用户名: 密码: 验证码:
宽带光纤放大器及可调谐掺铒光纤激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究来源于2003年天津市科技发展计划重点基金项目:通信用宽带可调谐光纤激光器的研制。围绕项目内容所进行的应用基础性研究工作具体如下:
    1. L-band EDFA的理论分析与实验研究
    分析了L-band EDFA的增益特性;使用数值计算方法做了小信号增益特性模拟,从而理论上证明了L-band EDFA增益的本征平坦特性;进行了L-band EDFA的实验研究,获得了提高泵浦转换效率的预期结果。
    2. 增益平坦EDFA的实验研究
    利用光纤环形镜(FLM)和长周期光纤光栅(LPFG)做增益平坦滤波器进行了C-band EDFA增益平坦实验,在30nm波长范围内分别获得约20dB的增益,增益变化小于±0.9dB;对不同EDF长度的L-band EDFA增益特性进行了数值模拟和实验研究;用F-P滤波器对L-band EDFA的平坦ASE谱进行梳状滤波,在L-band 30nm带宽内获得多波长ASE光谱;采用串联结构进行C+L宽带EDFA实验,平坦增益带宽达70nm。
    3. 可调谐光纤激光器的实验研究
    分别使用光纤环形镜滤波器、楔型F-P薄膜滤波器和角调谐F-P薄膜滤波器进行了C-band可调谐掺铒光纤激光器(EDFL)实验,可调谐范围分别为30nm、35nm和25nm,线宽分别为0.8nm、0.1nm和0.1nm。利用普通的光纤环型镜进行了L-band可调谐EDFL实验,可调谐范围约40nm,线宽为0.8nm;为压缩线宽,应用基于利奥(Lyot)型和索尔克(Solc)型光纤环型镜构成的组合滤波器进行改进性实验,在40nm范围内获得小于0.1nm的可调谐激光输出。应用普通的光纤环形镜进行了C+L带可调谐EDFL实验,可调谐范围为60nm,输出线宽0.8nm。
    4. 光纤喇曼放大器(FRA)的设计研究
    对FRA的放大特性进行了研究和探讨,理论分析了分布FRA对光传输系统性能的改善作用;对多波长泵浦FRA的增益平坦问题进行了分析,对FRA+EDFA宽带放大器进行了优化设计。
This work comes from the Key Program of Tianjin Science and Technology Development Plan (2003), i.e. ‘Development of wideband tunable fiber lasers for communication application’. The contents of the fundamental work related to this program are as follows:
    1. Theoretic analysis and experimental research of L-band erbium-doped fiber amplifier (EDFA)
    Analysis of gain characteristic of L-band EDFA; Simulation of gain characteristic in small signal condition using numerical computation, which theoretically verified the intrinsic flat gain characteristic of L-band EDFA; Experimental research of L-band EDFA, achieving expected results of improved pump efficiency
    2. Experimental research of EDFA gain flatness
    Experimenting on gain flatness issue of C-band EDFA employing a fiber loop mirror (FLM) and a long period fiber grating (LPFG) respectively and both achieving average gain about 20dB and variation less than ±0.9dB in a range of 30nm; numerical and experimental research of L-band EDFA gain characteristic with different EDF lengths; comb-like filtering of L-band flattened ASE spectrum using a F-P filter and acquiring a multi-wavelength ASE source of 30nm wide; Experimenting with series structure C+L band EDFA and achieving a flattened gain as wide as 70nm.
    3. Experimental research of tunable fiber laser
    Experimenting with C-band tunable erbium-doped fibers (EDFLs) using filters based on fiber loop mirror (FLM), wedge thin-film F-P and angle tuning thin-film F-P, achieving line-width of 0.8nm, 0.1nm and 0.1nm respectively. Experimenting with L-band tunable EDFL using a conventional FLM, achieving tunable range about 40nm and line-width of 0.8nm; compressing line-width using compound filters based on Lyot and Solc type FLMs, achieving tunable laser output with line-width<0.1nm in a range of 40nm. Experimenting with C+L band EDFL
    
    
    applying conventional FLMs, achieving tunable range of 60nm and line-width of 0.8nm.
    4. Research of fiber Raman amplifier (FRA) design
    Study and discussion of FRA’s amplification characteristics; theoretically analysis of effects of employing distributed FRAs on improving system performance; Analysis of gain flatness of multi-wavelength pumped FRA and optimization of FRA+EDFA wide band amplifier design.
引文
第一章:T.H.Maiman, Stimulated optical radiation in ruby laser, Nature, 1960, 187: 493~497
    K.C.Kao, et al., Dielectric-fibre surface waveguides for optical frequencies, Proc. IEEE, 1966, 113: 1151~1153
    中国电信网,http://www.chinatelecom.com.cn, 光纤通信的历史
    Jeff Hecht, City of Light: the story of fiber optics, Oxford University Press, New York, 1999
    N.Hiroshi, et al., 1.05Tbit/s WDM transmission over 8186km using distributed Raman amplifier repesters, OFC’01, 2001, TuF6
    H.Onaka, et al., 1.1 Tbit/s WDM transmission over a 150km 1.3μm zero-dispersion single-mode fiber, OFC’96, 1996, Paper PD19
    A.H. Gnauck, et al., One terabit/s transmission experiment, OFC’96, 1996, PD20
    T.Moroka, et al., 100 Gbit/s×10 channel OTDM/WDM transmission using a single supercontinuum WDM source, OFC’96, 1996, Paper PD21
    刘俭辉等,Tbit/s 超大容量光纤通信系统的研究进展,光学技术,2003,4:92~98
    A.R.Chraplyvy, et al., 1-Tb/s transmission experment, IEEE Photon. Tech. Lett., 1996, 8(9): 1264~1266
    M.Gunkel, et al., 40Gb/s RZ unrepeatered Transmission over 252km SMF using Raman Amplification, OFC’01, 2001, Paper TuU3
    M.Suzuki, et al., High speed (40-160Gbit/s) WDM Transmission in terrestrial networks, OFC’03, 2003, Paper FN1
    B.Zhu, et al., Transmission of 1.6 Tb/s (40×42.7Gb/s) over transoceanic distance with terrestrial 100km amplifier spans, OFC’03, 2003, Paper FN2
    J.P.Elbers, A. Farbert et al., 3.2 Tbit/s (80(40 Gbits) bidirectional DWDM/ETDM transmission, ECOC’99, Paper PD
    C.Scheerer, C.Glingener, A. Farbert et al., 3.2 Tbit/s (80(40 Gbits) bidirectional DWDM/ETDM transmission over 40 km standard singlemode fiber, Electron. Lett., 1999, 35(20): 1752~1753
    A. Farbert, 7 Tbit/s (176(40 Gbits)bidirectional interleaved transmission with 50 GHz spacing, ECOC’00, Paper PD1.3
    K.Fukuchi, et al., 10.92 Tbit/s (273(40 Gbit/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment, OFC’01, Paper PD24
    
