用户名: 密码: 验证码:
偶应力/应变梯度理论的精化不协调元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,各种微/纳米器件的研究和应用日趋广泛。目前已有大量的力学实验表明:在微/纳观尺度下,材料的力学行为呈现出强烈的尺度效应。尺度效应的存在给微/纳米器件的结构设计提出了一系列新的挑战。经典连续介质力学的本构方程不包含任何与尺度相关的材料参数,所以不能预测尺度效应。梯度理论将具有长度量纲的材料长度参数引入本构模型,可以解释尺度效应,现已在微/纳观尺度下的金属材料、颗粒材料和复合材料等的力学行为研究中得到广泛应用。
     本文主要研究的是梯度理论中具有代表性的两种理论:偶应力和应变梯度理论。偶应力/应变梯度理论较传统连续理论更为复杂,迄今只有少数问题获得了解析解,有限元方法就成为重要的分析手段。可靠的有限元法不仅是工程应用的需要,也是材料长度参数识别的需要,因此对有限元计算精度有很高的要求。偶应力/应变梯度理论同时包含位移的一阶和二阶导数,位移插值函数需满足C1连续条件。C1协调单元的节点参数含有位移的高阶导数,构造和应用都较为困难,并且数量十分有限。目前广泛采用的是C0单元,位移及位移梯度独立插值,它们之间的约束关系通过Lagrange乘子法或罚函数法满足。但是,Lagrange乘子法会增加计算量;而罚函数法的数值结果会受罚因子大小的影响。偶应力/应变梯度理论有限元在单元构造和检验单元收敛性方面都不够成熟。
     相对于协调单元,不协调单元放松了单元间的连续条件,可以构造形式更为灵活的单元函数,从而更容易建立高精度的单元。目前已经建立的偶应力/应变梯度单元都只分别考虑满足C0连续或C1连续。本文基于精化不协调元方法,建立了两种分别用于平面问题和轴对称问题求解且同时满足C0连续(或弱连续)和c1弱连续的偶应力/应变梯度精化不协调单元。首先,本文建立了24-DOF的平面四边形偶应力/应变梯度精化不协调元(CQ12+RDKQ)。提出了一个放松单元间连续条件的扩展的Hu-Washizu变分原理,并在此基础上首次建立了一个满足C0弱连续且有二次完备性的12-DOF四边形不协调元CQ12,用于计算应变;应变梯度由满足C1弱连续的12-DOF薄板单元RDKQ计算。通过将板单元节点参数转换为平面单元节点参数,二者组合建立24-DOF平面偶应力/应变梯度精化不协调元(CQ12+RDKQ)。其次,本文建立了18-DOF的轴对称三角形偶应力/应变梯度精化不协调元(BCIZ+ART9)。目前已建立的轴对称偶应力/应变梯度单元较少,轴对称C1连续单元尚未建立。本文首次建立了轴对称不协调元的弱C1连续条件,进一步,建立了轴对称单元(BCIZ+ART9),其中BCIZ满足C0连续且具有二次完备性,用于计算位移的一阶导数,ART9满足本文建立的C1弱连续条件,用于计算位移的二阶导数。
     有限元法分片检验是检验单元收敛性的实用准则。偶应力/应变梯度理论的控制方程属于非齐次微分方程,传统的分片检验函数不再适用。本文基于C0-1分片检验和增强型分片检验的思想建立了轴对称偶应力单元的分片检验函数,并证明了对于传统轴对称单元,不存在常剪力分片检验函数。本文建立的精化不协调元(CQ12+RDKQ)和(BCIZ+ART9)都能通过分片检验,收敛性得到保证,且有较高的效率和精度。
     最后,应用本文建立的单元,通过钢筋拉拔弹性阶段和超薄悬臂梁受压弯曲问题的数值模拟,初步探讨了两种高阶导数项符号相反的应变梯度理论在描述材料尺度效应方面的区别。
There are extensive researches and applications of micro/nano-devices, along with the development of science and technology. At present, numerous experiments have demonstrated strong size effects on mechanical properties of materials at the micro/nano-scale. The micro/nano device design faces a series of new challenges posed by size effects. The classical continuum mechanics is not applicable for revealing the size effects of materials due to the lack of any material parameter corresponding to internal length scale in the constitutive models. Gradient theories can successfully explain the size effects by introducing the material length parameters with the length dimensions into the constitutive models, and have been widely used in the mechanical analysis of metal, granular and composite materials at the micro/nano-scale.
     This paper is focused on the couple stress theory and the strain gradient theory, which are two kinds of typical and widely used gradient theories. Compared with the conventional continuum mechanics, the couple stress/strain gradient theory is substantially more complicated, and heretofore only a few analytical solutions are available. Finite element method provides an important approach. Reliable finite element method is needed not only for the purpose of engineering applications, but also for the identification of the material length parameters where higher order accuracy is required. In the finite element analysis, the displacement interpolation function should satisfy the requirement of C1 continuity as first and second derivatives of the displacement are involved in the couple stress/strain gradient theory. C1 conforming elements contain the nodal parameters with high order derivatives, and are complicated to construct and implement. Further, there are few C1 conforming elements available. Currently, the most widely used couple stress/strain gradient elements are C0 elements, in which displacements and displacement gradients are interpolated independently and their kinematic constraints are enforced via the penalty or Lagrange multiplier method. However, it is difficult to identify the penalty function, and the Lagrange multiplier method may increase the computation cost. The methods of finite element construction and convergence test for the couple stress/strain gradient theory have not been fully developed.
