用户名: 密码: 验证码:
氢在TC4钛合金扩散连接中的作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金置氢加工工艺是将氢作为一种临时合金元素,通过改变钛合金的相组成和微观结构,进而达到改善钛合金加工性能的目的。自从该技术被提出以来,国内外学者主要对置氢与除氢基础理论,氢改善塑性加工性能及热氢处理细化晶粒等方面进行了大量的研究,然而对氢改善扩散连接性方面的研究较少。本文针对置氢TC4钛合金,分别开展了直接和间接扩散连接试验,研究了置氢合金母材相组成和微观组织演化演化规律,确定了扩散连接接头的界面结构以及连接工艺参数对界面结构的影响规律,并对TiH_2粉末和高氢含量置氢合金的脱氢分解动力学进行了系统分析,在此基础上探讨了氢致低温扩散连接机理。
     研究了置氢TC4钛合金的相组成以及微观组织演化规律。板状原始合金由一定轧制方向的(α+β)组成,随着氢含量的增加β_H相和氢化物δ相依次出现,微观组织中轧制方向逐渐消失,当氢含量增加到0.4wt.%以上时α′马氏体大量形成。棒状原始合金由等轴状(α+β)组成,置氢0.15wt.%时,初生α相在原始β晶界面处形核并长大,随后β相中聚集的氢导致了片层状(β_H+α)的形成,而置氢0.3wt.%时,较高的氢含量导致了共析产物(α+δ)和α′马氏体的形成。
     直接扩散连接了置氢TC4钛合金,分析了其界面结构以及工艺参数对界面结构的影响。接头界面处只有扩散孔隙的存在,且随着连接温度、连接时间、连接压力、合金中氢含量以及加热速率的升高,界面处的扩散孔隙数量逐渐减少且尺寸逐渐变小;高含氢量的置氢合金在快速升温下扩散连接温度降低了大约150℃左右。在缓慢加热条件下,合金中含氢不稳定相逐渐发生分解,在氢的作用下合金元素发生了充分的扩散。在快速加热条件下,含氢不稳定相几乎同时发生分解,合金元素扩散不充分且在快速的冷却速度下导致大量α′马氏体形成。
     采用Ni、Al、Nb和Ti中间层间接扩散连接了置氢TC4钛合金,分析了各类扩散偶中接头的界面结构。采用Ni中间层时接头界面处分别生成了β相变区、Ti2Ni、TiNi和TiNi3,采用Al中间层时界面处只生成TiAl3,采用Nb中间层时界面处只生成固溶体层。在相同的连接工艺参数下随着氢含量的增加,接头界面处扩散层的厚度逐渐增加。采用Ti中间层时,接头界面只由扩散孔隙组成,且在相同连接工艺参数下随着氢含量的增加,扩散孔隙数量及尺寸逐渐减小。
     置氢TC4钛合金在600℃~950℃之间脱氢,而高氢含量置氢合金中氢主要以δ氢化物的形式存在。详细研究了TiH_2粉末的脱氢分解动力学,其分解过程包括以下几个步骤: TiH_2→TiH_(1.5)+H_2↑;δ→β_H+H_2↑;β_H→β_H+H_2↑和β_H→α_H ;β_H→α_H+H_2↑。在此基础上确定了置氢0.5wt.%合金的脱氢分解动力学,具体脱氢分解过程如下:TiH_(1.5~2)→TiH_(1.5)+H_2↑;δ→β_H+H_2↑;β_H→β_H+H_2↑和β_H→α_H+H_2↑。借助动力学模型探讨了置氢TC4钛合金低温扩散连接机理,氢的加入导致了在孔隙闭合过程中扩散系数的增大,也导致了变形和蠕变的改善,因而其扩散连接性得到了改善。且较快速度下升温能保证在扩散连接前,氢几乎不逸出,从而保证了活性氢含量,这有利于进一步增强扩散连接性。而在有反应层生成的间接扩散连接过程中,氢的加入导致了互扩散系数的升高。
The so-called thermohydrogen processing (THP) is a technique in which hydrogen is used as a temporary alloying element in titanium alloys by controlling the microstructure and phase structure to improve the mechanical working properties. Since the appearance of THP, it has gained considerable interests. A large number of researches have been done including the basic theory of hydrogenation and dehydrogenation, the enhancement of plastic working properties and different THP methods used to modify the microstructure. However, little work has been reported about diffusion bonding of hydrogenated titanium alloys. The investigation about diffusion bonding with or without interlayer of hydrogenated TC4 titanium alloys was carried out. The phase structure and microstructure evolution of the substrates were researched, the interface structure of diffusion bonding with or without interlayer was determined, the effect of processing parameter on interface structure was analyzed, the nonisothermal dehydrogenation kinetics of the TiH_2 powders and the TC4 alloy with high hydrogen content was established, and the positive effect of hydrogen on diffusion bonding was investigated.