    S. Bigo, et al., 10.2 Tbit/s (256(42.7 Gbit/s PDM/WDM)transmission over 100 km Tera-LightTM fiber with 1.28 bit/s/Hz spectral efficiency, OFC’01, Paper PD25
    D. Chen, et al., 3.2 Tbit/s field trial (80(40 Gbits)over 3(82 km SSMF using FEC, Raman and tunable dispersion compensation, OFC’01, Paper PD36
    K.Shimiz, et al., Fiber-effective-area managed fiber lines with distributed Raman amplification in 1.28-Tb/s (32(40 Gbit/s), 202-km unrepeatered transmission, OFC’01, 2001, TuU2
    T.Miyakawa, et al., 2.56 Tbit/s (40Gbit/s(64 WDM) unrepeatered 230 km transmission with 0.8 bit/s/Hz spectral efficiency using low-noise fiber Raman amplifier and 170μm2-Aeff fiber, OFC’01, 2001, Paper PD26
    K.Tanaka, et al., 40 Gbit/s(25 WDM 306 km unrepeatered transmission using 175μm2-Aeff fiber, Electron. Lett., 2001, 37(22): 1354~1355
    B.Bakhshi, et al., 1 Tbit/s (101(10 Gbit/s) transmission over transpacific distance using 28 nm C-band EDFAs, OFC’01, 2001, Paper PD21
    B.Zhu, et al., 3.08 Tbit/s (77(42.7Gbit/s) transmission over 1200 km of non-zero dispersion-shifted fiber with 100 km spans using C-band L-band distributed raman amplification, OFC’01, 2001, Paper PD23
    T.Tsuritani, 35 GHz-spaced-20 Gb/s(100 WDM RZ transmission over 2700 km using SMF-based transmission line, ECOC’00, 2000, Paper PD1.5
    J.-K.Cai, et al., 2.4 Tbit/s (120(20Gbit/s) transmission over transoceanic distance using optinum FCE overhead and 48% spectral efficiency, OFC’01, 2001, Paper PD21
    G.Vareille, et al., 3 Tbit/s (300(11.6Gbit/s) transmission over 7380 km using C+L band with 25 GHz channel spacing and NRZ format, OFC’01, 2001, Paper PD22
    G.Vareille, et al., 3.65 Tbit/s (365(11.6Gbit/s) transmission experiment over 6950 km using 22.2GHz channel spacing in NRZ format, ECOC’01, 2001, 16: 14~15
    S.Naomasa, et al., 2.4 Tbit/s WDM transmission over 7400 km using all raman amplifier repeaters with 74 nm continuous single band, ECOC’01, 2001, 16: 8~9
    韦乐平,光纤通信系统的发展和展户,通讯世界,2001,12: 11~14
    Jianjun Yu, et al., 160 Gb/s single-channel unrepeated transmission over 200km of non-zero dispersion shifted fiber, ECOC’01, 2001, 6: 20~21
    E.Lach, et al., Advanced 160 Gbit/s OTDM system based on wavelength transparent 4(40Gbit/s ETDM transmitters and receivers, OFC’02, 2002, Paper TuA2
    J-L. Auge, et al., Single channel 160GB/s OTDM propagation over 480 km of standard fiber using a 40 GHz semiconductor mode-locked laser pulse source, OFC’02, 2002, Paper TuA3
    S.A.E.Lewis, et al., Gain and saturation characteristics of dualwavelenth pumped silica-fibre Raman amplifiers, Electron. Lett., 1999,35(14): 1178~1179
    F.Koch, et al., Characterisation of single stage dualpumped Raman fibre amplifiers
    
    
    for different gain fibre lengths, Electron. Lett., 2000, 36(4): 347~348
    A.Felton, et al., L-band Erbium-doped fiber amplifiers, OFC’00, 2000, WG1
    L.N.Ng, et al., Thulium-doped tellurite fiber for S-band amplification, ECOC’02, 2002
    Y.J.G.Deiss, et al., Gain flatness of a 30 dBm tandem Er3+ - Er3+/Yb3+ double-clad fiber amplifer for WDM transmission, OFC’02, 2002, Paper WJ6
    S.Tanaka, et al., Ultral-wideband L-band EDFA using phosphorus co-doped Silica-fiber, OFC’02, 2002, ThJ3
    Govind P. Agrawal, 贾东方等译,非线性光纤光学原理及应用,电子工业出版社,2002
    D.L.Guen, et al., 25 GHz spacing DWDM soliton transmission over 2000km of SMF with 25dB/span, ECOC’01, 2001, 2: 244~245
    G.Vareille, et al., 1.5 Terabit/s submarine 4000km system validation over a deloped line with industrial margins using 25 GHz channel spacing and NRZ format over NZDSF, OFC’02, 2002, Paper WP5
    G.Vareille, et al., Terabit transoceanic system assessment with industial margin using 25 GHz channel spacing and NRZ format, OFC’02, 2002, Paper WP6
    M.Teshima, et al., Optical carrier supply module applicable to over 100 super-dense WDM systems of 1000 channels, ECOC’01, 2001, Paper Mo.L.3.7
    Pauline Rigby, Essex claims 4000-channel DWDM, http://www.lightreading.com, 2000
    刘俭辉等,光发射机的数值模型处理,无线电工程,2003,33(9):18~19
    伍浩成等,40Gb/s DWDM传送技术及实际考虑,系统与网络,2003,3: 1~4
    刘俭辉,孤子传输技术的发展,光纤通信新产品,2003,7: 26~29
    刘俭辉等,啁啾孤子的传输研究,激光与光电子学进展,2003,40(8): 33~36
    刘俭辉等,光纤通信系统中关键技术的研究,高等教育出版社,2003.3
    王思劼,刘俭辉等,国内外通信用可调谐激光器研究进展,光通信研究,2003,4:38~43
    B.Mason, et al., Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers, IEEE Photon. Tech. Lett., 2000,12(7): 762~764
    G.Sarlet, et al., Wavelength and mode stabilization of widely tunable SG-DBR and SSG-DBR lasers, IEEE Photon. Tech. Lett., 1999, 11(11): 1351~1353
    D.M.Adams, et al., Module-packaged tunable laser and wavelength locker delivering 40mW of fiber-coupled power on 34 channels, Electron. Lett., 2001,37(11): 691~693
    J.Pezeshki, et al., 20mW widely tunable laser module using DFB array and MEMS selection, IEEE Photon. Tech. Lett., 2002, 14(10):1457~1459
    Payam Rabiei, et al., Imtegrated WDM polymer modulator, OFC’02, 2002, Paper
    
    
    TuF6
    D.Vakhshoori, et al., “MEMS-tunable vertical-cavity surface-emitting lasers” , OFC’00, 2001, paper TuJ1
    M. W. K. Mak, and H. K. Tsang, Dispersive frequency multiplication for wavelength-tunable high repetition rate pulse-train generation, OFC’01, 2001, TuB
    S. H. Chang, et al., Widely tunable single-frequency Er-doped fiber laser with long linear cavity, IEEE Photon. Tech. Lett., 2001, 13(4):287~289
    Xiaoke Wan and Henry F. Taylor, Linearly chirped erbium-doped fiber laser, IEEE Photon. Tech. Lett., 2003, 15(2): 188~190
    Qinghe Mao and J. W. Y. Lit, Optical bistability in an L-band dual-wavelength erbium-doped fiber laser with overlapping cavities, IEEE Photon. Tech. Lett., 2002, 14(9): 1252~1254
    Jianliang Yang, et al., Wideband wavelength tunable fiber ring laser with flattened output power spectrum, Optics Communications, 2002, 210:313~318
    S. Y. Set, et al., A widely tunable fiber bragg grating with a wavelength tunability over 40 nm, OFC’00, 2000, MC4
    Jianliang Yang, et al., Tunable multi-wavelength combined linear-cavity fiber laser source with equally changed wavelength spacing, Optics & Laser tech., 2002, 34:599~604
    葛春风等, 可调谐环形腔光纤光栅激光器, 光学学报, 1999, 19(6): 762~765
    M.E.Fermann, et al., Wavelength-tunable soliton generation in the 1400~1600 nm region using an Yb fiber laser, OFC’01, 2001, TuI2
    M.Auerbach, et al., High-power tunable narrow line width ytterbium doped double clad fiber laser, Optics Communications, 2001, 195(15): 437~441
    T.Komukai, Upconversion pumped thulium-doped fluoride fiber amplifer and laser operating at 1470nm, IEEE Quant. Electron., 1995, 31(11): 1880~1889
    Shien-Kuei Liaw, et al., Passive gain-equalized wide-band erbium-doped fiber amplifier using samarium-doped fiber, IEEE Photon tech. Lett., 1996, 8(9): 879~881
    P.Nair, et al., Fiber Raman lasers using all-fiber resonators, Optical Engineering, 1996, 35(1): 272~276
    V.E.Perlin, et al., Distributed feedback fiber Raman laser, IEEE Quant. Electron., 2001, 37(1):38~47
    U.Keller, Noise characterization of femtosecond fiber Raman soliton lasers, IEEE Quant. Electron., 1989, 25(3): 280~288
    T.E.Murphy, et al., 10GHz 1.3ps pulse generation using chirped soliton compression in a Raman gain medium, IEEE Photon. Tech. Lett., 14(10): 1424~1426
    T. Morioka, et al., 1 Tbit/s (100Gbit×10channel) OTDM/WDM transmission using a single supercontinuum WDM source, Electron. Lett., 1996, 32 (10): 906-907
    
