然选择。包交换技术实质上是一种存储—转发技术,如何在光域中完成光信号的存储与转发成为全光包交换网络的关键技术之一。光缓存器是实现全光交换的重要组成部分。目前提出的光纤型全光缓存器主要有两种:前向结构的光纤延迟线和反馈结构的F-P腔或者光纤环。随着波分复用技术(WDM)已经广泛应用,单波长的全光缓存器很难与WDM技术相适应。因此,对多波长光信号的并行缓存是全光缓存器的一个重要研究课题。目前光缓存技术的研究都是针对单个波长光信号的缓存,本文对双波长缓存的控制技术进行了研究,并利用我们已经研制出的双环耦合全光缓存器经过改进实现了双波长的并行缓存。据我们所知,本文的工作属于首次实现的双波长缓存。
     本文针对双波长并行缓存的控制技术做了以下工作:
     1.研制出具有稳定输出功率的激光器直流驱动电路,解决了激光器使用中在工作温度范围内其输出功率不稳定的问题,在实验中用作直流光源。研制出伪随机码光信号发生器用作双环耦合全光缓存器的控制光源。
     2.在双波长数据的并行缓存,由于不同波长光信号合成后的功率随机波动,导致由SOA交叉相位调制(XPM)产生的相位差随机波动。在考虑吸收损耗的情况下,对常用的SOA增益特性曲线进行了修正并与实测值拟合,得到了与实测值吻合的增益特性曲线。并以此为基础进行了理论分析,证明调节控制光的功率可以减小相位差的波动,并提出了确定控制光功率的最佳点的技术。
     3.在实验中,运用DLOB实现了速率为2.5Gbit/s双波长数据的多圈缓存。
With the development of fiber communication, optical network becomes the basic platform in modern communication network. In the common network nodes, optical/electrical/optical(O/E/O) conversion process are necessary. As it needs time for optic-electronic elements and electronic cross switch to transfer signal and process it, there is an electron speed "bottleneck" in the network node. In order to overcome the "bottleneck", we should eliminate the O/E/O process, switch and process the optical signal directly. That means we have to develop all-optical communication network. As the all-optical packet switch (OPS) network can switch and process signal much faster and use the network bandwidth more efficiently. OPS network is potential for the ultra-fast optical networks.
     Substantively, OPS is a technique for buffering and transmitting. All optical buffer is an important component in the system of OPS. With the extensive application of WDM (wavelength division multiplexing), all optical buffer that only buffer single wavelength at present, will not fit the WDM any longer. So multi-wavelength all optical buffer become a significant research subject. In this paper, we studied on dual-wavelength parallel buffering by the improved Dual loop optical buffer that we have developed. As far as we know, we realize dual-wavelength buffering for the first time.
     The innovations of control technique of dual wavelength parallel buffering are as follows:
     1. The steady power drive circuit of semiconductor laser diode was developed.
     The drive circuit of semiconductor laser diode export steady optical power isdeveloped. It has solved the problem that the LD can not export steady power during the working temperature. The LD is used as the lamp-house in the buffering experiment.
     2. In dual wavelength parallel buffering, because of the random fluctuation of the combined power by different wavelength signals, the phase difference introduced by the cross phase modulation (XPM) of SOA fluctuates randomly too. But the characteristic curve in common use can not describe the gain saturation characteristics of SOA in saturation region exactly. Taking the absorption loss into account, we modify the gain characteristic curve of SOA and fit it with the experimental values. We also make a theoretical analysis for dual-wavelength buffering and propose a novel control technique for setting the power of control signal in order to minimize the fluctuation of the phase difference.
     3. Multi-circles buffering of 2.5Gbit/s dual wavelength packet is demonstrated in the experiment.
引文
[1]T.Ohara,H.Takara,I.Shake et al.,"160-Gb/s OTDM transmission using integrated all-optical MUX/DEMUX with all-channel modulation and demultiplexing," IEEE Photonics Technology Letters,vol.16,pp.650,2004.
    [2]T.E1-Bawab and J.Shin.Optical packet switching in core network between vision and reality.IEEE Communication Magazine,2002,40(9):60-65
    [3]S.Yao,B.Mukherjee and S.Dixit.All-optical packet switching for metropolitan area network:opportunities and challenges.IEEE Communication Magazine,2001,39(3):142-148
    [4]L.Xu,H.Perros,and G.Rouskas.Techniques for optical packet switching and optical burst switching.IEEE Communication Magazine,2001,39(1):136-142
    [5]D.Hunter and I.Andonovie.Approaches to optical Interact packet switching.IEEE Communication Magazine,2000,38(9):116-122
    [6]R.Tucker and W.Zhong.Approaches to optical Internet packet switching.IEEE Transmission Electronics,1999,E82-B(2):254-264
    [7]S.Yao,B.Mukherjee,and S.Dixit,"Advances in photonic packet switching:An overview,"IEEE Commun.Mag.,pp.84,2000.