     The phase structure and microstructure evolution of the substrates were researched. The platelike substrate before hydrogenation had a (α+β) dual phase structure with rolling direction. With the increase of the hydrogen theβ_H andδphases gradually formed, and the rolling direction gradually disappeared with the hydrogen content increasing. The needleα′martensite appeared when the hydrogen content was up to 0.4wt.%. The rodlike substrate before hydrogenation had an equiaxed (α+β) dual phase structure. When the hydrogen content was 0.15wt.%, the primaryαphase started to nucleate and grow up in the boundary ofβphase and the hydrogen inβphase led to the formation of lamellar (β_H+α). The high hydrogen content resulted in the formation of (α+δ) andα′phase when the hydrogen content was 0.3wt.%.
     The diffusion bonding without interlayer was carried out, and the interface structure and the effect of processing parameter were analyzed. The voids were only observed in the interface, and the quantity of the voids gradually decreased with the increase of bonding temperature, holding time, bonding pressure and heating rate. Moreover, the bonding temperature decreased by 150℃under high hydrogen content at the fast heating rate. The phases with hydrogen sequential decomposed at low heating rate, and the elements in alloy sufficiently diffused. However, the phases with hydrogen decomposed at the same time at fast heating rate, and the elements in alloy insufficiently diffused and the fast cooling rate led to the formation ofα′phase.
     The diffusion bonding with different interlayers was carried out, and the interface structure was analyzed. The reaction layers in the interface structure with Ni interlayer was theβ(Ni) phase and the Ti2Ni/TiNi/TiNi3 intermetallics, the reaction layers in the interface structure with Al interlayer was the TiAl3 intermetallics, and the diffusion layer in the interface structure with Nb interlayer was the solid solution.
     The thickness of layers gradually increased with the hydrogen content increasing when bonded at the same processing parameter. But the interface structure with Ti interlayer was only composed of the voids, and the quantity of the voids gradually decreased with the increase of hydrogen content at the same processing parameter. The nonisothermal dehydrogenation of hydrogenated TC4 alloys happened between 600℃and 950℃, and the hydrogen in the TC4 alloy with high hydrogen content mainly located inδtitanium hydride. The nonisothermal dehydrogenation kinetics of the TiH_2 powders was established. The results show the nonisothermal dehydrogenation occurred in a four-step process: TiH_2→TiH_(1.5)+H_2↑;δ→β_H+H_2↑;β_H→β_H+H_2↑andβ_H→α_H,β_H→α_H+H_2↑. Also the dehydrogenation kinetics of the TC4 alloy with 0.5wt.% hydrogen was established. It consisted of TiH_(1.5~2)→TiH_(1.5)+H_2↑,δ→β_H+H_2↑,β_H→β_H+H_2↑andβ_H→α_H+H_2↑. Moreover, the positive effect of hydrogen on diffusion bonding was investigated. The enhancement of diffusion bonding quality was attributed to the increase of diffusion coefficient and the improvement of creep deformation and distortion. The fast heating prevented the most hydrogen escaping during rise in temperature, which helped to improve the diffusion bonding quality. In addition, the hydrogen in titanium alloys arouses the interdiffusion enhancenment for the diffusion bonding joints with reaction layer.