    S. Kawanishi, et al., 1.4Tbit/s (200Gbit×7 channel WDM)50 km optical transmission experiment, Electron. Lett., 1997, 33 (20): 1716-1717
    S. Kawanishi, et al., 3 Tbit/s (160 Gbit/s(19 ch) OTDM/WDM Transmission experiment, OFC’99, 1999, Paper PD1
    J. W. Lou, et al., Broader and flatter supercontinuum spectra in dispersion tailored fibers, OFC’97, 1997, Paper TuH6
    T. Okuno, et al., Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber, IEEE Photon. Technol. Lett., 1998, 10 (1): 72~74
    Y. Takushima, et al., Generation of over 140-nm wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source, IEEE Photon. Technol. Lett., 1998, 10 (11): 1560~1562
     F. Futami, et al., Generation of 10 GHz, 200 fs Fourier-transform-limited optical pulse train from modelocked semiconductor laser at 1.55 (m by pulse compression using dispersion-flattened fiber with normal group-velocity despersion, Electron. Lett., 1998, 34 (22): 2129~2130
     K. Mori, et al., Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fiber with convex dispersion profile, Electron. Lett., 1997, 33(21): 1806~18071
    J. K. Ranka, et al., Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett., 2000, 25(1): 25~27
    T. A. Birks, et al., Supercontinuum generation in tapered fibers, Opt. Lett., 2000, 25 (9): 1415~1417
    K. P. Hansen and J. R. Jensen, Pumping wavelength dependence of supercontinuum generation in photonic crystal fibers, OFC’02, 2002, Paper ThG8
    N. Nishizawa and T. Goto, Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser, Appl. Phys., 2001, 40(4B): L365~L367
    刘俭辉等,超连续谱光纤的优化设计,光学学报,2003,23(6):684~688
    K.Kudo, et al., 1.55-μm wavelength-selectable microarray DFB-LD’s with integrated MMI combiner , SOA , and EA-modulator, OFC’00, 2000, TuL5
    K.Kudo, et al., Wavelength-selectable microarray light sources simultaneously fabricated on a wafer covering the entire C-band , OFC’01, 2001, TuB4
    S. Calvez, et al., Erbium-doped fiber laser tuning using two cascaded unbalanced Mach-Zehnder interfermeters as intracavity filter: Numerical analysis and experimental confirmation, Lightwave Tech., 2001, 19: 893~898
    J. M. Oh, et al., Efficient tunable fiber ring laser for 1580 nm band with a fiber Bragg grating, OFC’00, 2000, WA6
    B.Pezeshki, et al., 20-mw widely tunable laser module using DFB array and MEMS selection, IEEE Photon. Technol. Lett., 2002, 14(10): 1457~1459
    
    F.kano et al., Frequency and stabilization of broadly tunable SSG-DBR lasers , OFC’02, 2002, ThV3
    Y.Fukashiro, et al., Fast and fine wavelength tuning of a GCSR laser using a digitally controlled driver, OFC’00, 2000, WM43
    M. Jiang, et al., Error free 2.5 Gb/s transmission over 125 km conventional fiber of a directly modulated widely tunable vertical cavity surface emitting laser, OFC’01, 2001, TuJ3
    L. Fulop, et., al., High power ASE-free tunable laser using a Sagnac ring interferometer within the external cavity, OFC’01, 2001, TuJ6
    J.D.Berger,et al., Widely tunable external cavity diode laser based on a MEMS electrostatic rotary actuator, OFC’01, 2001, Paper TuJ2
    P.C.Reeves-Hall, Wavelength tunable CW Raman fibre ring laser operating at 1486-1551nm, IEEE Electron. Lett., 2001, 37(8): 491~492
    K.K.Seung, et al., Wideband multiwavelength erbium-doped fiber ring laser, OFC’01, 2001, ThA3
    M.Mielke, et al., 168 channels×6Gb/s(1Tb/s aggregate) from a multiwavelength modelocked semiconductor laser, OFC’03, 2003, Paper MF59
    C.S.Li, et al., Variable bit-rate receiver for WDMA/WDM system, IEEE Photon. Tech. Lett., 1997: 1158~1160
    H.Takahashi, et al., Multiwavelength ring laser composed of EDFAs and an array-waveguide wavelength multiplexer, Electron. Lett., 1994, 30(1): 44~45
    Shinji Yamashita, et al., Multiwavelength fiber lasers with tunable wavelength spacing, OFC’00, 2000, WA8
    Do Il Chang, et al., Dual-wavelength cascaded Raman fibre laser, Electon. Lett., 36(16): 1356~1358
    Tadashi Sakamoto, S-band fiber optic amplifiers, ECOC’02, 2002, TuQ1
    Mikko Soderlund, et al., Analysis of cladding-pumped L-band erbium-doped fiber amplifier performance, OFC’00, 2000, WDD20
    Mohd Adzir Mahdi, Harith Ahmad, Long-wavelength-band Er+3-doped fiber amplifier incorporating a ring-laser as a seed signal generator, IEEE Journal on Selected Topics in Quantum Electronis, 2001, 7(1): 59~63
    H.B.Choi, J.M.Oh, Simple and efficient L-band erbium-doped fiber amplifiers for WDM networks, Opics Communications, 213, 2002: 63~66
    Qinghe Mao, et al., Amplification enhancement of L-band erbium-doped fiber amplifiers by reflection scheme, Optics Communications, 2002, 201: 61~69
    M.Karaset and M.Menif, Serial topology of wide-band erbium-doped fiber amplifier for WDM application, IEEE Photon. Tech. Lett., 2001, 13(9): 939~941
    M.Rochette, M.Guy, Gain equalization of EDFA’s with Bragg gratings, IEEE
    