     Compared with the conforming element methods, it is easier for the nonconforming element methods to establish high-performance elements as they relax the continuity condition more loosely and offer more flexible interpolation algorithms. The existing couple stress/strain gradient elements are constructed based on the consideration of either C0 or C1 continuity. In this paper, the refined nonconforming finite element methods are used to establish the plane and axisymmetric couple stress/strain gradient elements which satisfy C0 continuity (or weak C0 continuity) and C1 continuity simultaneously. Firstly, a 24-DOF (degrees of freedom) quadrilateral refined nonconforming element (CQ12+RDKQ) for the couple stress/strain gradient theory is developed. An extended Hu-Washizu variational principle which relaxes the continuity condition is proposed. Based on this variational principle, a 12-DOF quadrilateral nonconforming element CQ12 which satisfies weak C0 continuity and quadratic completeness is developed to calculate strains. The strain gradients are computed by the 12-DOF thin plate element RDKQ, which satisfies weak C1 continuity. By combining RDKQ and CQ12, and replacing the parameters of plate element by those of plane element, the 24-DOF element (CQ12+RDKQ) is established. Secondly, an 18-DOF axisymmetric triangular refined nonconforming element (BCIZ+ART9) for the couple stress/strain gradient theory is derived. Up to now, only a few axisymmetric couple stress/strain gradient elements have been developed. The axisymmetric C1 element does not exist. In this paper, a weak C1 continuity condition of axisymmetric nonconforming element method is proposed, and furthermore, the axisymmetric element (BCIZ+ART9) is developed. The displacement function of BCIZ, which satisfies C0 continuity and quadratic completeness, is used to calculate first derivatives of displacement. And the displacement function of ART9, which satisfies the proposed C1 weak continuity condition, is used to calculate second derivatives of displacement.
     In finite element analysis, the patch test has been used as a criterion for assessing the convergence of finite elements. The equilibrium differential equations of couple stress/strain gradient theory are inhomogeneous, and the conventional patch test functions are not appropriate for such kind of problems. In this paper, based on the C0-1 patch test and the enhanced patch test, the patch test function for axisymmetric couple stress element is established, and furthermore, it is proved that the constant shear stress patch test function does not exist for conventional axisymmetric elements. The proposed elements (CQ12+RDKQ) and (BCIZ+ART9) can both pass the patch test (ensure convergence) and possess high-performance.
     Finally, utilizing the proposed elements, the elastic process of the reinforcement pull-out and the deformation of a cantilever beam are simulated based on two kinds of strain gradient theories in which the signs of higher-order differential terms are opposite. The numerical results show the difference between the two theories in the aspect of describing size effects of materials.
引文
[1]Truesdell C A, Noll W. The non-linear field theories of mechanics. In:Flugge S. Encyclopaedia of Physics, vol. Ⅲ/3.1965:88-92.
    [2]Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity:theory and experiment. Acta Metallurgica et Materialia,1994,42(2):475-487.
    [3]Stolken J S, Evans A G. A microbend test method for measuring the plasticity length scale. Acta Materialia,1998,46(14):5109-5115.
    [4]Poole W J, Ashby M F, Fleck N A. Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Materialia,1996,34:559-564.
    [5]McElhaney K W, Valssak J J, Nix W D. Determination of indenter tip geometry and indentation contact area for depth sensing indentation experiments. Journal of Materials Research,1998,13: 1300-1306.
    [6]Zagrebelny A V, Carter C B. Indentation of strained silicate-glass films on alumina substrates. Scripta Materialia,1997,37(12):1869-1875.
    [7]Elmustafa A A, Stone D S. Indentation size effect in polycrystalline F.C.C metals. Acta Materialia, 2002,50:3641-3650.
    [8]Beegan D, Chowdhury S, Laugier M T. Modification of composite hardness models to incorporate indentation size effects in thin films. Thin Solid Films,2008,516(12):3813-3817.
    [9]Elssner G, Korn D, Ruehle M. The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals. Scripta Metallurgica Et Materialia,1994,31: 1037-1042.
    [10]Drugan W J, Rice J R, Sham T L. Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids. Journal of the Mechanics and Physics of Solids,1982,30(6): 447-473.
    [11]Hutchinson J W. Linking scales in mechanics. in:Karihaloo B L, Mai Y W, Ripley M I, et al. Advances in Fracture Research. New York:Pergamon Press,1997.
    [12]Yang J, Cady C, Hu M S, et al. Effects of damage on the flow strength and ductility of a ductile Al-alloy reinforced with SiC particulates. Acta Metallurgica et Materialia.1990,38:2613-2619.
