用户名: 密码: 验证码:
哈茨木霉多菌灵抗性菌株的构建及其对水稻立枯病的防治
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化学农药造成了严重的环境污染,生物农药越来越受到人们的关注。但是,生物农药防治效果较慢,使农业生产承担了很大的风险。因此,化学农药与生物农药复合使用已成为目前植物病害防治的一条新途径。哈茨木霉(Trichoderma harzianum)是一种优良的植物病害防治真菌,由于对苯并咪唑类杀菌剂的高度敏感性,限制了其与杀菌剂的复合使用。因此获得具有杀菌剂抗性的优良菌株,研究抗性菌株与杀菌剂协同作用防治植物病害,对新型菌药混配剂的开发和应用具有重要的理论与实践意义。
     使用简并PCR和反向PCR方法,从哈茨木霉(T. harzianum)基因组DNA中扩增出了α-、β1-、β2-和γ-微管蛋白基因序列。BlastP比对结果显示,4条基因推测的氨基酸序列与其它真菌的相应氨基酸序列均具有较高的同源性,与粗糙脉孢菌(Neurospora crassa)的同源性分别达93%、92%、92%和90%。通过序列分析确定了各微管蛋白氨基酸的保守结构域和典型基序的位置,对蛋白的二级结构和三级结构进行了预测。
     采用PEG-CaCl2介导的原生质体法,成功地将BenR基因转化到哈茨木霉(T. harzianum)β2-微管蛋白基因位点,获得了具有多菌灵抗性的菌株。Southern blot分析结果表明, BenR基因已经整合到哈茨木霉( T. harzianum)基因组DNA中,并稳定遗传;抗性水平检测结果显示,抗性菌株可以在1 500μg/mL的多菌灵浓度下生长,多菌灵抑制菌丝生长的有效中浓度达471.26μg/mL,抑制孢子萌发的有效中浓度达307.21μg/mL,比原菌株提高了1 200倍以上。
     对哈茨木霉(T. harzianum)抗性菌株的主要生物学特性进行了研究。结果表明,各抗性菌株的最适生长温度、最适产孢温度及分生孢子萌发的适宜温度均为25℃~30℃;各菌株对pH的适应范围较广,但偏酸性条件有利于菌丝生长、分生孢子产生及孢子萌发;光照对产孢具有明显的促进作用;在测定的多菌灵浓度下各菌株可以生长、产孢并孢子萌发,但随多菌灵浓度的升高逐渐降低;菌株TS1分生孢子产生的最佳固体发酵条件为:麸皮与秸秆比例为2∶1、培养基含水量为55%、接种量为25%,培养温度为26℃,在此条件下发酵产生的分生孢子可达15.42×108个/g;抗性菌株对噻菌灵、苯菌灵和甲基托布津表现正交互抗药性。
     通过室内拮抗实验及室内防效测定,得出以下结论:哈茨木霉(T.harzianum)各抗性菌株抑菌谱广,对供试的8种植物病原菌均具有一定的抑制作用,其中抗性菌株TS1对水稻立枯病病原尖孢镰刀菌(Fusarium oxysporum)和立枯丝核菌(Rhizoctonia solani)菌丝生长抑制率分别达81.34%和86.19%;抗性菌株TS1与多菌灵复合处理对水稻苗期立枯病的室内防效最高,为82.25%,比单独处理分别提高了22.82%和11.24%。
     生防真菌对水稻幼苗根部与抗病相关的主要防御酶的诱导研究表明,抗性菌株TS1和多菌灵复合处理的POD、PAL、PPO及SOD活性均高于对照,但除SOD外,各酶活性与用菌株TS1单独处理时相比无显著差异,这表明复合处理可以激发水稻的防卫反应,诱导系统获得抗性,但对酶活的诱导无普遍增效作用;与原菌株相比,哈茨木霉(T. harzianum)抗性菌株TS1对POD、PAL及PPO活性的诱导持续期延长。
     研究了抗性菌株TS1与多菌灵复合处理对水稻苗期立枯病的田间防效及菌株TS1在水稻根际的定殖能力。结果表明,3种配比的复合处理对病害防治均具有增效作用,但配比不同增效程度不同,其中6∶4配比增效作用最显著,对尖孢镰刀菌(F. oxysporum)和立枯丝核菌(R. solani)的相对防效分别为87.80%和84.08%;根际定殖能力测定结果表明,菌株TS1可以在水稻根际和根表定殖;多菌灵对菌株的根际定殖能力在灭菌土壤中未表现出明显的促进作用。
As chemical pesticides have resulted in serious pollution, biopesticides have attracted more and more attentions. But, control effects of biopesticides were slow, which bring great risk to agriculture. Consequently, employment of biopesticides with chemical pesticides has become a new pathway in plant disease control. Trichoderma harzianum is an excellent biocontrol agent against a range of fungal plant pathogens. Because of its sensitive to benzimidazole fungicides, it’s difficult to work with the chemicals in plant disease integrated control program. Therefore, to obtain excellent strains resistant to these fungicides and research their cooperations in disease control would appear significant for the exploration and application of novel biocontrol agent and chemical mixtures.
     α,β1,β2 andγtubulin gene were cloned from T. harzianum by degenerate PCR and inverse PCR. The results of BLASTP alignments showed that the four predicted proteins show high degree of homology with other fungal tubulins. T. harzianumα,β1,β2 andγtubulin amino acid sequences are found with similarities of 93%, 92%, 92% and 90% with the corresponding sequences of Neurospora crassa. The positions of the conserved domains and motifs were identified. Simultaneity, the secondary structures and tertiary structures were predicted.