    
    Photonics Tech. Lett., 1999,11(5):536~538
    M.K.Pandit, K.S.Chiang, Tunable Long-period fiber gratings for EDFA gain and ASE equalization, Microwave Opt. Technol. Lett., 1999, 25(3):181~184
    Taichi Kogure, Polarization insensitive adaptive gain profile equalizer using variable Fabaday rotators and walk-off crystals, 2000 Optical society of American, MK3
    Seok Hyun Yun, et al., Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters, IEEE Photonics tech. Lett., 1999, 11(10): 1229~1231
    A.Mori, T.Sakamoto, et al., Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581~1616nm wavelength region, Electronics Lett., 2000, 36(7):621~622
    Shien-Kuei Liaw, et al., Passive gain-equalized wide-band erbium-doped fiber amplifier using samarium-doped fiber, IEEE Photon tech. Lett., 1996, 8(9): 879~881
    D.Bayart, et al., 1.55μm fluoride-based EDFA with gain-flatness control for multi-wavelength applications, Electronics Letters, 1994, 30(15):1407~1049
    M.Yamada, et al., Flattening the gain spectrum of an erbium-doped fibre amplifier by connecting an Er3+-doped SiO2-Al2O3 fibre and Er3+-doped multicomponent fibre, Eletron. Lett., 1994, 30(17):1762~1764
    R.Di Muro, et al., Dependence of L-band amplifier efficiency on pump wavelength and amplifier design, OFC’00, 2000, WG7
    Jung Mi Oh, et al., Demonstration of highly efficient flat-gain L-band erbium-doped fiber amplifiers by incorporating a fiber Bragg grating, IEEE Photon. Tech. Lett., 2002, 14(9): 1258~1260
    Tadashi Sakamoto, et al., Recent progress on S-band fiber amplifiers, ECOC’02, 2002
    J.Kani and M.Jinno, Wideband and flat-gain optical amplification from 1460 to 1510nm by serial combination of a thulium-doped fluoride fibre amplifier and fibre Raman amplifier, Electron. Lett., 1999, 35(12): 1004~1006
    L.N.Ng, et al., Thulium-doped tellurite fiber for S-band amplification, ECOC’02, 2002
    T.J.Whitley, A review of recent system demonstrations incorporating 1.3 μm praseodymium-doped fluoride fiber amplifiers, IEEE Lightwave Tech., 1995, 13(5): 774~760
    K.Isshiki, et al., Reliable 1.01μm band laser diode pumped praseodymium-doped In/Ga-based fluoride fiber amplifiers at 1.3μm, IEEE Lightwave Tech., 1998, 16(2): 2373~2377
    H.J.S.Dornen, et al., Nonlinear polarization rotation in semiconductor optical amplifiers:Theory and application to all-optical Flip-flop memories, IEEE Quant. Electron., 2003, 39(1): 141~148
    K.Obermann, et al., Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers, IEEE Lightwave Tech., 1998, 16(1):
    
    
    78~85
    A.Evans, Raman amplification in broadband WDM systems, OFC’01, 2001, Paper TuF4
    L.Du Mouza, et al., 1.28 Tbit/s(32×40 Gbit/s) WDM transmission over 2400km of TeralightTM/Reverse Teralight fibers using distributed all-Raman amplification, Electron. Lett., 2001, 37(21): 1300~1302
    K.Shimizu, et al., 65×22.8 Gb/s WDM transmission over 8,398 km employing symmetrically collided transmission with Aeff managed fiber, OFC’02, 2002, Paper WX4
    D.F.Grosz, et al., Demonstration of all-Raman ultra-wide-band transmission of 1.28 Tb/s(128×10Gbit/s)over 4000km of NZ-DSF with large BER margins, ECOC’01, 2001
    T.N.Nielsen, et al., 3.28 Tb/s (82/spl times/40 Gb/s)transmission over 3/spl times/100 km nonzero-dispersion fiber using dualC-and L-band hybrid Raman/erbium doped inline amplifiers, ECOC’01, 2001
    E.Ishikawa, et al., Novel 1500 nm-band EDFA with discrete Raman amplifier, ECOC’01, 2001
    H.Masuada, et al., Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain equalized two-stage erbium-doped fiber amplifier and Raman amplification, Electron. Lett., 1997, 33(9): 753~754
    Yihong Chen, et al., 40 nm broadband SOA-Raman hybrid amplifier , OFC’02, 2002, Paper ThB7
    Neal S.Berfano, et al., 640Gb/s Transmission of sixty-four 10Gb/s WDM Channels Over 7200 km with 0.33 (bit/s) /Hz spectral Efficiency, OFC’99, 1999, Paper PD2
    J.JPAn and Y.Shi, Dense WDM Multiplexer and Demultiplexer With a 0.4 nm Channel Spacing, ECOC’98, 1998: 16C4
    A.Vengsarkar, J.Pedrazzani, J.Judkins et al., Long period fiber grating based gain equlizers, Optical Lett., 1996, 21(5): 336~338
    Y.Li, et al., Waveguide EDFA gain equalisation filter, Electron. Lett., 1995, 34(23): 2005~2006
    K.Takiguchi, et al., Dispersion compensation using a planar lightwave circuit equalizer, IEEE Photon. Technol. Lett., 1994, 6(4):561~64
    C.Madsen and G.Lenz, Optical all-pass filter for phase response design with application for dispersion compensation, IEEE Photon. Technol. Lett., 1998, 10(7):994~996
    OFC2002产品专题[DB/EL], Http://www.opticfibernews.com
    胡台光,波分复用器现状,光通信技术,2000,24(2): 79~84
    Francois Gonthier, Fused couplers increase system design options, Laser Fous World, 1998, 34(6): P83~88
    H.A.Haus, et al., Narrow-Band channel dropping filters, Lightwave Tech.,1992,
    
    
    10:57~62
    M.Kuznetsov, Caseded coupler Mach-Zehnder channel dropping filters for Wavelength Division Multiplexed optical system, Ligthwave Tech., 1994, 12: 226~230.
    张国威,可调谐激光技术,国防工业出版社,2002.1
    A.A.Filippo and M.R.Perrone, Experimental study of stimulated scattering by broad-band pumping, IEEE Journal of Quantum Electron., 1992, 28(9):1859~1864
    谈斌,陈晓伟,李世忱,全内反射光子晶体光纤,光电子.激光,2002,13(5):491~495
    贾东方,黄超,宋立军等,超连续(SC)光脉冲的产生及应用,光通信研究,2000,6:47~53
    Makoto Yamada, et al., Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76 nm, IEEE Photon. Tech. Lett., 1998, 10(9): 1244~1246
    Atsushi Mori, et al., Broadband amplification characteristics of tellurite-based EDFAs, ECOC’97, 1997, 448: 135~138
    N. Sugimoto, et al., Broadboard 1.5μm emission of Er3+ ions in bismuth-based oxide glasses for WDM amplifier, IEEE LEOS’99, 1999, 2(8-11):814~815
    第二章:
    R.Olshansky, Noise figure for erbium-doped optical fiber amplifiers, Electron. Lett., 1988, 24(22): 1363~1365
    E.Desurvire, et al., Amplification of spontaneous emission in erbium-doped single mode fibers, Lightwave Tech., 1989, 7(5):835~845
    P.R.Morkel, et al., Theoretical modeling of erbium-doped fiber amplifiers with excited-stated absorption, Optics Lett., 1989, 14(19): 1062~1064
    M.Montecchi, et al., Gain and noise in rare-earth-doped optical fibers, Optics Lett., 1991, 8(1): 134~141
    E.Desurvire, et al., Analysis of gain difference between forward and backward pumped erbium-doped fiber amplifiers in the saturation regime, IEEE Photon. Tech. Lett., 1992, 4(7): 711~714
    S.Y.Park, Doped fibre length and pump power of gain-flattened EDFAs, Electron. Lett., 1996, 32(23): 2161~2162
    P.C.Becker, et al., Erbium-doped fiber amplifiers fundamentals technology, Academic Press, 1999
    E.Desurvire, et al., High-gain erbium-doped traveling-wave fiber amplifier, Optics Lett., 1987, 12(11): 888~890
    M.Yamada, et al., Er3+-doped fiber amplifier pumped by 0.98 μm laser diodes, 1989,Photon. Tech. Lett., 1(12): 422~424
    