    [13]Lloyd D J. Particle reinforced aluminum and magnesium matrix composites. International Materials Reviews,1994,39:1-23.
    [14]Ling Z. Deformation behavior and microstructure effect in 2124Al/SiCp composite. Journal of Composite Materials,2000,34:101-115.
    [15]Yan Y W, Geng L, Li A B. Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,448(1-2):315-325.
    [16]Taylor M B, Zbib H M, Khaleel M A. Damage and size effect during superplastic deformation. International Journal of Plasticity,2002,18:415-442.
    [17]Multani M S, Palkar V R. Morphotropic phase boundary in the PZT system. International Materials Reviews B,1982,17:101-104.
    [18]Shvartsman V V, Emelyanov A Y, Kholkin A L, Safari A. Local hysteresis and grain size effects in Pb(Mg1/3Nb2/3)O-SbTiO3. Applied Physics Letters,2002,81:117-119.
    [19]Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids,2003,51:1477-1508.
    [20]McFarland A W, Colton J S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors. Journal of Micromechanics and Microengineering,2005; 15(5): 1060-1067.
    [21]Gau T, Principe C, Yu M. Springback behavior of brass in micro sheet forming. Journal of Materials Processing Technology,2007:7-10.
    [22]孙亮,王珺,韩平畴.单根聚己内酯电纺亚微米纤维的动力学特性分析.高分子学报,2009,6(6):535-539.
    [23]Chen C Q, Shi Y, Zhang Y S, et al. Size dependence of young's modulus in ZnO nanowires. Physical Review Letters,2006,96(7):075505.
    [24]Cuenot S, Fretigny C, Demoustier-Champagne S, et al. Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy. Journal of Applied Physics,2003, 93(9):5650-5655.
    [25]Tan E P S, Lim C T. Nanoindentation study of nanofibers. Applied Physics Letters,2005,87(12): 3106-3.
    [26]金属微塑性成形中的尺度效应及其数值模拟技术,李雷,谢水生,米绪军,曹建国.科技导报,2008,26(1):76-79.
    [27]Bazant Z P. Scaling of quasibrittle fracture:Asymptotic analysis. International Journal of Fracture,1997,83(1):19-40.
    [28]Bazant Z P. Size effect on structural strength:a review. Archive of Applied Mechnics,1999, 69(9-10):703-725.
    [29]Bazant Z P. Concrete fracture models:testing and practice. Engineering Fracture Mechanics, 2002,69:165-205.
    [30]Bazant Z P, Pang S D. Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. Journal of the Mechanics and Physics of Solids,2007,55:91-131.
    [31]Muhlhaus H B, Vardoulakis I. The thickness of shear bands in granular materials. Geotechnique, 1987,37(3):271~283.
    [32]Vardoulakis I, Sulem J. Bifurcation Analysis in Geomechanics. London:Blackie Academic and Professional,1995.
    [33]de Borst R, Pamin J. Some novel developments in finite element procedures for gradient-dependent plasticity. International Journal for Numerical Methods in Engineering,1996, 39:2477-2505.
    [34]Voigt W. Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle. Abh. Kgl. Ges. Wiss. Gottingen,1887,34:3-51.
    [35]Cosserat E, Cosserat F. Theorie des corp deformables. Paris:Herman,1909.
    [36]Gunther W. Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweig. Wiss. Ges.1958,10:195-213.
    [37]Toupin R A. Elastic materials with couple stresses. Archive for Rational Mechanics and Analysis, 1962,11:385-414.
    [38]Mindlin R D, Tiersten H F. Effects of couple stresses in linear elasticity. Archive for Rational Mechanics and Analysis,1962,11:415-448.
    [39]Koiter W T. Couple stresses in the theory of elasticity, Ⅰ and Ⅱ. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, seris B.1964,67:17-44.
    [40]Eringen A C. Linear theory of micropolar elasticity. J. Math. Mech.,1966,15(6):909~923
    [41]Eringen A C. Linear theory of micropolar viscoelasticity. International Journal of Engineering Science,1967,5:191-204.
    [42]Mindlin R D. Microstructure in linear elasticity. Archives for Rational Mechanics and Analysis, 1964,16:51-78.
    [43]Mindlin R D, Eshel N N. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures.1968,4:109-124.
    [44]Mindlin R D. Second gradient of strain and surfacetension in linear elasticity. International Journal of Solids and Structures.1965,1(4):417-438.
    [45]Altan S B, Aifantis E C. On the structure of the mode Ⅲ crack-tip in gradient elasticity. Scripta Metallurgica et Materialia,1992,26:319-324.
    [46]Ru C Q, Aifantis E C. A simple approach to solve boundary-value problems in gradient elasticity. Acta Mechanica,1993,101:59-68.
    [47]Aifantis EC. On the microstructural origin of certain inelastic models. Journal of Engineering Materials and Technology,1984,106:326-330.
    [48]Ashby M F. The deformation of plastically non-homogeneous materials. The Philosophic Magazine,1970,21(2):399-424.