     In order to construct biocontrol strain with carbendazim resistance, BenR gene from N. crassa was specifically integrated intoβ2 tubulin site of T. harzianum using PEG-CaCl2 method. Southern blot analysis showed that the BenR gene was integrated into the genome of T. harzianum and the transformants were all genetically stable. Sensitivity tests showed that transformants can grow at 1500μg/mL carbendazim. The effective concentrations were up to 471.26μg/mL for mycelial growth and 307.21μg/mL for conidial germination, which appear 1200-fold higher than those of sensitive strain.
     Main biological characteristics of T. harzianum resistant strains were studied. The results showed that optimal temperatures for mycelial growth, conidial production and conidial germination are 25 to 30℃. pH values are not crucial, but slight acidity is beneficial to mycelial growth, conidial production and conidial germination. Light can stimulate conidial production significantly. Each resistant strains can growth, sporulation and germination at tested carbendazim concentrations, though biomass, sporulation and germination rate decreased. The optimal sporulation of resistant strain TS1 can be obtained on culture media of bran and straw at ratio of 2 to 1 with 55% water content, 25% inoculum sizes and temperature of 26℃. Under the optimal conditions, the production of conidia reached a concentration of 15.42×108 spores/g. Resistant strains appear positive cross-resistance to triabendazole, benomyl, and thiophanate-methyl.
     Antagonism and indoor control effect were studied. The results showed that T. harzianum resistant strains were proposed with broad-spectrum antifungal activities, which displayed strong vitro antagonistic abilities against eight plant pathogens tested. The inhibitory rate of resistant strain TS1 against plant pathogen Fusarium oxysporum and Rhizoctonia solani were 81.34% and 86.19% respectively. Control efficiency of resistant strain TS1 and carbendazim, in combination, was 82.22% against rice seedling blight, and 20.3% and 48.9% higher than treated groups single with TS1 and carbendazim respectively.
     Systemic induction of biocontrol fungi on main defense enzymes in rice seeding roots was studied. The results showed that the activities of POD, PAL, PPO and SOD of roots treated by strain TS1 and carbendazim in combination were higher than that in control. Except for SOD, the activities of defense enzymes treated by combination were not different significantly with that treated by strain TS1 only. Results indicated that combination can stimulate rice defense reaction, induce systemic resistance, but there is no synergistic effects were observed. Compared with T. harzianum T88, inducing duration of POD, PAL and PPO in rice seedling roots treated by strain TS1 were prolonged.
     Field control efficacies of resistant strain TS1 and carbendazim in combination against rice seedling blight were studied, and colonization ability of strain TS1 was conducted. The results showed that combination at three ratios all have synergistic effects on disease control, but the degree of synergism was distinct at different ratios. Significant synergistic effect could be found took place at ratio of 6 to 4, whose control efficiency against plant pathogen F. oxysporum and R. solani were 87.80% and 84.08% respectively. Strain TS1 was found can colonize on rice rhizosphere and rhizoplane, but carbendazim have no significant effect on colonization ability in sterilized soil.
引文
1钟秀明,武雪萍.我国农田污染与农产品质量安全现状、问题及对策.中国农业资源与区划. 2007, 28(5): 27~32
    2叶文芳.农用化学品引起的农业面源污染及其综合防治.环境. 2006, S2: 46~49
    3陈泽坦,刘奎.有害生物综合治理(IPM)与可持续农业.热带农业科学. 2000, 4: 69~71
    4王芊.木霉菌在生物防治上的应用及拮抗机制.黑龙江农业科学. 2001, 1: 41~43
    5李梅,杨谦,李常银.多菌灵抗性基因转化哈茨木霉的研究.农业环境科学学报. 2003, 22(4): 493~495
    6郭润芳,刘晓光,高克祥等.拮抗木霉菌在生物防治中的应用与研究进展.中国生物防治. 2002, 18(4): 180~184
    7 J. B. Nzojiyobiri,徐同,宋凤鸣等.哈茨木霉NF9菌株对水稻的诱导抗病性.中国生物防治. 2003, 19(3): 111~114
    8 I. Yadidia, N. Benhamou, I. Chet. Induction of Defense Responses in Cucumber Plants by Biocontrol Agent Trichoderma harzianum. Applied and Environment Microbiology. 1999, 65(3): 1061~1070
    9 S. Freeman, D. Minz, I. Kolesnik, et al. Trichoderma Biocontrol of Colletotrichum acutatum and Botrytis cinerea and Survival in Strawberry. European Journal of Plant Pathology. 2004, 110(4): 361~370
