用户名: 密码: 验证码:
光纤光栅特性研究及参数重构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅是一种新兴的光子器件。从第一根光纤光栅写制成功到今天短短二十多年间,光纤光栅无论是写入技术、理论研究还是应用方面都获得了飞速发展。
     光纤光栅是利用石英光纤的紫外光敏特性将光栅直接做在光纤上而形成的无源光子器件,它具有插入损耗低、体积小、成本低、对偏振不敏感、与普通光纤连接简单等优点,并且可以通过调制光栅的一些物理参数而得到所需要的光谱特性和时延特性。随着光纤光栅制造技术的不断完善,光纤光栅已成为目前最具有发展前途,最具有代表性的光纤无源器件之一,被广泛的应用于光纤通信和光纤传感领域中,近年来,光纤光栅也被用在光控相控阵雷达技术中作为光波的时延器件。因此,设计符合系统时延特性光纤光栅的研究具有重要的实际意义。
     本文首先详细介绍了光纤光栅的发展、光敏特性、分类、制作,在光纤通信和光纤传感中的应用以及其在光控相控阵雷达中的应用。然后由光纤中的麦克斯韦方程组出发,严格推导出描述模式耦合的耦合模方程,并用耦合模理论对均匀布拉格光纤光栅进行分析,建立其耦合模方程,并给出解析解。给出了分析非均匀光纤光栅的传输矩阵法。
     其次,在耦合模理论的基础上,结合传输矩阵法,利用matlab编程数值模拟了均匀光纤光栅、啁啾光纤光栅和变迹光纤光栅的光学特性,着重研究了光纤光栅长度、周期、啁啾、折射率调制和变迹函数对其反射谱谱宽、反射率峰值、时延特性的影响,为设计合适的光纤光栅器件奠定了理论基础。
     最后,提出了利用遗传算法对光纤光栅进行参数重构的方法。以光纤光栅的参数作为计算个体,反射谱或者时延曲线作为目标函数,经过若干代遗传,重构出满足目标函数的最优个体,即能够产生所需反射谱或者时延特性的光纤光栅参数。
Fiber gratings are kinds of new photonic devices. Not only fabrication methods but also concerned theories and applications about fiber grating have been made great progress, from successful fabrication of the first fiber grating to now.
     Fiber gratings, which are one of passive photonic devices written by ultraviolet light into the core of a photosensitive fiber, have several distinguished advantages, such as: low insertion loss, small bulk, potentially low cost, insensitive to polarization, and simply spliced into fiber systems. Desired spectral properties or time-delay characteristics can be achieved by changing physical parameters of fiber gratings. With its improvement in fabricating technology, fiber gratings have become one of the most promising and representative passive optical fiber devices, which have wide applications in optical fiber communications and optical fiber sensing fields. Recently, fiber gratings are used as time-delay devices in optically controlled phased array antennas. Therefore, it is very important to design fiber gratings that meet specific time-delay characteristics from the viewpoint of practical applications.
     In this paper, we firstly introduce the development, photosensitivity, classifying and fabrication of fiber gratings, and their applications in optical fiber communications, fiber sensor and optically controlled phased array antennas. Then, beginning with the Maxwell equations, we derive the coupled mode equations that describe the interaction between the modes propagating in fibers. Furthermore, we analyze uniform fiber Bragg grating by the coupled mode theory and give the analytic solutions by the coupled mode equations. Transfer matrix theory is also briefly introduced, which is used to analyze non-uniform fiber gratings.
     Secondly, based on the coupled mode theory and the transfer matrix method, the optical properties of uniform fiber gratings, chirped grating and apodized grating are simulated with Matlab programming. The influences of various parameters of fiber grating such as length, period, chirp, the refractive index modulation and apodization function on its reflectance spectral width, maximum reflectivity and time-delay characteristics are studied. These are very useful to design fiber grating devices.
     Finally, a new method of parameter reconstruction for the fiber gratings from their reflectance spectrum or time-delay characteristics is presented by the genetic algorithm. The objective function and the individuals of population in this method are reflectance spectrum or time-delay characteristics and the parameters of fiber gratings, respectively. The optimal solution that corresponds to the objective function is obtained after many generations calculation.
引文
[1] K. O. Hill, Y. Fuji, D. C. Jonson and B. S. Kawasaki. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication.Appl.Phys.Lett,1978,32:647-649
    [2] G. Meltz, W. W. Morey and H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt Lett, 1989, 14: 823-825
    [3] D. P. Hand, P. St. J. Russell. Photoinduced refractive-index changes in germanosilicate fibers. Opt Lett, 1990, 15:102-104
    [4] R. M. Atkins, V. Mizrahi, T. Erdogan.248nm induced vacuum UV spectral changes in optical fiber preform cores: support for a color centre model of photosensitivity. Electron Lett. 1993, 29:385-387
    [5] P. J. Lemaire, et al. High-temperature stability of phase gratings in GeO2-doped optical fibers. Tech. Dig. San. Jose, California: OFC'93, 1993, Paper FA7
    [6] G. A .Ball, W. W. Morey. Continuously tunable single-mode erbium fiber laser. Opt Lett.1992, 17(6):420-421
    [7] P. J. Lemaire, R. M. Atkins, V. Miarahi, W.A. Reed. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers. Electron Lett, 1993, 29(13):1191-1193
    [8] K. O. Hill, B. Malo and J. Albert. Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl.Phys.Lett,1993,62: 1035-1037.