引文
1 A. San-Martin, F. D. Manchester. The H-Ti (Hydrogen-Titanium) System. Bulletin of Alloy Phase Diagrams. 1987,8(1):30~42
    2曹兴民,赵永庆,奚正平.热氢处理在铸造钛合金中的应用.铸造. 2005,54(4):1~3
    3韩明臣.钛合金的热氢处理.宇航材料工艺. 1999,29(1):1~6
    4侯红亮,李志强,王亚军,关桥.钛合金热氢处理技术及其应用前景.中国有色金属学报. 2003,13(3):1~17
    5 O. N. Senkov, F. H. Froes. Thermohydrogen Processing of Titanium Alloys. International Journal of Hydrogen Energy. 1999,24(6):565~576
    6 V. Bhosle, E. G. Baburaj, M. Miranova, et al. Dehydrogenation of TiH2. Materials Science and Engineering A. 2003, 356(1-2):190~199
    7韩潇.氢处理对TC4钛合金组织和热变形行为的影响.哈尔滨工业大学硕士论文. 2004:18~44
    8林天辉.钛合金中的氢及其对力学性能的影响.北京科技大学博士学位论文. 1990:10~14
    9沈保罗,冯可芹,高升吉.钛合金氢脆的研究进展.全面腐蚀控制. 2000,14(3):3~4
    10严铿,徐济进,蒋成禹. T225NG钛合金在高温高压水介质中应力腐蚀行为的研究.稀有金属. 2004,28(2):1~3
    11 E. Tal-Gutelmacher, D. Eliezer, D. Eylon. The Effects of Low Fugacity Hydrogen in Duplex and Beta-annealed Ti–6Al–4V alloy. Materials Science and Engineering A. 2004,381(1-2):230~236
    12何晓,沈保罗,曹建玲,邱绍宇,邹红.氢对两种新型钛合金强度和塑性的影响.稀有金属材料与工程. 2003,32(5):1~4
    13 C. L. Briant, Z. F. Wang, N. Chollocoop. Hydrogen Embrittlement of Commercial Purity Titanium. Corrosion Science. 2002,44(8):1875~1888
    14 C. Q. Chen, S. X. Li, H. Zheng, L. B. Wang, K. Lu. An Investigation on Structure, Deformation and Fracture of Hydrides in Titanium with a Large Range of Hydrogen Contents. Acta Materialia. 2004,52(12):3697~3706
    15 W. Sha, C. J. McKinven. Experimental Study of the Effects of Hydrogen Penetration on Gamma Titanium Aluminide and Beta 21S Titanium Alloys. Journal of Alloys and Compounds. 2002,335(1-2):L16~L20
    16 C. Q. Chen, S. X. Li. Tensile and Low-cycle Fatigue Behaviors of Commercially Pure Titanium ContainingγHydrides. Materials Science and Engineering A. 2004,387-389:470~475
    17 C. Q. Chen, S. X. Li, K. Lu. The Deformation Behaviors of Gamma Hydrides in Titanium under Cyclic Straining. Acta Materialia. 2003,51(4):931~942
    18 K. Nakasa, H. Satoh. The Effect of Hydrogen-charging on the Fatigue Crack Propagation Behavior ofβ-titanium Alloys. Corrosion Science. 1996,38(3):457~468
    19 D. F. Teter, I. M. Robertson, H. K. Birnbaum. The Effects of Hydrogen on the Deformation and Fracture ofβ-titanium. Acta Materialia. 2001,49(20):4313~4323
    20 M. Yoshioka, A. Ueno, H. Kishimoto. Analysis of Hydrogen Behaviour in Crack Growth Tests ofγ-TiAl by Means of the Hydrogen Microprint Technique. Intermetallics. 2004,12(1):23~31
    21 D. Hardie, S. Ouyang. Effect of Hydrogen and Strain Rate upon the Ductility of Mill-annealed Ti6Al4V. Corrosion Science. 1999,41(1):155~177
    22 W. R. Kerr, R. R. Smith, M. E. Rosenblum, F. J. Gurney, Y. R. Mahajan, L. R. Bidwell. Hydrogen as an Alloying Element in Titanium (Hydrovac). Titanium 80: Science and Technology. Warrendale: TMS-AIME. 1980:2477~2486
    23 W. R. Kerr. The Effect of Hydrogen as a Temporary Alloying Element on the Microstructure and Tensile Properties of Ti6Al4V. Metallurgical and Materials Transactions A. 1985,16:1077~1087