    10高克祥,王淑红,刘晓光等.木霉菌株T88对7种病原真菌的拮抗作用.河北林果研究. 1999, 14(2): 159~162
    11 P. R. Tondjea, D. P. Robertsb, M. C. Bonc, et al. Isolation and Identification of Mycoparasitic isolates of Trichoderma asperellum with Potential for Suppression of Black Pod Disease of Cacao in Cameroon. Biological Control. 2007, 43(2): 202~212
    12 Y. A. Batta. Control of Postharvest Diseases of Fruit with an Invert Emulsion Formulation of Trichoderma harzianum Rifai. Postharvest Biology and Technology. 2007, 43(1): 143~150
    13 A. M. Asran-Amal. Effect of Trichoderma isolates, Delivery Systems andHost Genotype on Biological Control of Cotton Seedlings Disease. Journal of Plant Protection Research. 2007, 47(3): 339~356
    14 G. Zimand, Y. Elan. Effect of Trichoderma harzianum on Botrytis cinerea Pathogenicity. Phytopathology. 1996, 86: 945~956
    15杨谦.植物病原菌抗药性概论.哈尔滨,黑龙江科学技术出版社, 1995
    16 G. J. Bollen, G. Scholten. Acquired Resistance to Benomyl and Some Other Systemic Fungicides in a Strain of Botrytis cinerea in Cyclamen. Netherlands Journal of Plant Pathology. 1971, 77: 83~90
    17 T. Wichs. Tolerance of the Apple Scab Fungus to Benzimidazole Fungicides. Plangt Disease Reporter. 1974, 58: 886~889
    18 Z. Ma, M. A. Yoshimura, T. J. Michailides. Michailides Identification and Characterization of Benzimidazole Resistance in Monilinia fructicola from Stone Fruit Orchards in California. Applied and Environmental Microbiology. 2003, 69(12): 7145~7152
    19 I. E. Wheeler, S. I. Kendall, J. Buttera, et al. Using Allete-specific Digonucleotide Probes to Characterize Benzimidazole Resistance in Rhynchosporium secalis. Pesticide Science. 1995, 43: 201~209
    20石志琦,史建荣,陈怀谷等.小麦赤霉病菌对多菌灵的抗药性研究.农药学学报. 2000, 2(4): 22~27
    21 L. Davise, W. Flach. Differential Binding of Methyl Benzimidazol-2-yl Carbamate to Fungal Tubulin as a Mechanism of Resistance to This Antimitotic Agent in Mutant Strains of Aspergillus nidulans. Journal of Cell Biology. 1977, 72: 174~193
    22 S. Kendall, D. W. Hollomon, H. Ishii, et al. Characterisation of Benzimidazole Resistant Strains of Rhynchosporium secalis. Pesticide Science. 1993, 40: 175~181
    23 L. C. Davise, W. Flach. Interaction of Thiabendazole with Fungal Tubulin. Biochimical Biophysical Acta. 1978, 543: 82~90
    24 Z. H. Ma, T. J. Michailides. Advances in Understanding Molecular Mechanisms of Fungicide Resistance and Molecular Detection of Resistant Genotypes in Phytopathogenic Fungi. Crop Protection. 2005, 24: 853~863
    25 A. Nachmias, I. Barash. Decrease Permeability as a Mechanism of Resistance to Methyl Benzimidazol-2-yl Carbamate (MBC) inSporobolomyces roseus. Journal of General Microbiology. 1976, 94: 167~172
    26 R. Stover. Extranuclear Inherited Tolerance to Benomyl in Mycosphaerella fijiensis var. difformis. Transactions of the British Mycological Society. 1977, 68(1): 122
    27陆悦健,周明国,叶钟音等.抗苯并咪唑的小麦赤霉病菌β–tubulin基因序列分析与特性研究.植物病理学报. 2000, 30(1): 30~34
    28 L. M. Kawchuk, L. J. Hutchison, C. A. Verhaeghe, et al. Isolation of theβ-tubulin Gene and Characterization of Thiabendazole Resistance in Gibberella pulicaris. Canadian Journal of Plant Pathology. 2002, 24: 233~238
    29 A. D. Byrd, C. L. Schard, P. J. Songlin, et al. The Beta-tubulin Gene of Epichloe typhina from Perennial Ryegrass (Lolium perenne). Current Genetics. 1990, 18: 347~354
    30 P. W. Inglis, M. S. Tigano, M. C. Valadares-Inglis. Transformation of the Entomopathogenic Fungi, Paecilomyces fumosoroseus and Paecilomyces lilacinus to Benomyl Resistence. Genetics and Molecular Biology. 1999, 22(1): 119~123
    31 E. S. Dias, M. V. Queiroz, P. G. Cardoso, et al. Transformation of Penicillium expansum with a Heterologous Gene Which Confers Resistance to Benomyl. World Journal of Microbiology and Biotechnology. 1999, 15(4): 513~514
    32 P. Kachroo, A. Potnis, B. B. Chattoo. Transformation of the Rice Blast Fungus Magnaporthe grisea to Benomyl Resistance. World Journal of Microbiology and Biotechnology. 1997, 13: 185~187
    33 C. Nowak, U. Kuck. Development of an Homologous Transformation System for Acremonium chrysogenum Based on the Beta-tubulin Gene. Current Genetics. 1994, 25(1): 34~40