    P.C.Becker, et al., High-gain and high-efficiency diode laser pumped fiber amplifier at 1.56 μm, IEEE Photon.Tech. Lett., 1989, 1(9): 267~269
    M. Shimizu, et al., Erbium-doped fibre amplifiers with an extremely high gain coefficient of 11.0 dB/mW, Electron. Lett., 1990, 26(20): 1641~1643
    W.J. Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500 nm, Lightwave Tech., 1991, 9(2): 234~250
    K. Inoue, et al., Tunable gain equalization using a Mach-Zehnder optical filter in multistage fiber amplifiers, IEEE Photon. Tech. Lett., 1991, 3(8): 718~720
    R. Kashyap, Fiber Bragg Gratings, Academic Press, 1999
    S. H. Yun, et al., Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters, IEEE Photon. Tech. Lett.,1999, 11(10): 1229~1231
    Paul F. Wysocki, et al., Dual-stage erbium-doped, erbium/ytterbium codoped fiber amplifier with up to +26-dBm output power and a 17-nm flat spectrum, Opt. Lett., 1996, 21(21): 1744~1746
    H. Ono, et al., 1.58 μm band Er3+-doped fibre amplifier pumped in the 0.98 and 1.48 μm bands, Electron. Lett., 1997, 33(10): 1477~1478
    M. Masuda, et al., Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fibre amplifier and Raman amplification, Electron. Lett.,1997, 33(9): 753~754
    M. Yamada, et al., Broadband and gain-flattened amplifier composed of a 1.55 μm-band and a 1.58 μm-band Er3+-doped fibre amplifier in a parallel configuration, Electron. Lett., 1997,33(8): 710~711
    范崇澄编,掺铒光纤放大器,清华大学电子工程系讲义,2000
    C.R.Giles, et al., Noise performance of erbium-doped fiber amplifier pumped at 1.49 μm, and application to signal preamplification at 1.8 Gbit/s, IEEE Photon. Tech. Lett., 1989, 1: 367~369
    M.Yamada, et al., Gain characteristics of an Er3+-doped multicomponent glass single-mode optical fiber, IEEE Photon. Tech. Lett., 1990, 2(9): 656 -658
    E.Desurvire, et al., Spectral noise figure of Er3+-doped fiber amplifiers, IEEE Photon. Tech. Lett., 1990, 2(3): 208~210
    R.I.Laming, et al., Erbium-doped fiber amplifier with 54 dB gain and 3.1 dB noise figures, IEEE Photon. Tech. Lett., 1992, 4(12): 1345~1347
    F.W.Willems, et al., EDFA noise figure degradation caused by amplified signal double Rayleigh scattering in erbium doped fibres, Electron. Lett., 1994, 30(8): 645~646
    K.Rottwitt, et al., Noise in distributed erbium-doped fibers, IEEE Photon. Tech. Lett., 1993, 5(2): 218~221
    K. Rottwitt, et al., Long distance transmission through distributed erbium-doped
    
    
    fibers, Lightwave Tech., 1993, 11(12): 2105~2115
    A.Altuncu, et al., 40 Gbit/s error free transmission over a 68 km distributed erbium doped fibre amplifier, Electron. Lett., 1996, 32(3): 233~234
    M.Nissov, et al., Improved noise performance in non-return to zero systems by use of distributed fibre amplifiers, Electron. Lett., 1996, 32(20): 1905~1907
    Felton A. Flood, L-band erbium-doped fiber amplifiers, OFC’00, 2000, Paper WG1
    M.Karasek, Gain Enhancement in Gain-Shifted Erbium-DopedFiber Amplifiers for WDM Applications, IEEE Photon. Tech. Lett., 1999, 11(9): 1111~1113
    J. Lee, et al., Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section, IEEE Photon. Tech. Lett., 1999, 11(1): 42~44
    A. R. Pratt, et al., Gain Control in L-Band EDFAs by Monitoring Backward Traveling C-Band ASE, IEEE Photon. Tech. Lett., 2000, 12(8): 983~985
    R.Di Muro, et al., Dependence of L-band amplifier efficiency on pump wavelength and amplifier design, OFC’00, 2000, WG7
    Qinghe Mao, et al., Amplification enhancement of L-band erbium-doped fiber amplifiers by reflection scheme, Optics Communications, 2002, 201: 61~69
    C.A.Millar, et al., Thermal properties of an Er-doped fiber amplifier. Optoelectronics, 1990, 137(3):155~162
    Nobuyuki Kagi, et al., Temperature dependence of the gain in erbium-doped fibers, IEEE Lightwave Tech., 1991, 9(2): 261~265
    E.Desurvier, Erbium-doped Fiber Amplifier: Principles and Applications, New York: A Wiley-Interscience, 1994: 3~26
    C.R.Giles, et al., Modeling erbium-doped fiber amplifiers, Lightwave Tech., 1991, 9(2): 271~282
    H. B. Choi, H. H. Park, et al., High-gain coefficient long-wavelength-band Erbium-doped fiber amplifier using 1530-nm band pump, IEEE Photon. Tech. Lett., 2001, 13(2):109~111
    M. A. Mahdi, H.Ahmad, Gain enhanced L-band Er+3-doped fiber amplifier utilizing unwanted backward ASE, IEEE Photon. Tech. Lett., 2001, 13(10): 1067~1069
    S. W. Harun, S. K. Low, et al., Gain clamping in L-band erbium-doped fiber amplifier using a fiber Bragg grating, IEEE Photon. Tech. Lett., 2002,14(3): 293~295
    J.Nilsson, S.Y.Sun, et al., Long-wavelength erbium-doped fiber amplifier gain enhanced by ASE end-reflectors, IEEE Photon. Technol. Lett., 1998, 10:1551~1553
    张岩滨等,本征平坦增益带宽>33nm的高增益、低噪声L-波段铒光纤放大器,中国激光,29(11): 987~990
    Mohd Adzir Mahdi, Harith Ahmad, Long-wavelength-band Er+3-doped fiber
    
    
    amplifier incorporating a ring-laser as a seed signal generator, IEEE Journal on Selected Topics in Quantum Electronis, 2001, 7(1): 59~63
    H.B.Choi, J.M.Oh, Simple and efficient L-band erbium-doped fiber amplifiers for WDM networks, Opics Communications, 213, 2002: 63~66
    S.Ishikawa, M.Kakui, et al., High gain per unit lengths silica-base erbium doped fiber for 1580nm band amplification, OAA’98, 1998: 64~67
    Y.Sun, J.W.Sulhoff, et al., 80nm ultra-wideband erbium-doped silica fibre amplifier, Elecron. Lett., 1997, 33(23):1965~1967
    J. F. Massicott, J. R. Armitage, et al., High gain broadband 1.6μm Er3+ doped silica fiber amplifier, Electron. Lett., 1990, 26(20):1645~1646
    蒙红云,杨石泉,袁树忠等,基于后抽ASE抽运的L-波段掺铒光纤放大器,中国激光,2002,10:905~907
    J. F. Massicott, R. Wyatt, et al., Low noise operation of Er3+ doped silica fiber amplifier around 1.6μm, Electron. Lett., 1992, 28(20):1924~1925
    M. A. Mahdi, H. Ahmad, L-band Er3+-doped fiber amplifier utilizing self-generated seed signal, in 13th IEEE LEOS Ann. Meeting, 2000:279~280
    F.A.Flood and C. C. Wong, 980-nm pump-band wavelength for long-wavelength-band erbium-doped fiber amplifiers, IEEE Photon. Technol. Lett., 1999, 11(10):1232~1234
    第三章:
    张 煦 著,现代通信技术和大学教育(续集),上海交通大学出版社,1993
    刘俭辉,葛春风,掺铒光纤放大器的增益平坦化方法,光通信,2003,7:30~33
    M.Tachibana, et al., Erbium-doped fiber amplifier with flattened gain spectrum, IEEE Photonics Tech. Lett., 1991, 3(2):118~120
    S.F.Su, et, al., Flattening of erbium-doped fibre amplifier gain spectrum using an acousto-optic tunable filter, Electronics Letters, 1993 , 29(5):477~478
    S.H.Huang, et al., Experimental demonstration of active equalization and ASE suppression of three 2.5-Gb/s WDM-network channels over 2500km using AOTF as transmission filters, IEEE Photon. Technol. Lett., 1997, 9(3):389~391
    R.Kashyap, et al., Wideband gain flattened erbium fibre amplifier using a photosensitive fibre blazed grating, Electronics Letters , 1993, 29(2):154~156
    R.Kashyap, et al., Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings, Electronics Letters , 1993, 29(11):1025~1026
    M.Rochette, M.Guy, Gain equalization of EDFA’s with Bragg gratings, IEEE Photonics Tech. Lett., 1999,11(5): 536~538
    