    [49]Fleck N A, Hutchinson J W. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids,1993,41(12):1825-1857.
    [50]Fleck N A, Hutchinson J W. Strain gradient plasticity. Advances in Applied Mechanics,1997,33: 295-361.
    [51]Nix W D, Gao H J. Indentation size effects in crystalline materials:A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids,1998,46(3):411-425.
    [52]Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity-Ⅰ. Theory. Journal of the Mechanics and Physics of Solids,1999,47(6):1239-1263.
    [53]Huang Y, Gao H, Nix W D, et al. Mechanism-based strain gradient plasticity-Ⅱ. Analysis. Journal of the Mechanics and Physics of Solids,2000,48(1):99-128.
    [54]Acharya A, Bassani J L. Lattice incompatibility and a gradient theory of crystal plasticity. Journal of the Mechanics and Physics of Solids,2000,48:1565-1595.
    [55]Bassani J L. Incompatibility and a simple gradient theory of plasticity. Journal of the Mechanics and Physics of Solids,2001,49:1983-1996.
    [56]Chen S H, Wang T C. A new hardening law for strain gradient plasticity. Acta Materialia,2000, 48(16):3997-4005.
    [57]Gao H, Huang Y. Taylor-based nonlocal theory of plasticity. International Journal of Solids and Structures,2001,38(15):2615-2637.
    [58]Huang Y, Qu S, Hwang K C, et al. A conventional theory of mechanism-based strain gradient plasticity. International Journal of Plasticity,2004,20(4-5):753-782.
    [59]Peerlings R H J, de Borst R, Brekelmans W A M, de Vree J H P. Gradient enhanced damagefor quasi-brittle materials. International Journal for Numerical Methods in Engineering,1996,39: 3391-3403.
    [60]Kuhl E, Ramm E, de Borst R. An anisotropic gradient damage model for quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering,2000,183:87-103.
    [61]Voyiadjis G Z, Deliktas B, Aifantis E C. Multiscale analysis of multiple damage mechanics coupled with inelastic behavior of composite materials. Journal of Engineering Mechanics,2001, 127:636-645.
    [62]Fremond M, Nedjar B. Damage, Gradient of Damage and Principle of Virtual Power. International Journal of Solids and Structures,1996,33(8):1083-1103.
    [63]Voyiadjis G Z, Dorgan R J. Gradient Formulation in Coupled Damage-Plasticity. Archives of Mechanics,2001,53:565-597.
    [64]Oka F, Yashima A, Sawada K, Aifantis E C. Instability of gradient-dependent elastoviscoplastic model for clay and strain localization analysis. Computer Methods in Applied Mechanics and Engineering,2000,183:67-86.
    [65]Aifantis E C, Oka F, Yashima A, Adachi T. Instability of Gradient Dependent Elastoviscoplasticity for Clay. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23(10):973-994.
    [66]Gurtin M E. On a framework for small-deformation viscoplasticity:free energy, microforces, strain gradients. International Journal of Plasticity,2003,19:47-90.
    [67]Eringen A C. Non-local polar elastic continua. International Journal of Engineering Science, 1972,10(1):1-16.
    [68]Bazant Z P, Pijaudier-Cobot G. Nonlocal Continuum Damage, Localization Instability and Convergence. Journal of Applied Mechanics,1988,55:287-293.
    [69]Perzyna P. Fundamental Problems Visco-plasticity. In:Kuerti, H. Advances in Applied Mechaics, Academic Press,1966,9:243-377.
    [70]Needleman A. Material Rate Dependent and Mesh Sensitivity in LocalizationProblems. Computer Methods in Applied Mechanics and Engineering,1988,67:68-85.
    [71]Wang W M, Sluys L J, de Borst R. Interaction Between Material LengthScale and Imperfection size for Localization Phenomena in Viscoplastic Media. European Journal of Mechanics, A/Solids,1996,15(3):447-464.
    [72]Mindlin R D. Influence of couple-stresses on stress concentrations. Experimental Mechanics, 1963,3:1-7.
    [73]Kaloni P N, Ariman T. Stress concentration effects in micropolar elasticity. Zeitschrift fur Angewandte Mathematik und Physik,1967,18(1):136-141.
    [74]Hartranft R J, Sih G C. The effect of couple stresses on the stress concentration of a circular inclusion. Journal of Applied Mechanics,1965,32:429-431.
    [75]Weitsman Y. Couple-stress effects on stress concentration around a cylindrical inclusion in a field of uniaxial tension. Journal of Applied Mechanics,1965,32:424-428.
    [76]Banks C B, Sokolowski M. On certain two-dimensional applications of the couple stress theory. International Journal of Solids and Structures.1968,4 (1):15-29.
    [77]Wang T T. The effects of couple-stress on maximum stress and its location around spherical inclusions. Journal of Applied Mechanics,1970,92:865-868.
    [78]Cheng Z Q, He L H. Micropolar elastic fields due to a spherical inclusion. International Journal of Engineering Science,1995,33 (3):389-397.