    [9] D. A. Jackson, A. B. L. Ribeiro and L. Reekie, Simple multiplexing scheme for a fiber-optic grating sensor network. Opt Lett, 1993,18(14):1192-1194
    [10] Francois Ouellette. Dispersion cancellation using linearly chirp Bragg grating filter in optical waveguides. Opt. Lett, 1987,12(10): 847-849
    [11] V. Jayaraman, D. A. Cohen, et al. Demonstration of broadband tunability in a semiconductor laser using sampled gratings. Appl.Phys.Lett,1992,60(19),2321-2323
    [12] B. J. Eggleton, P. A. Krug, et al. Long periodic superstructure Bragg gratings in optical fibers. Electron Lett, 1994,30(19):620-1622
    [13] J. Hubner, D. Zauner, M. Kristensen. Strong sampled Bragg gratings for WDM Application,IEEE Photon Technol Lett,1998,10(4):552-554
    [14] A. M. Vengsarkar, P. J. Lemaire, et al. Long-period fiber gratings as band-rejection filters.J Lightwave Technol,1996, 14(1):58~65
    [15] A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, et al. Long-Period Fiber Grating-based gain equalizers. Opt Lett,1996,21(5):336~338
    [16] 刘永红,黄德修等,光纤的光敏性.光纤与电缆及其应用技术,1996,6:9-14
    [17] F. Bilodeau, B. Malo, J. Albert, et al. Photosensitization of optical fiber and silica-on-silicon/silica waveguides. Opt. Lett,1993,18(12):953-955
    [18] D. L. Williams, B. J. Ainslie, J. R. Armitage, et al. Enhanced UV photosensitivity in boron codoped germanosilicate fibers. Electron Lett, 1993, 29(1):45-47
    [19] H. Asseh, H. Storoy, J. T. Kringlebotn, et al. 10cm long Yb+ DFB fiber laser with permanent phase shifted grating. Electron Lett, 1995, 31(10): 969-970
    [20] J. Chow, G. Town, B. Eggleton, et al. Multi-wavelength generation in an Erbium-doped fiber laser using in-fiber comb filters. IEEE Photon. Technol Lett, 1996, 8(1): 60-62
    [21] D. K. Lam and B. K. Garside. Characterization of single-mode optical fiber filters. Appl Opt.,1981,20(3): 440-445
    [22] 赵志勇,于永森,马玉刚等.基于啁啾光纤光栅的增益平坦滤波器.《吉林大学学报(理学版)》,2004, 42(2): 255-256
    [23] 黄章勇。光纤通信用新型光无源器件。北京:北京邮电大学出版社。2003,55
    [24] J. Stulemeijer, et al. Compact photonic integrated phase and amplitude controller for phased-array antennas. IEEE Photon. Technol. Lett. 1999,11(1):122-124.
    [25] S. Yegnanarayanan, B. Jalali. Wavelength-selective true time delay for optical control of phased-array antenna. IEEE Photon. Technol. Lett. 2000, 12(8) :1049-1051
    [26] G. A. Ball, W. H. Glenn and W. W. Morey, Programmable fiber optic delay line .IEEE Photon Technol Lett,1994,6:741-743
    [27] D. T. K. Tong and M. C. Wu. Programmable dispersion matrix using fiber grating for optically controlled phase array antennas. Electron Lett, 1996,32:1532-1533
    [28] A. Molony, C. Edge and I. Bennion. Fiber grating time delay element for phased array antennas. Electron Lett,1995,31:1485-1486
    [29] H. Zmuda, R. A. Soref, P. Payson , et al. Photonic beamformer for phased array antennas using a fiber grating prism. IEEE Photon Technol Lett,1997,9:241-243
    [30] D. T. K. Tong and M. C. Wu. A novel multi-wavelength optically controlled phased array antenna with a programmable dispersion matrix. IEEE Photon Technol Lett,1996,8:812-814
    [31] D. A. Conhen, Y. Chang, A. F. J. Levi, et al, Optically controlled serially fed phased array sensor. IEEE Photon Technol Lett,1996;8:1683-1685
    [32] D. Gloge. Weakly guiding fibers. Appl Opt,1971,10(10):2252-2258
    [33] 范崇澄,彭吉虎.导波光学.北京:北京理工大学出版社,1988
    [34] A.亚里夫,P.叶,晶体中的光波.北京:科学出版社,1991
    [35] L. A. Weller-Brophy, D.G. Hall. Analysis of waveguide gratings: application of Rouard’s method. J. Opt. Soc. Am. A,1985,2(6):863-871
    [36] E. Pearl, J. Capmany, Generalized Bloch wave analysis for fiber and waveguide gratings. J. Lightwave Technol.1997,15(8):1295-1302.