    34 C. F. Marcia, G. P. Fernanda, G. S. Fabiana, et al. Transformation of the Entomopathogenic Fungus Metarhizium flavoviride to High Resistance to Benomyl. Canadian Journal of Microbiology. 1999, 45(10): 875~878
    35 M. S. Goettel, R. J. Leger, S. Bhairi, et al. Pathogenicity and Growth of Metarhizium anisopliae Stably Transformed to Benomyl Resistance. Current Genetics. 1990, 17: 129~132
    36 O. Nina, M. Sue. Genetic Transformation of the Biocontrol Fungus Gliocladium virens to Benomyl Resistance. Applied and EnvironmentalMicrobiology. 1990, 56: 3052~3056
    37杨谦,赵小岩.多菌灵抗性基因在木霉菌中的转化方法.科学通报. 1998, 43(22): 2423~2426
    38 C. E. Oakley, B. R. Oakley. Identification ofγ-tubulin, a New Member of the Tubulin Superfamily Encoded by mipA Gene of Aspergillus nidulans. Nature. 1989, 338(6217): 662~664
    39 S. K. Dutcher. The Tubulin Fraternity: Alpha to Eta. Current Opinion in Cell Biology. 2001, 13: 49~54
    40 F. Ruiz, A. Krzywicha, C. Klotz, et al. The SM19 Gene, Required for Duplication of Basal Bodies in Paramecium, Encodes a Novel Tubulin, Eta-tubulin. Current Biology. 2002, 10(22): 1451~1454
    41 E. Nogales, S. G. Wolf, K. H. Downing. Structure of the Alpha Beta Tubulin Dimmer by Electron Crystallography. Nature. 1998, 391(6663): 199~203
    42 M. Menendez, G. Rivas, J. F. Diaz, et al. Control of the Structural Stability of the Tubulin Dimer by one High Affinity Bound Magnesium Ion at Nucleotide N-site. Journal of Biological Chemistry. 1998, 273(1): 167~176
    43 E. Nogales, M. Whittaker, R. A. Milligan, et al. High Resolution Model of the Microtubule. Cell. 1999, 96(1): 79~88
    44 D. Cross, J. Dominguez, R. B. Maccioni, et al. MAP-1 and MAP-2 binding sites at the C-terminus of beta-tubulin. Studies with synthetic tubulin peptides. Biochemistry. 1991, 30: 4362~4366
    45 E. Schiebel.γ-tubulin Complexes: Binding to the Centrosome, Regulation and Microtubule Nucleation. Current Biology. 2000, 12(1): 113~118
    46 I. Linhartova, B. Novotna, V. Sulimenko, et al. Gamma-tubulin in Chicken Erythrocytes: Changes in Localization During Cell Differentiation and Characterization of Cytoplasmic Complexes. Developmental Dynamics. 2002, 223(2): 229~240
    47 M. V. Olmedo, P. C. Cortés, E. A. Herrera. Three Decades of Fungal Transformation Key Concepts and Applications. Methods in Moleculer Biology. 2004, 267: 297~313
    48赵培宝,周庆新,任爱芝等.根癌农杆菌介导的轮枝镰孢菌遗传转化及T-DNA插入.菌物学报. 2008, 27(2): 258~266
    49沈卫锋,翁宏飚,牛宝龙等.根癌农杆菌介导的灰葡萄孢菌遗传转化研究.遗传. 2008, 30(4): 515~520
    50 R. J. Weld, K. M. Plummer, M. A. Carpenter, et al. Approaches to Functional Genomics in Filamentous Fungi. Cell Research. 2006, 16: 31~44
    51 D. Bird, R. Bradshaw. Gene Targeting is locus Dependent in the Filamentous Fungus Aspergillus nidulans. Molecular Genetics and Genomics. 1997, 255: 219~225
    52 R. C. Davidson, M. C. Cruz, R. A. Sia, et al. Gene Disruption by Biolistic Transformation in Serotype D Strains of Cryptococcus neoformans. Fungal Genetics and Biology. 2000, 29: 38~48
    53 L. M. Wilson, A. Idnurm, B. J. Howlett. Characterization of a Gene (sp1) Encoding a Secreted Protein from Leptosphaeria maculans, the Blackleg Pathogen of Brassica napus. Molecular Plant Pathology. 2002, 3: 487~493
    54 C. B. Michielse, M. Arentshorst, A. F. Ram, et al. Agrobacterium-mediated Transformation Leads to Improved Gene Replacement Efficiency in Aspergillus awamori. Fungal Genetics and Biology. 2005, 42: 9~19
    55 A. M. Martin-Hernandez, M. Dufresne, V. Hugouvieux, et al. Effects of Targeted Replacement of the Tomatinase Gene on the Interaction of Septoria lycopersici with Tomato Plants. Molecular Plant-Microbe Interactions. 2000, 13: 1301~1311
    56 C. D. Michielse, P. J. J. Hooykaas, C. A. M. J. J. van den Hondel, et al. Agrobacterium-mediated Transformation as a Tool for Functional Genomics in Fungi. Current Genetics. 2005, 48: 1~17
    57 M. Lee, R. M. Bostock. Agrobacterium T-DNA-mediated Integration and Gene Replacement in the Brown Rot Pathogen Monilinia fructicola. Current Genetics. 2006, 49: 309~322
    58 M. Mukherjee, R. Hadar, P. K. Mukherjee, et al. Homologous Expression of a Mutated Beta-tubulin Gene does not Confer Benomyl Resistance on Trichoderma virens. Journal of Applied Microbiology. 2003, 95(4): 861~867
    59高同春,马严明,陆悦建等.水稻旱育秧立枯病致病菌鉴定及药剂防治研究.植势保护. 2001, 27(6): 1~4