    [79]Miller R E, Shenoy V B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology,2000,11 (3):139-147.
    [80]Gutkin M Y. Nanoscopics of dislocation and disclinations in gradient elasticity. Reviews on Advanced Materials Science,2000,1:27-60.
    [81]Gutkin M Y. Nanoscopics of dislocation and disclinations in gradient elasticity. Reviews on Advanced Materials Science,2000,1:27-60.
    [82]Zhang X, Sharma P. Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems. International Journal of Solids and Structures,2005,42 (13): 3833-3851.
    [83]Gutkin M Y. Elastic behavior of defects in nanomaterials. I. Models for infinite and semi-infinite media. Reviews on Advanced Materials Science,2006,13:125-161.
    [84]Shodja H M, Davoudi K M, Gutkin M Y. Analysis of displacement and strain fields of a screw dislocation in a nanowire using gradient elasticity theory. Scripta Materialia,2008,59:368-371.
    [85]Sun L, Wang J, Han R P S. Manifestation of strain Gradients in Nanostructural Vibration. In:Yao Z H, Yuan M W, ed. Computational mechanics Proceedings of International Symposium on Computational Mechanics. Beijing:Springer Berlin Heidelberg,2007.
    [86]Aifantis E C. The physics of plastic deformation. International Journal of Plasticity,1987,3 (3): 211-247.
    [87]Miihlhaus H B, Aifantis E C. A variational principle for gradient plasticity. International Journal of Solids and Structures,1991,28 (7):845-857.
    [88]Zbib H M, Aifantis E C. On the gradient-dependent theory of plasticity and shear bonding. Acta Mechanica,1992,92:209-225.
    [89]Xia Z C, Hutchinson J W. Crack tip fields in strain gradient plasticity. Journal of the Mechanics and Physics of Solids,1996,44 (10):1621-1648.
    [90]Wei Y, Hutchinson J W. Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. Journal of the Mechanics and Physics of Solids.1997,45 (8): 1253-1273.
    [91]Fleck N A, Hutchinson J W. A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids.2001,49 (10):2245-2271.
    [92]Nix and H. Gao, Indentation size effects in crystalline materials:A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids.1998,46:411-425.
    [93]Wang G F, Yu S W, Feng X Q. A piezoelectric constitutive theory with rotation gradient effects. European Journal of MechanicsA/Solids.2004,23:455-466.
    [94]Shodja H M, Ghazisaeidi M. Effects of couple stresses on anti-plane problems of piezoelectric media with inhomogeneities. European Journal of Mechanics A:Solids.2007,26 (4):647-658.
    [95]Alshiblin K A, Sture S. Sand shear band thickness measurements by digital imaging techniques. Journal of Computing in civil engineering,1999,13(2):103-109.
    [96]Begley M R, Hutchinson J W. The Mechanics of Size-Dependent Indentation. Journal of the Mechanics and Physics of Solids.1998,46:2049-2068.
    [97]Yuan H, Chen J. Identification of the Intrinsic Material Length in Gradient Plasticity Theory from Micro-Indentation Tests. International Journal of Solids and Structures.2001,38: 8171-8187.
    [98]Aifantis E C. Strain gradient interpretation of size effects. International Journal of Fracture,1999, 95(1-4):299-314.
    [99]Chen J Y, Hang Y and Ortiz M. Fracture analysis of cellular materials:A strain gradient model. Journal of the Mechanics and Physics of Solids.1998,46:789-828.
    [100]Fleck N A, Shu J Y. Microbuckle initiation in fibre composites:A finite element study. Journal of the Mechanics and Physics of Solids,1995,43(12):1887-1918.
    [101]Ji Bin, Chen Wanji. On the nonlocal theory of microstructures and it's implementation of finite element methods. Recent Patents on Engineering,2010,4 (1):63-72.
    [102]Steinmann P A. Micropolar Theory of Finite Deformation and Finite Rotation Multiplicative Elastoplasticity. International Journal of Solids and Structures,1994,31(8):1063-1084.
    [103]Providas E, Kattis M A. Finite element method in plane Cosserat elasticity. Computers and Structures,2002,80:2059-2069.
    [104]李雷.材料尺度效应的数值研究:(博士后研究报告).北京:有色金属研究总院,2005.
    [105]Zhang H W, Wang H, Liu G Z. Quadrilateral isoparametric finite elements for plane elastic Cosserat bodies. Acta Mechanica Sinica,2005,21(4):388-394.
    [106]张洪武,王辉.平面Cosserat模型有限元分析的4和8节点单元与分片检验研究.计算力学学报,2005,22(5):512-517.
    [107]李锡夔,唐洪祥.压力相关弹塑性Cosserat连续体模型与应变局部化有限元模拟.岩石力学与工程学报,2005,24:1497-1505.
    [108]陈万吉.细观尺度C0和C1理论及有限元分片检验函数.中国科学G辑:物理学力学天文学,2009,39(10):1480-1486.