    [6]L.V.Hau,et al,Light speed reduction to 17m/s in ultracold gas,Nature,397,594,1999.
    [7]A.V.Turukhin,et al,Observation of ultraslow and stored light pulse in solid,Phy.Rev.Lett.Vol.88,023,602,2002.
    [8]Connie J.Chang-Hasnain,Pei-Cheng Ku,Jungho Kim,et al.Variable optical buffer using slow light in semiconductor nanostructures.Proceedings of the IEEE,2003,91(11):1884-1897
    [9]吴重庆,袁保忠.光速减慢和光缓存技术.物理,2005,34(12):922-926
    [10]Chlamtac,et al,QUADRO-Stars:High Performance Optical WDM Star Networks,GLOBECOM'91,pp1224.
    [11]A.Agarwal,et al,All-Optical erasable storage buffer based on parametric nonlinearity in fiber OFC'2001,ppThH5-1.
    [12]K.Hall,et al,"All-Optical Buffering of 40 Gb/s Data Packets" IEEE,P.T.L.,V.10,1998
    [13]Y.Chai,et al,"Optical DRAM Using Refreshable WDM Loop Memory",ECOC'98 pp 171.
    [14]L Danielsen,et.al,10Gb/s operation of a multiwavelength buffer architecture employing a monolithically integrated all-optical interferometric michelson wavelength converter,IEEE Phot.Technol.Lett.8(1996)434.
    [15]A.J.Poustie,K.J.Blow,R.J.Manning,"Storage threshold and amplitude restoration in an all-optical regenerative memory," Optics Communications 146(1998)262
    [16]R.H.Goodman,et al,Stopping light on a defect,J.Opt.Soc.Am.B,Vol.19,1635-1651,2002.
    [17]P.Boffi,et al,"1550-nm Volume Holography for Optical Communication Devices",IEEE,P.T.L,V.12,pp1355,2001.
    [18]K.Fukuchi et al.,"10.92-Tbit/s triple-band/ultra-dense optical-repeated transmission experiment," OFC01,PD-24,2001.
    [19]S.Bigo,Y.Frignac et al.,"10.2 Tbit/s(256x40 Gbit/s PDM/WDM)transmission over 100km TeraLight fiber with 1.28 bit/s/Hz spectral efficiency," OFC01,PD-25,2001.
    [20]A.M.Liu,C.Q.Wu,Y.D.Gong,P.Shum,"Fused collinear 3x3 fiber coupler," Conference on the optical internet(COIN)2003,Proceedings,pp.373-376,2003.
    [21]何娜,吴重庆,卫炎,熔锥平行排列3×3单模光纤耦合器的研究 中国激光 2004年31卷3期323-327
    [22]A.Liu,et al,Optical Buffer Configuration based on a 3X3 Collinear Coupler,IEE 《Electronics Letters》 Vol.40,No.16,pp1017-1018,2004
    [23]C.Q.Wu,A.M.Liu,X.Y.Wang,Y.Tao,"The Study of 2x2 Fiber Coupler with Tunable Couple Ratio," Proceedings of SPIE APOC01,vol.4581,pp.1-5,2001.
    [24]吴重庆.光通信导论.北京.清华出版社
    [25]钟明,Ang Zhang,Steve Sockolov.如何设计一个高性能的热电制冷控制器.美国模拟器件公司(Analog Devices Inc.)
    [26]DRV591 datasheets.Texas Instruments.2002
    [27]路而红.可编程器件应用与开发.人民邮电出版社.2004:38
    [28]李蓉,粟鹏义.零功耗超快速CPLD器件ispMACH4000Z及其应用.国外电子元器件.2003(9):64-66
    [29]倪东.基于FPGA的O-RPR光接收单元的研制.北京交通大学工学硕士学位论文.2006:32
    [30]ispLEVER 培训教程.上海莱迪思半导体公司.2001.12:1
    [31]路而红.可编程器件应用与开发.人民邮电出版社.2004:76-77
    [32]ispMACH~(TM)4000V/B/C/Z Family.上海莱迪思半导体公司.2002.12
    [33]杨祥林,2000光放大器及其应用[M].北京:电子工业出版社,.107-108.
    [34]Mukai,T.;Yamamoto,Y.1981 Quantum Electronics,IEEE Journal 17(6):1028-1034
    [35]李亚捷,吴重庆,王拥军,唐清善,基于半导体光放大器的光控器件中控制光的性能分析,物理学报,Vol.56,No.2,2007
    [36]李亚捷,吴重庆,李赟等 基于半导体光放大器的环路型全光缓存器中功率均衡的新方法2006 光学学报 26
    [37]李亚捷,吴重庆,王拥军,李赟,季江辉,基于半导体光放大器的干涉型器件中不协调性的分析,半导体学报Vol.27,No.10,oct.2006
    [38]张立军,吴重庆,李亚捷,基于双半导体光放大器的读/写分别控制的新型全光缓存器[J]。光学学报,2007,27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700