    Ashish M.Vengsarkar, et al., Long-period fiber-grating-based gain equalizers, Optics Letters , 1996, 21(7): 336~338
    Paul F.Wysocki, et al., Broad-band erbium-doped fiber amplifier flattened beyond 40nm using Long-period grating filter, IEEE Photo. Tech. Lett., 1997, 9(10):1343~1345
    M.K.Pandit, K.S.Chiang, Tunable Long-period fiber gratings for EDFA gain and ASE equalization, Microwave Opt. Technol. Lett., 1999, 25(3):181~184
    A.H.Liang, H.Toda, Dynamically gain flattened EDFA with bent dispersion shifted fibre, Electronics Lett., 1997,33(25): 2126~2127
    J.X.Cai, et al., Equalization of nonuniform EDFA gain using a fiber-loop mirror, IEEE Photon. Tech. Lett., 1997, 9(7): 916~918
    S.P.Li, K.S.Chiang, W.A.Gambling, Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror, IEEE Photon. Tech. Lett., 2001, 13(9): 942~944
    蒙红云,赵春柳,杨石泉等,基于光纤环形镜的掺铒光纤放大器的增益平坦化,中国激光,2002,29(9):805~807
    Hyo Sang Kim, et al., Actively gain-flattened erbium-doped fiber amplifier over 35nm by using all-fiber acousto-optic tunable filters, IEEE Photonics tech. Lett., 1998, 10(6): 790~793
    Seok Hyun Yun, et al., Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters, IEEE Photonics tech. Lett., 1999, 11(10): 1229~1231
    D.Bayart, et al., 1.55μm fluoride-based EDFA with gain-flatness control for multi-wavelength applications, Electronics Letters, 1994, 30(15): 1407~1049
    Makoto Yamada, et al., Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum, IEEE Photon tech. Lett., 1996, 8(9): 882~884
    A.Mori, Broadband amplification characteristics of tellurite-based EDFAs, ECOC’1997, 3(448): 135~138
    A.Mori, T.Sakamoto, et al., Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581~1616nm wavelength region, Electronics Lett., 2000, 36(7): 621~622
    M.Yamada, et al., Flattening the gain spectrum of an erbium-doped fibre amplifier by connecting an Er3+-doped SiO2-Al2O3 fibre and Er3+-doped multicomponent fibre, Eletron. Lett., 1994, 30(17): 1762~1764
    S.Yoshida, et al., Gain-flattened EDFA with high Al connentnation for multistage repeatered WDM transmission system, Electron. Lett., 1995, 31(17): 1765~1767
    Y. W. Lee, et al., Experimented characterization of a dynamically gain-flattened erbium-doped fiber amplifier, IEEE Photon. Tech. Lett., 1996, 8(12): 1612~1614
    S. T. Hwang, et al., High and flattened gain of erbium-doped fiber amplifier, OFC’1997, Technical Digest: 163~163
    
    Shien-Kuei Liaw, et al., Passive gain-equalized wide-band erbium-doped fiber amplifier using samarium-doped fiber, IEEE Photon tech. Lett., 1996, 8(9): 879~881
    Uh-Chan Ryu, K. Oh, Inherent enhancement of gain flatness and achievement of broad gain bandwidth in erbium-doped silica fiber amplifiers, IEEE Journal of Quantum Electronics, 2002, 38(2): 149~161
    V.A.Bogatyrjov, et al., Passive selective filter for flattening the erbium-doped fibre amplifier gain spectrum based on a feature of the silicon oxynitride fiber absorption spectrum, Electronics Letters, 1995, 31(1): 61~62
    Namkyoo Park, et al., High-power Er-Yb-doped fiber amplifier with multichannel gain flatness within 0.2dB over 24nm, IEEE Photon. Tech. Lett., 1996, 8(13): 1148~1150
    Mohd Adzir Mahdi, Harith Ahmad, Long-wavelength-band Er+3-doped fiber amplifier incorporating a ring-laser as a seed signal generator, IEEE Journal on Selected Topics in Quantum Electronis, 2001, 7(1): 59~63
    H.B.Choi, J.M.Oh, Simple and efficient L-band erbium-doped fiber amplifiers for WDM networks, Opics Communications, 213, 2002: 63~66
    原荣,光纤通信,电子工业出版社,2002
    Govind P.Agrawal, 贾东方等译,非线性光纤光学原理及应用,电子工业出版社,2002
    David B.Mortimore, Fiber loop reflectors, Journal of lightwave technology, 6(7), 1988: 1217~1224
    X.P.Dong, et al., Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror, Electronics letters, 36(19), 2000:1609~1610
    刘德明等编著,光纤光学,国防工业出版社,1995
    C.D.Su and L.A.Wang, Linewidth broadening of Er-doped super fluorescent fibre source using long-period grating, Electron. Lett., 1999, 35(4): 331~332
    Adamas M J, An introduction to optical waveguide, New York: Wiley-Interscience, 1981: 223~233
    刘俭辉,葛春风等,基于长周期光纤光栅的增益平坦化滤波器制作研究,激光与红外,2003, 5: 353~355
    S.Ishikawa, M.Kakui, et al., High gain per unit lengths silica-base erbium doped fiber for 1580nm band amplification, OAA’98, 1998: 64~67
    J.Nilsson, S.Y.Sun, et al., Long-wavelength erbium-doped fiber amplifier gain enhanced by ASE end-reflectors, IEEE Photon. Technol. Lett., 1998, 10(11): 1551~1553
    J.Lee, U.-C.Ryu, et al., Enhancement of power conversion efficiency for a L-band EDFA with a secondary pumping effect in the unpumped EDF section, IEEE Photon. Technol. Lett., 1999, 11(1): 42~44
    Y.Sun, J.W.Sulhoff, et al., 80nm ultra-wideband erbium-doped silica fiber amplifier, Elecron. Lett., 1997, 33: 1965~1967
    