    [109]Diegele E, Elsasser R, Tsakmakis C. Linear micropolar elastic crack tip fields under mixed mode loading conditions. International Journal of Fracture.2004,129:309-339.
    [110]Chambon R, Caillerie D, El Hassan N. One-dimensional localisation studied with a second grade model. EuropeanJournal of Mechanics-A/Solids.1998,17(4):637-656.
    [111]Argyris J H, Fried I, Scharpf D W. The TUBA family of plate elements for the matrix displacement method. The Aeronautical Journal of the Royal Aeronautical Society,1968; 72:701-709.
    [112]Dasgupta S, Sengupta D. A higher-order triangular plate bending element revisited. International Journal for Numerical Methods in Engineering,1990,30:419-430.
    [113]Petera J, Pittman J F T. Isoparametric Hermite elements. International Journal for Numerical Methods in Engineering,1994,37:3489-3519.
    [114]Zervos A, Papanastasiou P, Vardoulakis I. A finite element formulation for gradient elastoplasticity. International Journal for Numerical Methods in Engineering,2001,50: 1369-1388.
    [115]Zervos A, Papanastasiou P, Vardoulakis I. Modelling of localisation and scale effect in thick-walled cylinders with gradient elastoplasticity. International Journal of Solids and Structures,2001,38(30-31):5081-5095.
    [116]Zervos A, Vardoulakis I, Papanastasiou P. Influence of nonassociativity on localization and failure in geomechanics based on gradient elastoplasticity. International Journal of Geomechanics,2007,7(1):63-74.
    [117]Zervos A, Papanastasiou P, Vardoulakis I. Shear localisation in thick-walled cylinders under internal pressure based on gradient elastoplasticity. Journal of Theoretical and Applied Mechanics,2008,38(1-2):81-100.
    [118]Zervos A, Papanicolopulos S A, Vardoulakis I. Two finite element discretizations for gradient elasticity. Journal of Engineering Mechanics,2009,135:206-213.
    [119]Papanicolopulos S A, Zervos A, Vardoulakis I. A three-dimensional C1 finite element for gradient elasticity. International Journal for Numerical Methods in Engineering,2009,77: 1396-1415.
    [120]Adachi T, Tomita Y, Tanaka M. Computational simulation of deformation behavior of 2D-lattice continuum. International Journal of Mechanical Sciences,1998,40(9):857-866.
    [121]肖其林,凌中,吴永礼.偶应力问题的杂交/混合元分析.计算力学学报,2003,20(4):427-433.
    [122]Wood R D. Finite element analysisi of plane couple-stress problems using first order stress functions. International Journal for Numerical Methods in Engineering,1988,26:489-509.
    [123]Herrmann L R. Mixed finite elements for couple-stress analysis, in:Atluri S N, Gallagher R H, Zienkiewicz O C, eds. Hybrid and Mixed Finite Element Methods, Wiley, New York,1993.
    [124]Shu J Y, King W E, Fleck N A. Finite elements for materials with strain gradient effects. International Journal for Numerical Methods in Engineering,1999,44:373-391.
    [125]Amanatidou E, Aravas N. Mixed finite element formulations of strain-gradient elasticity problems, Computer Methods in Applied Mechanics and Engineering,2002,191:1723-1751.
    [126]李雷.应变梯度理论的非协调元与杂交元方法以及对材料尺度效应的研究:(博士学位论文).合肥:中国科学技术大学,2003.
    [127]冀宾,陈万吉,王胜军.偶应力/应变梯度弹塑性理论的有限元实现.大连理工大学学报,(已录用)
    [128]Zervos A, Papanastasiou P, Vardoulakis I. Finite elements for elasticity with microstructure and gradient elasticity. International Journal for Numerical Methods in Engineering.2008,73: 564-595.
    [129]郑长良,任明法,张志峰等.应用离散偶应力单元分析弹性Cosserat介质.计算物理,2004,21(3):377-352.
    [130]黄若煜,吴长春,钟万勰.基于平面偶应力-Reissner/Mindlin板比拟的偶应力有限元.力学学报,2004,36(3):272-280.
    [131]Wei Y G. A new finite element method for strain gradient theories and applications to fracture analyses. European Journal of Mechanics A/Solids,2006,25:897-913.
    [132]Tenek L T, Aifantis E C. A two-dimensional finite element implementation of a special form of gradient elasticity. Comput Modeling in Engineering and the Sciences,2002,3:731-41.
    [133]Peerlings R H J, de Borst R, Brekelmans W A M, et al. Gradient enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering,1996,39: 3391-403.
    [134]Askes H, Gutierrez M A. Implicit gradient elasticity. International Journal for Numerical Methods in Engineering.2006; 67:400-416.
    [135]Zienkiewicz O C, Taylor R L. The Finite Element Method, Vol. I:Basic, Formulation and Linear Problems.4th edn. London:McGraw-Hill,1989.
    [136]Zienkiewicz O C, Taylor R L. The Finite Element Method, Vol.2:Solid and Fluid Mechanics, Dynamics and Non-Linearity.4th edn. London:McGraw-Hill,1989.