    60郑雯,刘立新,辛惠普.寒地水稻立枯病病原真菌的分离鉴定.黑龙江农业科学. 2002, 2: 19~20
    61 J. W. Kloepper, S. Tunzun. Proposed Definition Related to Induced DiseaseResistance. Biocontrol Science and Technology. 1992, 2: 349~351
    62刘亚萍,李敏,吉亮等.植物诱导抗病性的研究进展.仲恺农业技术学院学报. 2006, 19(1): 60~64
    63 A. M. Ajlan, D. A. Potter. Lack of Effect of Tobacco Mosaic Virus Induced Systemic Acquired Resistance on Arthropod Herbivores in Tobacco. Phytopathology. 1992, 82: 647~651
    64 E. Mucharromah, J. Kud. Oxalate and Phosphates Induce Systemic Resistance against Disease Caused by Fungi, Bacteria and Viruses in Cucumber. Crop Protection. 1991, 10: 265~270
    65 T. Andebrhan, R. K. S. Wood. The Effect of Ultraviolet Radiation on The Reaction of Phaseolus vulgaris to Species of Colletotrichum. Physiological Plant Pathology. 1980, 17: 105~110
    66 G. Anfoka, H. Buchenauer. Systemic Acquired Resistance in Tomato against Phytophthora infestans by Pre-inoculation with Tobacco Necrosis Virus. Physiological and Molecular Plant Pathology. 1997, 50: 85~101
    67 M. Reinbothes, B. Mollenhauer, C. Reinbothe. The Regulation of Plant Gene Expression by Jasmonates in Response to Environmental Cues and Pathogens. The Plant Cell. 1994, 6: 1197~1709
    68 D. A. Herms, W. J. Mattson. The Dilemma of Plants: to Grow or to Defend. The Quarterly Review of Biology. 1992, 67: 283~335
    69 M. Heil, A. Hilpert, W. Kaiser, et al. Reduced Growth and Seed Set Following Chemical Induction of Pathogen Defense: Does Systemic Acquired Resistance (SAR) Incur Allocation Costs. Journal of Ecology. 2000, 88: 645~654
    70 H. Kessmann, T. Staub, C. Hofmann, et al. Induction of Systemic Acquired Disease Resistance in Plants by Chemicals. Annual Review of Phytopathology. 1994, 32: 439~459
    71 M. B. Shivanna, M. S. Meera. Plant Growth Promoting Fungi Induced Systemic Resistance in Cucumber. Advanced in Biological Control of Plant Disease. 1996, 30(3): 175~184
    72 G. D. Meyer, Y. Elad. Induced Resistance in Trichoderma harzianum Biocontrol. Plant Pathology. 1998, 104(3): 279~286
    73杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展.植物病理学报. 2000, 30(2): 106~110
    74 V. Peer, R. Niemann, G. J. B. Sohippers. Induced Resistance and Phytoalexin Accumulation in Biological Control of Fusarium wilt of Carnation Pseudomonas sp. strain. Phytopathology. 1991, 81: 728~733
    75 L. Liu, J. W. Kloepper, S. Tuzun. Induction of Systemic Resistance in Cucumber against Fusarium Wilt by Plant Growth-promoting Rhizobacteria. Phytopathology. 1995, 85(6): 695~698
    76 S. Alstron. Induction of Disease Resistance in Common Bean Susceptible to Halo Blight Bacterial Pathogen after Seed Bacterization with Rhizosphere Pseudomonas. Journal of General and Applied Microbiology. 1991, 37: 495~501
    77 M. Leeman, J. A. van Pelt, F. M. den Ouden, et al. Induction of Systemic Resistance against Fusarium Wilt of Radish by Lipopolysaccharides of Pseudomonas Fluorescens. Phytopahtology. 1995, 85(9): 1021~1027
    78 D. C. Wildon, J. F. Thain, P. E. H. G. Minchin, et al. Electrical Signaling and Systemic Proteinase Inhibitor Induction in the Wounded Plant. Nature. 1992, 360: 62~65
    79 B. L. Vallelian, P. Schweizer, E. Mosinger, et al. Heat-induced Resistance to Powdery Mildew (Blumeria graminis f. sp. hordei) is Associated with a Burst of Active Oxygen Species. Physiological and Molecular Plant Pathology. 1998, 52(3): 185~199
    80商鸿生.小麦对条锈病的高温抗病性研究.中国农业科学. 1998, 31(4): 46~50
    81 L. Sticher, B. Mauch-mani, J. P. Metraux. Systemic Acquired Resistance. Annual Review of Phytopathology. 1997, 35: 235~270
    82曾任森,苏贻娟,叶茂等.植物的诱导抗性及生化机理.华南农业大学学报. 2008, 29(2): 1~6
    83 R. Dean, J. Kuc. Induced Systemic Protection in Plants. Trends in Biotechnology. 1985, 3: 125~129
    84 N. Benhamou, G. Theriault. Treatment with Chitoson Enhances Resistance of Tomato Plants to the Crown and Root Rot Pathogen Fusarium oxysporum f. sp. radicis lycopersici. Physiological and Molecular Plant Pathology. 1992, 41: 33~52
    85 P. H. Reignault, A. Cogan, J. Muchembled, et al. Trehalose Induces Resistance to Powdery Mildew in Wheat. New Phytologist. 2001, 149(3): 519~529
    86胡景江,朱玮,文建雷.杨树细胞壁HRGP和木质素的诱导积累与其对溃疡病抗性的关系.植物病理学报. 1999, 26(2): 151~156