    24 M. A. Murzinova, G. A. Salishchev, D. D. Afonichev. Formation of Nanocrystalline Structure in Two-phase Titanium Alloy by Combination of Thermohydrogen Processing with Hot Working. International Journal of Hydrogen Energy. 2002,27(7-8):775~782
    25 H. Yoshimuraa, J. Nakahigashi. Tensile and Impact Properties of Mesoscopic-grainedα+βType Titanium Alloys Obtained through Hydrogen Treatments. Journal of Alloys and Compounds. 1999,293(1):858~861
    26 M. A. Murzinova, M. I. Mazurski, G. A. Salishchev, D. D. Afonichev. Application of Reversible Hydrogen Alloying for Formation of Submicrocrystalline Structure in (α+β) Titanium Alloys. International Journal of Hydrogen Energy. 1997,22(2-3):201~204
    27 N. Eliaz, D. Eliezer, D. L. Olson. Hydrogen-assisted Processing of Materials. Materials Science and Engineering A. 2000, 289(1-2):41~53
    28 D. Eliezer, N. Eliaz, O. N. Senkov, F. H. Froes. Positive Effects of Hydrogen in Metals. Materials Science and Engineering A. 2000, 280(1):220~224
    29 J. I. Qazi, O. N. Senkov, J. Rahim, F. H. Froes. Kinetics of MartensiteDecomposition in Ti–6Al–4V–xH Alloys. Materials Science and Engineering A. 2003, 359(1-2):137~149
    30 J. I. Qazi. Thermohydrogen Processing (THP) of Ti-6Al-4V and Titanium-aluminum Alloys. Dissertation for Doctoral Degree in Engineering. University of Idaho. 2002:1~253
    31 D. S. Shih, H. K. Birnbaum. Evidence of Fcc Titanium Hydride Formation inβ-Titanium Alloy: An X-Ray Diffraction Study. Scripta Metallurgica. 1986,20(9):1261~1264
    32 H. Numakura, M. Koiwa, H. Asano, H. Murata, F. Izumi. X-Ray Diffraction Study on the Formation ofγTitanium Hydride. Scripta Metallurgica. 1986,20(2):213~216
    33 J. I. Qazi, J. Rahim, O. N. Senkov, F. H. Froes. Phase Transformations in the Ti-6Al-4V-H System. Journal of the Minerals Metals and Materials Society. 2002,54(2):68~71
    34 M. Niinomi, B. Gong, T. Kobayashi, Y. Ohyabu, O. Toriyama. Fracture Characteristics of Ti-6Al-4V and Ti-5Al-2.5Fe with Refined Microstructure Using Hydrogen. Metallurgical and Materials Transactions A. 1995,26(5):1141~1151
    35 J. Gu, D. Hardie. Effect of Hydrogen on Structure and Slow Strain Rate Embrittlement of Mill Annealed Ti6Al4V. Materials Science and Technology. 1996,12(10):802~807
    36 J. M. Howe, M. M. Tsai. Discussion of“on the Mecahanism of Hydride Formation inα-Ti Alloys”by H. Z. Xiao. Scripta Metallurgica. 1993,28:533~535
    37 A. A. IIyn, B. A. Kolachev, A. M. Mamonov. Titanium’92: Science and Technology. Warrendale, PA, TMS. 1993,1:941~947
    38 H. Yoshimura. Mezzoscopic Grain Refinement and Improved Mechanical Properties of Titanium Materials by Hydrogen Treatment. International Journal of Hydrogen Energy. 1997,22(2-3):145~150
    39 B. A. Kolachev, A. A. Ilyin, V. K. Nosov. Hydrogen Technology as New Perspective Type of Titanium Alloy Processing. Advances in the science and technology of titanium alloy processing. 1996,(2):331~338
    40廖际常.含氢热加工技术在耐热钛合金中的应用前景.钛工业进展. 2002,(1):1~3
    41黄东,南海,吴鹤,赵嘉琪.氢处理技术在钛合金中的应用.金属热处理. 2004,29(6):1~5
    42李中华. TC4钛合金高温变形行为及拉伸性能.哈尔滨工业大学硕士论文. 2003:48~50
    43苏彦庆,骆良顺,毕维升,丁宏升,郭景杰,贾均,傅恒志.置氢对Ti6Al4V合金室温组织的影响.材料科学与工艺. 2005,13(1):1~5