    [137]Specht B. Modified shape functions for the three node plate bending element passing the patch test. International Journal for Numerical Methods in Engineering,1988; 26:705-715.
    [138]Soh A K, Chen W J. Finite element formulations of strain gradient theory for microstructures and the C0-1 patch test. International Journal for Numerical Methods in Engineering,2004, 61(3):433-454.
    [139]Karlis G F, Tsinopoulos S V, Polyzos D, et al. Boundary element analysis of mode I and mixed mode (Ⅰ and Ⅱ) crack problems of 2-D gradient elasticity. Computer Methods in Applied Mechanics and Engineering,2007,196:5092-5103.
    [140]赵吉东,周维垣,刘元高.基于应变梯度的损伤局部化研究及应用.力学学报,2002,34(3):445-452.
    [141]聂志峰,周慎杰,王凯,孔胜利.应变梯度弹性理论C1自然邻近迦辽金法.工程力学,2009,26(9):10-15.
    [142]Askes H, Aifantis E C. Numerical modeling of size effects with gradient elasticity-Formulation, meshless discretization and examples. International Journal of Fracture,2002,117(4):347-358.
    [143]Manzari M T, Regueiro R A. Gradient plasticity modeling of geomaterials in a meshfree environment. Part I:Theory and variational formulation. Mechanics Research Communications, 2005,32:536-546.
    [144]张敦福,朱维申,李术才.基于偶应力理论的无网格Galerkin方法及尺度效应数值模拟研究.机械强度,2008,30(4):628-632.
    [145]王敏,王锡平,周慎杰.偶应力理论的无网格法.计算力学学报,2008,25(4):464-468.
    [146]李雷,周毅英,谢水生等.应变梯度形变理论的无网格数值方法研究.塑性工程学报,2009,16(4):152-156.
    [147]陈万吉.精化直接刚度法与不协调模式.计算结构力学及其应用,1995,12(2):127-132.
    [148]陈万吉,李勇东.带旋转自由度的精化非协调平面四边形等参元.计算结构力学及其应用,1993,10(1):22-29.
    [149]Chen W J, Cheung Y K. A Robust Refined Quadrilateral Plane Element. International Journal for Numerical Methods in Engineering,1995,38:649-666.
    [150]陈健云,林皋,陈万吉.8-21节点块体精化不协调元.计算力学学报,1997,14:43-50.
    [151]Chen W J, Chen W J. The Non-conforming Element Method and Refined Hybrid Method for Axisymmetric Solid. International Journal for Numerical Methods in Engineering,1996,39: 2509-2529.
    [152]Cheung Y K, Chen Wanji. Refined Nine-parameter Triangular Thin Plate Bending Element by Using Refined Direct Stiffness Method. International Journal for Numerical Methods in Engineering,1995,38:283-298.
    [153]Cheung Y K, Zhang Y X, Chen W J. A refined nonconforming plane quadrilateral element. Computers & Structures,2000,78:699-709.
    [154]Chen W J, Cheung Y K. Refined 9-DOF triangular Mindlin plate element. International Journal for Numerical Methods in Engineering,2001,51:1259-1281.
    [155]Zhang S Y, Cheung Y K, Chen W J. stability analysis of circular cylindrical shell by using refined nonconforming rectangular cylindrical shell element. International Journal for Numerical Methods in Engineering,2001,50(12):2707-2726.
    [156]Chen W J, Cheung Y K. Refined discreted quadrilateral degenerated shell element by using Timoshenko's beam function, International Journal for Numerical Methods in Engineering, 2005; 63,1203-1227。
    [157]高岩,陈万吉,精化直接刚度法的不协调元位移模式与收敛性分析.力学学报,增刊,1995,135-142.
    [158]Chen W J, Gao Yan. Nonconforming Elements for Axisymmetric Structure and Convergence Analysis. Science in China (A),1997,40(3):422-431.
    [159]Wu Z, Chen R G, Chen W J. Refined laminated composite plate element based on global-local higher-order shear deformation theory. Composite Structures,2005,70:135-152.
    [160]Wu Z, Chen W J. Refined triangular element for laminated elastic-piezoelectric plates. Composite Structures,2007,78:129-139.
    [161]陈万吉,有限元离散化变分原理及精化元法.大连理工大学学报,1999,39(2):150-157.
    [162]Chen W J. Variational principles for non-conforming element methods. International Journal for Numerical Methods in Engineering,2002,53:603-619.
    [163]陈万吉,广义杂交元.力学学报,1981,6:582-591.
    [164]Taylor R L, Zienkiewicz O C, Simo J C, et al. The patch test-a condition for assessing f.e.m. convergence. International Journal for Numerical Methods in Engineering,1986,22:39-62.
    [165]Batoz J L, Tahar M B. Evaluation of a new quadrilateral thin plate bending element. International Journal for Numerical Methods in Engineering,1982,18:1655-1677.
    [166]Chen W J, Cheung Y K. Refined quadrilateral discrete Kirchhoff thin plate bending element, International Journal for Numerical Methods in Engineering,1997,40:3937-3953.