    87 K. C. Nagarathna, A. S. Sudheer, H. S. Shetty. Phenylalanine Ammonia-lyase Activity in Pearl Millet Seedlings and its Relation to Downy Mildew Disease Resistance. Journal of Experimental Botany. 1993, 44(8): 1291~1296.
    88 T. Kervinen, S. Peltonen, T. H. Teeri, et al. Differential Expression of Phenylalanine Ammonia-Lyase Genes in Barley Induced by Fungal Infection or Elicitors. New Phytologist. 1998, 139(2): 293~300
    89 M. J. Stadnik, H. Buchenauer. Inhibition of Phenylalanine Ammonia-lyase Suppresses the Resistance Induced by Benzothiadiazole in Wheat to Blumeria graminis f. sp. tritici. Physiological and Molecular Plant Pathology. 2000, 57(1): 25~34
    90 J. F. Ma, M. Q. Li, Z. H. Zhang, et al. Study on Relationship between Phenylalanine Ammonia-lyase (PAL) and Resistance to Crown and Root Rot in Alfalfa Cultivars. Acata Prataculturae Sinica. 2003, 12(4): 35~39
    91 S. Lurie, E. Fallik, A. Handros, et al. The Possible Involvement of Peroxidase in Resistance to Botrytis cinerea in Heat Treated Tomato Fruit. Physiological and Molecular Plant Pathology. 1997, 50(3): 141~149
    92 ?. D. Campos, A. G. FerreiraII, M. M. V. HampeIII, et al. Induction of Chalcone Synthase and Phenylalanine Ammonia-lyase by Salicylic Acid and Colletotrichum lindemuthianum in Common Bean. Brazilian Journal of Plant Physiology. 2003, 15(3): 129~134
    93 ?. D. Campos, A. G. Ferreira, M. M. V. Hampe, et al. Peroxidase and Polyphenol Oxidase Activity in Bean Anthracnose Resistance. Pesquisa Agropecuaria Brasileira. 2004, 39(7): 637~643
    94魏林,梁志怀,曾粮斌等.哈茨木霉T2-16代谢产物诱导豇豆幼苗抗枯萎病研究.湖南农业大学学报. 2004, 30(5): 443~445
    95 W. Praemyslaw. Oxidative Burst: an Early Plant Response to Pathogen. Infection. Biochemistry. 1997, 322: 681~692
    96 Y. S. Panina, N. I. Vasyukova, G. I. Chalenko, et al. Changes in CatalaseActivity in Potato Tubers, Induced by Immunoregulators. Biological Sciences. 2004, 395(16): 158~160
    97高芬,郝变青,马利平等.防治蔬菜枯萎病的芽孢杆菌对植物体内酶活性的影响.中国生态农业学报. 2003, 11(1): 38~40
    98王阳,尹晓飞,徐智斌等.地蚕提取物诱导小麦抗条锈病的研究.西北农林科技大学学报. 2004, 32(11): 45~47
    99金静,李冬,刘会香.与植物诱导抗病性有关的抗病性物质研究进展.莱阳农学院学报. 2003, 20(4): 253~256
    100 T. P. Delaney. Genetic Dissection of Acquired Resistance to Disease. Plant Physiology. 1997, 113: 5~12
    101 S. Sarowar, Y. J. Kim, E. N. Kim, et al. Overexpression of a Pepper Basic Pathogenesis-related Protein 1 Gene in Tobacco Plants Enhances Resistance to Heavy Metal and Pathogen Stresses. Plant Cell Reports. 2005, 24: 216~224
    102 C. J. Park, J. M. An, Y. C. Shin, et al. Molecular Characterization of Pepper Germin-like Protein as the Novel PR-16 Family of Pathogenesis Related Proteins Isolated During the Resistance Response to Viral and Bacterial Infection. Planta. 2004, 219: 797~806
    103 P. Poupard, L. Parisi, C. Campion, et al. A Wound- and Ethephon-inducible PR-10 Gene Subclass from Apple is Differentially Expressed during Infection with a Compatible and Incompatible Race of Venturia inaequalis. Physiological and Molecular Plant Pathology. 2003, 62: 3~12
    104 Y. C. Jeun, H. Buchenauer. Infection Structures and Localization of the Pathogenesis Related Protein AP24 in Leaves of Tomato Plant Exhibiting Systemic Acquired Resistance against Phytophthora infestans after Pre-treatment with 3-aminobutyric Acid or Tobacco Necrosis Virus. Journal of Phytopathology. 2001, 149: 141~153
    105 B. Dassi, E. Dumas-gaudot, S. Gianinazzi. Do Pathogenesis Related Proteins Play a Role in Bioprotection on Mycorrhizal Tomato Roots toward P. parasitica. Physiological and Molecular Plant Pathology. 1998, 52(6): 167~183
    106 A. Edreva. Pathogenesis Related Proteins: Research Progress in the Last 15 Years. General and Applied Plant Physiology. 2005, 31(1-2): 105~124
    107 B. Baker, P. Zambryski, B. Staskawicz, et al. Signaling in Plant-microbe Interactions. Science. 1997, 276: 726~733
    108 J. A. Ryals, K. A. Lawton, T. P. Delaney, et al. Signal Transduction in Systemic Acquired Resistance. Proceedings of the National Academy of Sciences. 1995, 92: 4202~4205
    109潘亚清,史淑芝.植物的诱导抗病性研究进展.植物保护科学. 2005, 21(8): 366~369
    110徐健,蔡扬生,朱锦磊等.苏云金杆菌与化学杀虫剂的联合作用测定.江西农业科学. 2001, 2: 45~51
    111马良进,张立斌,崔永三等.苏云金杆菌与农药混配及杀虫效果的初步研究.浙江林学院学报. 2003, 20(2): 151~154
    112彭龙慧,曾文文,许永青等.苏云金杆菌(Bt)与氰戊菊酯混配防治马尾松毛虫试验.江西植保. 2005, 28(3): 122~124