    44骆良顺.置氢对Tc4合金组织及室温抗拉性能的研究.哈尔滨工业大学本科论文. 2003:11~42
    45张少卿.氢在钛合金热加工中的作用.材料工程. 1992,(2):24~29
    46潘峰,张少卿.铸造钛合金的氢处理细化晶粒的研究.航空学报. 1987,8(1):A77~A82
    47康强,张彩碚,赖祖涵. Ti-H合金共析转变产物的形态和结构.金属学报. 1995,31(6):A241~A247
    48廖际常.钛合金含氢热加工技术的应用范围和前景.钛工业进展. 2002,(6):11~14
    49曹兴民,奚正平,赵永庆. TC21合金高温渗氢组织变化研究.热加工工艺. 2005,(1):29~33
    50王天生,南云.加氢Super-α2合金固溶及时效组织的研究.金属功能材料. 2001,8(4):38~40
    51丁桦,王殿梁,宋丹,张彩碚,崔建忠,白秉哲.氢对Ti3Al-Nb合金微观组织和超塑变形行为的影响.钢铁研究学报. 2000,12(2):45~48
    52杜忠权,王高潮,陈玉秀.渗氢处理细化Ti-10V-2Fe-3Al合金组织及改善其超塑性性能的效果.航空学报. 1994,15(7):882~886
    53林莺莺,潘洪泗,李淼泉.钛合金的氢处理技术及其对超塑性的影响.材料工程. 2005,(5):60~63
    54张满,南海,黄东,曹国平.钛合金铸件的热等静压和氢处理工艺研究.中国铸造装备与技术. 2002,(5):1~3
    55 A. A. Ilyin. Phase and Structure Transformations in Titanium Alloys Alloyed with Hydrogen. Izv VUZ Tsvetnaya Metallurgiya. 1987,1:96~101
    56 F. H. Froes, O. N. Senkov, J. I. Qazi. Hydrogen as a Temporary Alloying Element in Titanium Alloys: Thermohydrogen Processing. International Materials Reviews. 2004,49(3-4):227~245
    57 A. A. Ilyin, A. M. Mamonov. Temperature-concentration Diagrams of Phase Composition of Hydrogen-bearing Multicomponent Titanium Alloys. Russian Metallurgy. 1994,(5):52~57
    58张彩碚,边为民.高氢量氢化的Ti6Al4V合金中氢化物的组织结构研究.金属学报. 1992,28(4):A153
    59徐振声,宫波.氢对Ti6Al4V合金的高温增塑作用.金属学报. 1991,27(4):A270
    60 Z. S. Xu, B. Gong, C. B. Zhang, Z. Lai. Effect of Hydrogen on High Temperature Plasticity of Ti6Al4V Alloy. Acta Metallugica Sinica. 1992,5(1):21~22
    61 T. Y. Fang, W. H. Wang. Microstructural Features of Thermochemical Processing in a Ti-6Al-4V Alloy. Materials Chemistry and Physics. 1998,56(1):35~47
    62 S. Q. Zhang, L. R. Zhao. Effect of Hydrogen on the Superplasticity and Microstructure of Ti-6Al-4V Alloy. Journal of Alloys and Compounds. 1995,218(2):233~236
    63 Y. Zhang, S. Q. Zhang. Hydrogenation Characteristics of Ti6Al4V Cast Alloy and Its Microstructural Modification by Hydrogen Treatment. International Journal of Hydrogen Energy. 1997,22(2-3):161~168
    64 H. Fujii. Strengthening ofα+βTitanium Alloys by Thermomechanical Processing. Materials Science and Engineering A. 1998,243(1-2):103~108
    65 H. Yoshimura, J. Nakahigashi. Ultra-fine-grain Refinement and Superplasticity of Titanium Alloys Obtained through Protium Treatment. International Journal of Hydrogen Energy. 2002,27(7-8):769~774
    66 E. G. Ponyatovsky, I. O. Bashkin, O. N. Senkov. Hydrogen on Ductility and Strength of a Titanium Alloy VT19 at Temperatures from 20 to 740℃. Physics of Metals and Metallography. 1989,68(6):122~128
    67 O. N. Senkov, J. J. Jonas. Effect of Phase Composition and Hydrogen Level on the Deformation Behavior of Titanium-hydrogen Alloys. Metallurgical and Materials Transactions A. 1996,27(7):1869~1877
    68 O. N. Senkov, M. Dubois, J. J. Jonas. Elastic Moduli of Titanium-hydrogen Alloys in the Temperature Range 20℃to 1000℃. Metallurgical and Materials Transactions A. 1996,27(12):3963~3970
    69 W. R. Kerr, F. J. Gurney, I. A. Martorell. Pilot Plant Forging of Hydrogenated Ti-6Al-4V. ADA089107, Air Force Wright Aeronautical Laboratories. 1980.