    [167]Irons B M, Razzaque A. Experience with the patch test for convergence of finite element methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. In:Aziz A R, ed. New York:Academic Press,1972,557-587.
    [168]Stummel F. The limitation of the atch test. International Journal for Numerical Methods in Engineering,1980,15:177-188.
    [169]Wang M. On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM Journal on Numerical Analysis,2001,39(2):363-384.
    [170]陈万吉,王金芝,赵杰.Mindlin板和圆柱薄壳有限元分片检验的检验函数.中国科G辑. 2009,39(2):305-310.
    [171]Argyris J H, Fried I, Scharpf D W. The TUBA family of plate elements for the matrix displacement method. The Aeronautical Journal of the Royal Aeronautical Society,1968, 72:701-709.
    [172]Bell K. A refined triangular plate bending element. International Journal for Numerical Methods in Engineering,1969,1:101-122.
    [173]陈万吉.应变梯度理论有限元:C0-1分片检验及变分基础.大连理工大学学报,2004,44(4):474-481.
    [174]陈万吉.有限元增强型分片检验.中国科学G辑,2006,36(2):199-212.
    [175]Chen W J, Cheung Y K. The nonconforming element method and re-fined hybrid element method for axisymmetric solid. International Journal for Numerical Methods in Engineering. 1996,39:2509-2529.
    [176]Shu J Y, Fleck N A. The prediction of a size effect in micro-indentation. International Journal of Solids and Structures,1998,35:1363-1383.
    [177]Swaddiwudhipong S, Tho K K, Hua J, et al. Mechanism-based strain gradient plasticity in CO axisymmetric element. International Journal of Solids and Structures,2006,43(5):1117-1130.
    [178]黄筑平.连续介质力学基础.北京:高等教育出版社,2003.
    [179]Bazeley G P, Cheung Y K, Irons B M, et al. Triangular elements in bending conforming and non-conforming solution. Proc. Conf. Matrix Methods in Structural Mechanics, Air Force Ins. Tech.,1965:547-576.
    [180]Hinton E, Scott F C, Ricketts R E. Local least squares stress smoothing for parabolic isoparametric elements. International Journal for Numerical Methods in Engineering,1975,38: 235-256.
    [181]Triantafyllidis N, Aifantis E C. A gradient approach to localization of deformation. I. Hyperelastic materials. Journal of Elasticity,1986,16:225-237
    [182]Aifantis E C. Strain gradient interpretation of size effect. International Journal of Fracture,1999, 95:299-314.
    [183]Akarapu S, Zbib H M. Numerical analysis of plane cracks in strain-gradient elastic materials. International Journal of Fracture,2006,141:403-430.
    [184]王忠昶,栾茂田,杨庆.基于不同权函数的非局部理论对比分析.西安交通大学学报,2006,40(11):1348-1356
    [185]Voyiadjis G Z, Dorgan R J. Bridging of length scales through gradient theory and diffusion equations of dislocations. Computer Methods in Applied Mechanics and Engineering,2004, 193(17-20):1671-1692.
    [186]Leech A R. Molecular Modeling, Principles and Applications. Prentice Hall:Englewood Cliffs, 2001.
    [187]Muhlhaus H B, Oka F. Dispersion and wave propagation in discrete and continuous models for granular materials. International Journal of Solids and Structures,1996,33:271-283.
    [188]Askes H, Metrikine A. Higher-order continua derived from discrete media:continualisation aspects and boundary conditions. International Journal of Solids and Structures,2005, 42:187-202.
    [189]Suiker A S J, de Borst R, Chang C S. Micro-mechanical modelling of granular material I: Derivation of a second-gradient micro-polar constitutive theory. Acta Mechanica,2001,149: 161-180.
    [190]Askes H, Suiker A S J, Sluys L J. A classification of higher-order strain gradient models-linear analysis. Archive of Applied Mechanics,2002,72:171-188
    [191]Askes H, Gutierrez M A. Implicit gradient elasticity. International Journal for Numerical Methods in Engineering.2006,67:400-416.
    [192]Suiker A S J, de Borst R, Chang C S. Micro-mechanical modeling of granular material II:Plane wave propagation in infinite media. Acta Metallurgica et Materialia.2001,149:181-200.
    [193]Peerlings R H J, Geers M G D, de Borst R, et al. A critical comparison of nonlocal and gradient enhanced softening continua. International Journal of Solids and Structures,2001,38: 7723-7746.
    [194]孔德森,栾茂田,凌贤长,仇清.单桩竖向动力阻抗计算模型研究.计算力学学报,2008,25(1):123-128.
    [195]Geers M G D, Brekelmans W A M, Janssen P J M. Size effects in miniaturized polycrystalline FCC samples:strengthening versus weakening. International Journal of Solids and Structures, 2006.43:7304-7321.
    [196]李雷,谢水生,米绪军,曹建国.金属微塑性成形中的尺度效应及其数值模拟技术.科技导报,2008.26(1):76-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700