    113杨小林,张宏宇,杨长举等.苏云金杆菌制剂与化学农药除尽的最佳混配比例.湖北农业科学. 2003, 4: 57~58
    114 M. G. Feng, T. J. Poprawski, G. G. Khachatourians. Production of Formulation and Application of the Entomopathogenic Fungus Beauveria bassiana for Insect Control: Current Status. Biocontrol Science and Technology. 1994, 4: 3~34
    115蔡国贵,林庆源,徐耀昌等.应用白僵菌与溴氰菊酯混合防治马尾松毛虫研究.华东昆虫学报. 2002, 11(1): 95~100
    116 W. B. Shi, Y. Jiang, M. G. Feng. Compatibility of ten Acaricides with Beauveria bassiana and Enhancement of Fungal Infection to Tetranychus cinnabarinus eggs by Sublethal Application Rates of Pyridaben. Applied Entomology and Zoology. 2005, 40(4): 659~666
    117濮小英,冯明光,张丽靖等.白僵菌孢子悬乳剂田间控蚜效果与常温货架寿命测定.菌物学报. 2004, 23(2): 233~240
    118陈久仁,杨绍庆,陈金浩等.芽抱杆菌菌剂与井冈霉素混配对水稻纹枯病防效和增产效果试验.浙江农业科学. 1994, 2: 88~89
    119陈志谊,任海英,刘永锋等.戊唑醇和枯草芽孢杆菌协同作用防治蚕豆枯萎病及增效机理初探.农药学学报. 2002, 4(4): 40~44
    120王宏.梨黑斑病菌生物学特性及生物-化学协同控制技术的研究.南京农业大学硕士学位论文. 2006
    121李素英,刘冬青,牛赡光.生物防治菌与多菌灵混用防治棉花黄萎病的效应研究.中国生态农业学报. 2004, 12(1): 114~116
    122王勇,杨秀荣,刘水芳.拮抗木霉耐药性菌株的筛选及其与速克灵防治灰霉病的协同作用.天津农学院学报. 2002, 9(4): 19~22
    123田连生,冯树波.耐药性木霉菌株的筛选及其对灰霉病的防治. 2005, 15(5): 26~28
    124嵺华军.盾壳霉抗杀菌剂农利灵突变菌株的获得、特性及其应用研究.华中农业大学硕士学位论文. 2004
    125 J.萨姆布鲁克, D. W.拉塞尔.分子克隆实验指南.北京,科学出版社, 2002
    126张拥华,李晶晶,彭志刚等.粉红粘帚霉67-1菌株原生质体的形成和再生.中国生物防治. 2006, 22(4): 303~307
    127张仙红,李文英,贺运春.影响虫生真菌玫烟色拟青霉孢子萌发的因素探析.中国农学通报. 2007, 23(7): 478~81
    128张龙翔,张庭芳,李令媛.生化实验方法和技术.第2版.北京,高等教育出版社, 1997
    129 J. L. Bennetzen, B. D. Hall. Codon Selection in Yeast. Journal of Biological Chemistry. 1982, 257: 3026~3031
    130 E. R. Seip, C. P. Wlolshuk, G. A. Payne, et al. Isolation and Sequence Analysis of aβ-tubulin Gene from Aspergillus flavus and its Use as a Selectable Marker. Applied and Environmental Microbiology. 1990, 56: 3686~3692
    131 A. Marchler-Bauer, J. B. Anderson, C. DeWeese-Scott, et al. CDD: a Curated Entrez Database of Conserved Domain Alignments. Nucleic Acids Research. 2003, 31: 383~387
    132 B. Rost, G. Yachdav, J. Liu. PredictProtein: The PredictProtein Server. Nucleic Acids Research. 2004, 32 321~326
    133 J. L?we, H. Li, K. H. Downing, et al. Refined Structure ofβ-tubulin at 3.5 ? Resolution. Journal of Molecular Biology. 2001, 313: 1045~1057
    134 M. Rossmann, D. Moras, K. Olsen. Chemical and Biological Evolution of a Nucleotide-binding Protein. Nature. 1974, 250: 194~199
    135 T. Schwede, J. Kopp, N. Guex, et al. Swiss-Model: an Automated Protein Homology-modeling Server. Nucleic Acids Research. 2003 31: 3381~3385
    136 C. Bachurski, N. Theodorakis, R. Coulson, et al. An Amino-terminal Tetrapeptide Specifies Cotranslational Degradation ofβ-tubulin but notα-tubulin mRNAs. Molecular and Cellular Biology. 1994, 14: 4076~4086
    137 R. G. Burns, K. W. Farrell. Getting to the Heart ofβ-tubulin. Trends in Cell Biology. 1996, 6: 297~303
    138 R. G. Burns. Analysis of theγ-tubulin Sequences: Implications for the Functional Properties ofγ-tubulin. Journal of Cell Science. 1995, 103: 2123~2130
    139 B. R. Oakley. An Abundance of Tubulins. Trends in Cell Biology. 2000, 10: 537~542
    140 S. K. Dutcher. Long-lost Relatives Reappear: Identification of New of the Tubulin Superfamily. Current Opinion in Microbiology. 2003, 6: 634~640
    141 S. D. Kopczak, N. A. Haas, P. J. Hussey, et al. The Small Genome of Arabidopsis Contains at Least Six Expressed Alpha -tubulin Genes. Plant Cell 1992, 4: 539~547
    142 D. P. Snustad, N. A. Haas, S. D. Kopczak, et al. The Small Genome of Arabidopsis Contains at least Nine Expressed ?-tubulin Genes. Plant Cell. 1992, 4: 549~556
    143 E. Drosopoulou, K. Wiebauer, M. Yiangou, et al. Isolation, Characterization, and Localization ofβ-tubulin Genomic Clones of Three Drosophila montium Subgroup Species. Genome. 2002, 45: 604~607
    144 W. E. Theurkauf, H. Baum, J. Bo, et al. Tissue-specific and Constitutive Alpha-tubulin Genes of Drosophila melanogaster Code for Structurally Distinct Proteins. Proceedings of the National Academy of Sciences. 1986, 83(22): 8477~8481
    145 B. R. Oakley. Tubulins in Aspergillus nidulans. Fungal Genetics and Biology. 2004, 41: 420~427
    146 J. Comeron, M. Aguadé. An Evaluation of Measures of Synonymous Codon Usage Bias. Journal of Molecular Evolution. 1998, 47: 268~274
    147 X. H. Xia. Maximizing Transcription Efficiency Causes Codon Usage Bias. Genetics. 1996, 144: 1309~1320