    [37] J. Shibayama, T. Takahashi, J. Yamauchi, et al. Efficient time-domain finite difference beam propagation method for the analysis of slab and circularly symmetric waveguides. J. Lightwave Technol.2000,18:437-442
    [38] Turan Erdogan. Fiber grating spectra. J. Lightwave Technol. 1997,15(8):1277 ~1294
    [39] 叶培大.光纤理论.北京:知识出版社.1985: 48-56
    [40] 李川,张以谟,赵永贵等.光纤光栅:原理、技术与传感应用.北京:科学出版社.2005: 85-86
    [41] M. Yamada and K. Sakuda. Analysis of almost-periodic distributed feedback slab wave- guides via a fundamental matrix approach. Appl Opt,1987,26(16):3474-3478
    [42] Raman, Kashyap. Fiber bragg gratings. Optics photonics.1999:179-182
    [43] 金晓峰,张仲先.非均匀光纤光栅响应特性的研究.光学学报.1999,19(6):721-727
    [44] 刘勇,叶志清.龙格-库塔法和传输矩阵法求解非均匀长光纤光栅问题的比较.江西师范大学学报.2001,25(1):57-61
    [45] 刘勇,叶志清.龙格-库塔法与矩阵分析法处理线性啁啾光纤光栅时延特性的差异.光通信技术.2001,26(1):54-56
    [46] B. G. Kim and E.Garmire. Comparison between the matrix method and the coupled wave method in the analysis of Bragg reflector structures. Journal of the Optical Society of America A,1992,9: 132-136
    [47] V. Mizrahi, J. E. Sipe. Optical properties of photosensitive fiber phase gratings. IEEE Journal of Lightwave Technology,1993,11(10):1513-1517
    [48] 饶云江,王义平,朱涛.光纤光栅原理及应用.北京:科学出版社,2006,1114-115
    [49] H. Kogelnik, Filter response of nonuniform almost-periodic structures. Bell System Technical Journal, 1976, 55(1):109-126.
    [50] J. E. Sipe, L. Poladian and C. M. de Sterke. Propagation through nonuniform grating structures. Jouranl of the Optical Society of America A, 1994,11:1307-1320
    [51] Yunqi Liu, Jianliang Yang and Jianping Yao. Continuous true-time-delay beamforming for phased array antenna using a tunable chirped fiber grating delay line. IEEE Photon. Technol. Lett, 2002, 14(8):1172~1174
    [52] 陈聪,周骏,龚沈光.基于 kolmogoroff 方法重构光纤光栅相位响应.光电子? 激光,2004 15(2):160~164
    [53] P. Dong, J. Azana and A. G. Kirk. Synthesis of FBG parameters from reflectivity by means of a simulated annealing algorithm. Opt. Commun,2003,228:303~308
    [54] H. C. Cheng and Y. L. Lo. The synthesis of multiple parameters of arbitrary FBGs via a genetic algorithm and two thermally modulated intensity spectra. J. Lightwave Technol., 2005, 23(6):2158~2168
    [55] Holland J H. Adaptation in Natural and Artificial Systems. MIT Press,1992
    [56] De Jong K A. An Analysis of the behavior of a class of genetic adaptive systems. Ph.D Dissertation, University of Michigan, 1975,No.76-9381,
    [57] D. E. GoldBerg. Genetic Algorithms in Search. Optimization and Machine Learning. USA:Addison-Wesley Publishing Company, 1989
    [58] 刘勇,康立山等.非数值并行算法(二):遗传算法.北京:科学出版社,1997 年
    [59] 宋庆伟.遗传算法及其在智能控制领域应用的研究:[博士学位论文] .1998 年 5 月
    [60] 陈根社,陈新海,遗传算法的研究与进展,信息与控制,1994,23(4):215-222.
    [61] 徐博艺.遗传算法原理及其在学习系统中的应用研究:[博士学位论文] .天津:天津大学,1996 年 3 月
    [62] 陈国良等.遗传算法及其应用.北京:人民邮电出版社,1996 年 6 月
    [63] L. Davis. Handbook of Genetics Algorithms. Van-Nonstrand Reinhold, New York,1991
    [64] J. Skaar and K. M. Risvik. A genetic algorithm for the inverse problem in synthesis of fiber gratings. J. Ligthwave. Technol,1998, 16(10):1928~1932
    [65] 周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,2000,36-37
    [66] 雷英杰,张善文. Matlab 遗传算法工具箱及应用.西安:西安电子科技大学出版社,2005,62
    [67] 黄雯,韩一石,何赛灵.光纤光栅最佳变迹函数的研究.光电子? 激光, 2002, 13(12): 1247~ 1250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700