    H. B. Choi, H. H. Park, et al., High-gain coefficient long-wavelength-band Erbium-doped fiber amplifier using 1530-nm band pump, IEEE Photon. Tech. Lett., 2001, 13(2):109~111
    M. A. Mahdi, H.Ahmad, Gain enhanced L-band Er+3-doped fiber amplifier utilizing unwanted backward ASE, IEEE Photon. Tech. Lett., 2001, 13(10): 1067~1069
    S. W. Harun, S. K. Low, et al., Gain clamping in L-band erbium-doped fiber amplifier using a fiber Bragg grating, IEEE Photon. Tech. Lett., 2002, 14(3): 293~295
    J. F. Massicott, J. R. Armitage, et al., High gain broadband 1.6μm Er3+ doped silica fiber amplifier, Electron. Lett., 1990, 26(20): 1645~1646
    J. F. Massicott, R. Wyatt, et al., Low noise operation of Er3+ doped silica fiber amplifier around 1.6μm, Electron. Lett., 1992, 28(20): 1924~1925
    M. A. Mahdi, H. Ahmad, L-band Er3+-doped fiber amplifier utilizing self-generated seed signal, in 13th IEEE LEOS Ann. Meeting, 2000: 279~280
    F. A. Flood and C. C. Wong, 980-nm pump-band wavelength for long-wavelength-band erbium-doped fiber amplifiers, IEEE Photon. Technol. Lett., 1999, 11(10): 1232~1234
    K. Miroslav, Wide-band gain-flattened fibre amplifiers, ICTON 2001, We.B.1: 195~201
    M. Yamada, A. Mori, et al., Broadband and gain-flattened Er3+-doped tellurite fibre amplifier constructed using a gain equalizer, Electron. Lett., 1998, 34(4): 370~371
    A. M. Mohd, et al., Simultaneous Bi-directional of C-and L-band erbium doped fiber amplifier, OFC’2000, TuA3
    Y. Xie, A. E. Willner, Spectrally-efficient L-C band EDFA having a seamless interband channel region using sampled FBGs, IEEE Photon. Tech. Lett., 2001, 13(5): 436~438
    M. Yamada, et al., Broadband and gain-flattened amplifier composed of a 1.55μm-band and a 1.58μm-band Er3+-doped fibre amplifier in a parallel configuration, Electon. Lett., 1997, 33(8): 710~711
    M. Bumki, et al., Coupled structure for wide-band EDFA with gain and noise figure improvements from C to L-band ASE injection, IEEE Photon. Tech. Lett., 2000, 12(5): 480~482
    S. Hwang, et al., Broad-band erbium-doped fiber amplifier with double-pass configuration, IEEE Photon. Tech. Lett., 2001, 13(12): 1289~1291
    R.D.Muro, D. Lowe, et al., Broad-band amplification using a novel amplifier topology, IEEE Photon. Tech. Lett., 2001, 13(10): 1073~1075
    M. Karasek and M.Menif, Serial topology of wide-band erbium-doped fiber amplifier for WDM applications, IEEE Photon. Tech. Lett., 2001, 13(9): 939~941
    S.Hwang, et al., Comparative high power conversion efficiency of C-plus L-band EDFA, Electron. Lett., 2001, 37(25): 1539~1541
    Taichi Kogure, Polarization insensitive adaptive gain profile equalizer using variable
    
    
    Fabaday rotators and walk-off crystals, 2000 Optical society of American, MK3
    第四章:
    S.V.卡塔洛颇罗斯著,高启详译,密集波分复用技术导论,人民邮电出版社,2001.9
    雷震洲,光通信新动向,World Telecommunication,2000,12:6~10
    王思劼,刘俭辉等,国内外通信用可调谐激光器的研究进展,光通信技术,2003,4:38~43
    T. Day, et al., External-cavity tunable diode lasers for network deployment, OFC’01, 2001, TuJ4
    D.M.Adams, et al., Module-packaged tunable laser and wavelength locker delivering 40mW of fiber-coupled power on 34 channels, Electron. Lett., 2001, 37(11):691~693
    K.Kudo, et al., 1.55-μm wavelength-selectable microarray DFB-LD’s with integrated MMI combiner , SOA , and EA-modulator, OFC’00, 2000, TuL5
    K.Kudo, et al., Wavelength-selectable microarray light sources simultaneously fabricated on a wafer covering the entire C-band , OFC’01, 2001, TuB4
    H.Hatakeyama, et al., Wavelength-selectable microarray light sources for S-,C-, and L-bands WDM applications, OFC’02, 2002, WF2
    B.Pezeshki et al., 20-mw widely tunable laser module using DFB array and MEMS selection, IEEE Photon. Technol. Lett., 2002, 14(10): 1457~1459
    B.Mason et al., Widely tunable sampled grating DBR laser with integrated elecroabsorption modulator, IEEE Photon. Technol. Lett., 1999, 11(6): 638~640
    B.Mason, et al., Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers, IEEE Photon. Technol. Lett., 2000, 12(7): 762~764
    Y.A.Akulova, et al., Widely-tunable elecroabsorption modulated sampled grating DBR laser integrated with semiconductor optical amplifier, OFC’02, 2002, ThV1
    G.Sarlet, et al., Wavelength and mode stabilization of widely tunable SG-DBR and SSG-DBR lasers, IEEE Photon. Technol. Lett., 1999, 11(11): 1351~1353
    F.kano et al., Frequency and stabilization of broadly tunable SSG-DBR lasers , OFC’02, 2002, ThV3
    Y.Fukashiro, et al., Fast and fine wavelength tuning of a GCSR laser using a digitally controlled driver, OFC’00, 2000, WM43
    D.Vakhshoori, et al., MEMS-tunable vertical-cavity surface-emitting lasers, OFC’01, 2001, TuJ1
    M. Jiang, et al., Error free 2.5 Gb/s transmission over 125 km conventional fiber of a directly modulated widely tunable vertical cavity surface emitting laser, OFC’01, 2001, TuJ3
    K. J. Knopp, et al., High power MEMs-tunable vertical-cavity surface-emitting lasers,
    
    
    OFC’00, 2000, TuA
    D.Vakhshoori, et al., 2mW CW singlemode operation of a tunable 1550nm vertical surface emitting laser with 50nm tuning range, Electron. Lett., 1999, 35(11): 900~901
    J.D.Berger, et al., Widely tunable external cavity diode laser based on a MEMS electrostatic rotary actuator, OFC’01, 2001, TuJ2
    L. Fulop, et., al., High power ASE-free tunable laser using a Sagnac ring interferometer within the external cavity, OFC’01, 2001, TuJ6
    I.Kudryashov, et al., 100mW external cavity laser with a 1405-1575nm tuning range, CLEO’02, Lasers and Electro-Optics, 2002, 1: 412~413
    M. W. K. Mak, and H. K. Tsang, Dispersive frequency multiplication for wavelength-tunable high repetition rate pulse-train generation, OFC’01, 2001, TuB
    S. H. Chang, et al., Widely tunable single-frequency Er-doped fiber laser with long linear cavity, IEEE Photon. Tech. Lett., 2001, 13(4): 287~289
    Xiaoke Wan and Henry F. Taylor, Linearly chirped erbium-doped fiber laser, IEEE Photon. Tech. Lett., 2003, 15(2): 188~190
    Qinghe Mao and J. W. Y. Lit, Optical bistability in an L-band dual-wavelength erbium-doped fiber laser with overlapping cavities, IEEE Photon. Tech. Lett., 2002, 14(9): 1252~1254
    Jianliang Yang, et al., Wideband wavelength tunable fiber ring laser with flattened output power spectrum, Optics Communications, 2002, 210: 313~318
    S. Y. Set, et al., A widely tunable fiber bragg grating with a wavelength tunability over 40 nm, OFC’00, 2000, MC4
    Jianliang Yang, et al., Tunable multi-wavelength combined linear-cavity fiber laser source with equally changed wavelength spacing, Optics & Laser tech., 2002, 34: 599~604
    葛春风等, 可调谐环形腔光纤光栅激光器, 光学学报, 1999, 19(6): 762~765
    杨石泉,赵春柳,袁树忠等,L波段线型腔波长可调谐掺铒光纤激光器,光学学报,2002,22(6):706~708
    杨石泉,蒙红云,袁树忠,董孝义, 由高双折射光纤环镜构成的可变波长输出的L-波段掺铒光纤激光器, 中国激光, 2002, 10: 868~870
    K.Iwatsuki, et al., Wavelength-tunable single-frequency and single polarization Er-doped fiber ring laser with 1.4kHz linewidth, Electron. Lett., 1990, 26: 2033~2034
    S. Calvez, et al., Erbium-doped fiber laser tuning using two cascaded unbalanced Mach-Zehnder interfermeters as intracavity filter: Numerical analysis and experimental confirmation, Lightwave Tech., 2001, 19: 893~898
    J. M. Oh, et al., Efficient tunable fiber ring laser for 1580 nm band with a fiber Bragg grating, OFC’00, 2000, WA6
    David B.Mortimore, Fiber loop reflectors, lightwave tech., 6(7), 1988: 1217~1224
    