    148 H. Akashi. Synonymous Codon Usage in Drosophila melanogaster: Natural Selection and Translational Accuracy. Genetics. 1994, 136: 927~935
    149 M. Stenico, A. T. Lloyd, M. Sharp. Codon Usage in Caenorhabditis elegans: Delineation of Translational Selection and Mutational Biases. Nucleic Acids Research. 1994, 22: 2437~2446
    150 T. C. Ghosh, S. K. Gupta, S. Majumdar. Studies on Codon Usage in Entamoeba histolytica. International Journal for Parasitology. 2000, 30: 715~722
    151 R. Leguy, R. Melki, D. Pantaloni, et al. Monomericγ-tubulin Nucleates Microtubules. Journal of Biological Chemistry. 2000, 275(29): 21975~21980
    152 E. Nogales, K. Downing, L. Amos, et al. Tubulin and FtsZ form a Distinct Family of GTPases. Natural Structural Biology. 1998, 5: 451~458
    153 T. H. MacRae. Tubulin Post-translational Modifications Enzymes and their Mechanisms of Action. European Journal of Biochemistry. 1997, 244: 265~278
    154许亮,卢向阳,田云.后基因组时代基因功能分析的策略.中国生物工程杂志. 2003, 23(8): 29~34
    155薛可,李峰,罗光彬等.利用Red同源重组系统进行牛β酪蛋白基因敲除.遗传. 2007, 29(5): 570~574
    156丁玉梅,杨正安,周晓罡等.马铃薯质体表达载体构建及GFP基因在块茎中的瞬时表达.作物学报. 2008, 34(6): 978~983
    157彭其安,张西峰,吴思方等.同源重组法构建枯草芽孢杆菌转酮酶缺失突变菌株.生物技术. 2006, 16(6): 23~26
    158 R. C. Davidson, J. R. Blankenship, P. R. Kraus, et al. A PCR-based Strategy to Generate Integrative Targeting Alleles with Large Regions of Homology. Microbiology. 2002, 148: 2607~2615
    159 H. Kuwayama, S. Obara, T. Morio, et al. PCR-mediated Generation of a Gene Disruption Construct without the use of DNA Ligase and Plasmid Vectors. Nucleic Acids Research. 2002, 30(2): e2
    160李敏,杨谦.一种高效构建同源重组DNA片段的方法-融合PCR.中国生物工程杂志. 2007, 27(8): 46~51
    161 M. Zarrin, A. C. Leeder, G. Turner. A Rapid Method for Promoter Exchange in Aspergillus nidulans using Recombinant PCR. Fungal Genetics and Biology. 2005, 42: 1~8
    162罗师平,冷希岗.基于PCR的体外诱变技术.国外医学生物医学工程分册. 2005, 28(3): 188~192
    163王力华,付士红,唐青等.三重融合PCR法构建感染性辛德毕斯嵌合病毒cDNA克隆.病毒学报. 2006, 22(2): 107~113
    164熊爱生,姚泉洪,章镇等.基因的推理设计与改造-体外分子进化的捷径.遗传. 2006, 28(1): 92~96
    165 K. X. Gao, X. G. Liu, Y. H. Liu, et al. Potential of Trichoderma harzianum and T. atroviride to Control Botryosphaeria berengeriana f. sp. piricola, the Cause of Apple Ring Rot. Journal of Phytopathology. 2002, 150: 271~276
    166闫培生,罗信昌,周启.丝状真菌基因工程研究进展.生物工程进展. 1999, 19(1): 36~41
    167李梅,杨谦.多菌灵抗性基因在球毛壳中的转化.高技术通讯. 2002, 12(2): 43~45
    168郭敏,陈靠山.拟康氏木霉产胞外多糖发酵培养基及培养条件的研究.中国农学通报. 2006, 22(10): 58~61
    169王勇,王万立,刘春艳等.生防木霉菌Tr9701的鉴定及其生物学特性.华北农学报. 2006, 21(1): 100~104
    170肖淑芹,薛春生,姜晓颖等.木霉菌T05-1对几种作物病原菌的抑制作用及发酵条件研究.沈阳农业大学学报. 2007, 38(4): 518~521
    171李梅云,谭丽华,方敦煌等.哈茨木霉的培养及其对烟草疫霉生长的抑制研究.微生物学通报. 2006, 33(6): 79~83
    172赵阿娜,丁万隆,朱殿龙.拮抗人参根部病原菌木霉的筛选及其生物学特性初步研究.中国中药杂志. 2006, 31(20): 1671~1674
    173周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究.植物病理学报. 2001, 31(4): 365~370
    174王美琴,刘慧平,张智广等.番茄叶霉病菌对多菌灵抗药性的诱导及抗性菌株特性研究.植物保护. 2004, 30(5): 55~59
    175王允东,唐钰朋.木霉菌对植物病原真菌的拮抗机制.安徽农学通报. 2008, 9: 176~177
    176贺立红,韩锡君,龙肖媚等.茉莉酸甲酯对烟草幼苗可溶性物质含量的影响及与诱导抗病的关系.华南师范大学学报. 2001, 11(4): 88~94
    177王勇刚,曾富华,吴志华等.植物诱导抗病与病程相关蛋白.湖南农业大学学报. 2002, 28(2): 177~182
    178 R. A. Dean, J. A. Kuc. Rapid Lignification in Response to Wounding andInfection as a Mechanism for Induced Systemic Protection in Cucumber. Physiological and Molecular Plant Pathology. 1984, 31: 69~81
    179 G. E. Vallada, R. M. Goodman. Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture Crop. Science. 2004, 44: 1920~1934
    180 M. Heil, R. M. Bostock. Induced Systemic Resistance against Pathogens in the Context of Induced Plant Defences. Annals of Botany. 2002, 89: 503~512
    181牛赡光,江树人,唐文华.多菌灵残留动态与荧光菌P32在棉花根际定殖及防治黄萎病的关系研究.棉花学报. 2000, 12(1): 22~26
    182刘淑娟.孜然根腐病病原鉴定及菌-药混配对根腐病菌抑制作用和防治试验.甘肃农业大学硕士学位论文. 2006
    183庄敬华,杨长城,牟连晓等.土壤不同处理对木霉菌定殖及其生防效果的影响.植物保护. 2005, 31(6): 42~44
    184张广志,杨合同,周红姿等.土壤杀菌剂对木霉根际竞争的影响及木霉对玉米生长作用的初步研究.农业环境科学学报. 2007, 26: 229~231
    185 J. Katan, C. Ginzburg, M. Assaraf. Pathogen Weakening as a Component of Integrated Control. T. Wenhua, R. J. Cook, A. Rovira. Advances in Biological Control of Plant Diseases, Beijing, China Agricultural University Press, 1996: 320~326
    186北京农业大学植保系植物生态病理教研室编译.植物根际生态学与根病生物防治进展.北京,中国人民大学出版社, 1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700