    H.B.Choi, J.M.Oh, Simple and efficient L-band erbium-doped fiber amplifiers for WDM networks, Opics Communications, 213, 2002: 63~66
    J. Lee, et al., Enhancement of power conversion efficiency for an L-band EDFA with secondary pumping effect in the unpumped EDF section, IEEE Photon. Tech. Lett., 1999,11(1): 42~45
    廖延彪,物理光学,电子工业出版社,1985
    雷振洲,2000年十大热门电信技术评述,现代电信科技,2000,8: 1~5
    张国威,可调谐激光技术,国防工业出版社,2002
    Xiaojun Fang, et al., A compound high-order polarization-independent birefringence filter using Sagnac interferometers, IEEE Photon. Tech. Lett., 1997, 9(4): 458~460
    Gal Shabtay, et al., Tunable birefringent filters-optimal iterative design, Optics Express, 2002, 10(26): 1534~1541
    J.Bland-Hawthorn, Tunable imaging filters, nedwww.ipac.Caltech.edu/level5 /Hawthorn2/Haw3-4.html
    X.P.Dong, et al., Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror, Electronics letters, , 200036(19):1609~1610
    Gautam Das and J. W. Y. Lit, et al., L-band multiwavelength fiber laser using an elliptical fiber, IEEE Photon. Tech. Lett., 14(5): 606~608
    第五章:
    K. Takashina, et al., 1 Tbit/s (100ch×10Gbit/s) WDM repeaterless transmission over 200 km with Raman amplifier, OFC’00, 2000, Paper FC8
    D.F. Grosz, et al., Demonstration of all-Raman ultra-wide-band transmission of 1.28 Tb/s (128×10 Gbit/s) over 4000 km of NZ-DSF with large BER margins, ECOC’01, 2001, 6: 72~73
    W. S. Lee, et al., 2.56 Tb/s capacity, 0.8 b/Hz.s DWDM transmission over 120 km NDSF using polarisation-bit-interleaved 80 Gb/s OTDM signal, OFC’01, 2001, Paper TuU1
    H. Nakamoto, et al., 1.05 Tbit/s WDM Transmission over 8,186 km Using Distributed Raman Amplifier Repeaters, OFC’01, 2001, Paper TuF6
    N. Shimojoh, et al., 1.22 Tbit/s WDM Transmission Over 7,221 km with 38nm Bandwith Expanded by Distributed Raman Amplifier and EDFA, OFC’01, 2001 , Paper WF3
    Y. Zhu, et al., All-Raman unrepeatered transmission of 1.28 Tbit/s(32(40 Gbit/s)over 240 km conventional 80-(m2 NDSF employing bi-directional pumping, OFC’02, 2002, Paper ThFF2
    K. Fukuchi,T. Kasamatsu, M. Morie et al., 10.92 Tbit/s (273(40
    
    
    Gbit/s)triple-band/ultra-dense WDM optical-repeatered transmission experiment, OFC’01, 2001, Paper PD24
    S. Fevrier, P. Viale, F. Gerome et al., 517 effective area single-mode bragg fiber, ECOC’2003, Paper Mo3.2.1
    G.P.Agrawal著,贾东方,余震虹等译,非线性光纤光学原理及应用,电子工业出版社,2002
    贾东方,李世忱,宋立军,光纤喇曼放大器的优化设计问题,光学学报,2001, 21(7): 808~811
    A. Rahman, Design issues of distributed Raman amplifiers for reduced noise accumulation in long-haul repeated transmission, J. Lightwave Technol., 2000, 17(9):70~75
    S. Mamiki and F. Emori, Ultrabroad-band raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high power laser diodes, IEEE J. on selected topics in quantumelectronics, 2001, 7(1): 3~6
    C. Fludger, A. Maroney, N. Jolley et al., An analysis of the improvements in OSNR from distributed Raman amplifiers using modern transmission fibers, OFC’2000, Paper FF2-2
    T.N.Nielsen, A.J.Stentz, K. Rottwitt et al., Enabling techniques for DWDM transmission systems having high spectral efficiencies, ECOC’2000, Paper4.4.5
    K. Rottwitt, J. Bromage, M. Du et al., Design od distributed Raman amplifiers, ECOC’2000, Paper4.4.1
    D.A. Evans, Raman amplification key to solving capacity, system-reach demands, Lightwave, 2000, 17(9):69-76
    童治等,应用于拉曼泵浦的高功率激光器,光电子·激光,2001,12(5): 545~548
    J AuYeung and A Yariv, Spontaneous and stimulated Raman scattering in long low loss fibers, IEEE J. Quantum Electron., 1978, 14(5): 347~352
    Jiang Weijian, et al., Crosstalk in fiber Raman amplification for WDM systems, Lightwave Tech., 1989, 7(9): 1407~1411
    Y Aoki, Properties of fiber Raman amplifier and their applicability to digital communication systems, Lightwave Tech., 1988, 6(7): 1225~1239
    F Forghieri, et al. Bandwidth of crosstalk in Raman amplifiers, OFC’94, 1994, Technical Digest FC-6
    H Suzuki, et al., 50GHz spaced 32x10Gbit/s DWDM transmission in zero-dispersion region over 640km of DSF with multiwavelength distributed Raman amplification, Electron. Lett., 1999, 35(14): 1175~1176
    Wan Pin, et al., Impact of double Rayleigh backscatter noise on digital and analog fiber systems, Lightwave Tech., 1996, 14(3): 288~297
    S.R.Chinn, Analysis of counter-pumped small-signal fiber Raman amplifier,
    
    
    Electron.. Lett., 1997, 33(7): 607~608
    S. Namiki and Y. Emori, Multi-wavelength diode-pumped broadband Raman amplifiers, OFC’01, 2001, WB1
    H. S. Seo, K. Oh, and U. C. Paek, Simultaaneous amplification and channel equalization using Raman amplifier for 30 channels in 1.3(m band, J. Lightwave Technol., 2001, 19(3):391~397
    K X Liu, E Garmire, “Understanding the formation of the SRS Stokes spectrum in fused silica fibers,” IEEE J. Quantum Electron., 1991, 27(4): 1022~1030
    H.Masuda, et al., Ultra-wideband optical amplification with 3dB bandwidth of 65nm using a gain-equalised two-stage erbium-doped fiber amplifier and Raman amplification, Electron. Lett., 1997, 33(9):753~754
    Ma M X, et al., Repeater spacing in a WDM system experiment using NRZ transmission, IEEE Photon. Tech. Lett., 1998, 10(6): 893~895
    A.Carena, V.Curri, R.Gaudino et al., Optimal configuration for hybrid raman、erbium-doped fiber amplifiers, ECOC’2000, Paper4.7.1
    T.N.Nielsen, A.J.Stentz, P.B. Hansen et al., 1.6Tb/s(40(40Gb/s )transmission over 4(100km nonzero-dispersion fiber using hybrid Raman /Eribum-doped inline amplifiers, ECOC’1999, Paper PD2-2
    A. Evans, Raman amplification in broadband WDM systems, OFC’02, 2002, TuF4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700