    70 Y. Y. Zong, D. B. Shan, Y. Lv, B. Guo. Effect of 0.3wt% H Addition on the High Temperature Deformation Behaviors of Ti6Al4V Alloy. International Journal of Hydrogen Energy. 2007,32(16):3936~3940
    71 D. B. Shan, Y. Y. Zong, T. F. Lu, Y. Lv. Microstructural Evolution and Formation Mechanism of FCC Titanium Hydride in Ti6Al4V-xH Alloys. Journal of Alloys and Compounds. 2007,427(1-2):229~234
    72 Y. Y. Zong, D. B. Shan, Y. Lv, B. Guo. Hydrogen-induced Hot Workability in Ti6Al4V Alloy. Transactions of Nonferrous Metals Society of China. 2006,16(z3):2072~2076
    73宗影影.钛合金置氢增塑机理及其高温变形规律研究.哈尔滨工业大学博士论文. 2007:11~85
    74 A. V. Malkov, B. A. Kolachev, I. D. Nizkin. Effect of Hydrogen on Ductility of a VT05 Alloy. Izv VUZ Tsvetnaya Metallurgiya. 1990,(6):96~100
    75 B. A. Kolachev, Y. B. Egorova. Hydrogen Influence on Machining of Titanium Alloys. Advances in the Science and Technology of Titanium Alloy Processing. 1997:339~346
    76 K. Yong, Z. X. Guo, D. V. Edmonds. Processing of Titanium Matrix Composites with Hydrogen As a Temporary Alloying Element. Scripta Metall. Mater. 1992,27(12):1695~1700
    77 K. Yong, Z. X. Guo, D. V. Edmonds. Study of the Effect of Hydrogen on Titanium Alloy Foils to be Used as Potential Composite Matrices. Scripta Metall. Mater. 1992,27(8):1021~1026
    78 Z. X. Guo, J. H. Li, K. Yang, B. Derby. The Effect of Temporary Hydrogenation on the Processing and Interface of Titanium Composites. Composites. 1994,25(9):881~886
    79 E. Hayashi, Y. Kurokawa, Y. Fukai. Hydrogen-Induced Enhancement of Interdiffusion in Cu-Ni Diffusion Couples. Physical Review Letters. 1998,80(25):5588~5590
    80 Y. Fukai, N. Okuma. Formation of Superabundant Vacancies in Pd Hydride under High Hydrogen Pressures. Physical Review Letters. 1994,73(12):1640~1643
    81 K. Watanabe, N. Okuma, Y. Fukai, Y. Sakamoto, Y. Hayashi. Superabundant Vacancies and Enhanced Diffusion in Pd-Rh Alloys under High Hydrogen Pressures. Scripta Materialia. 1996,34(4):551~557
    82 H. Osono, T. Kino, Y. Kurokawa, Y. Fukai. Agglomeration of hydrogen-induced vacancies in nickel. Journal of Alloys and Compounds. 1995,231(1-2):41~45
    83顾曾迪.有色金属焊接.机械工业出版社. 1995: 225~230
    84回丽,谢里阳,何雪浤,曹志韬,刘建中. TC2钛合金焊缝与母材性能对比试验研究.机械强度. 2004,26(4):428~430
    85周克印,徐来,林兆荣,吴永端. TC4钛板扩散连接后的疲劳断裂特性.机械强度. 1998,20(2):112~115
    86范成磊,方洪渊,刘志华,万鑫. TC4合金空心阴极真空焊接熔池动态行为的数值模拟.材料科学与工艺. 2001,9(3):293~296
    87周荣林,郭德伦,李从卿,孙永春,张雁军. TC4钛合金电弧超声TIG焊.焊接学报. 2004,25(6):97~98
    88孟卫如,牛锐锋,王士元,刘效方,宋西平. TC4钛合金惯性摩擦焊接头温度场分析.焊接学报. 2004,25(4):111~114
    89刘小文,史永高,毛信孚,杜随更. TC4钛合金摩擦焊接头的力学性能及显微组织.焊接学报. 2001,22(6):77~80
    90胡礼木.钛合金Ti6Al4V电子束焊接接头的性能研究.陕西工学院学报. 1997,13(4):43~47
    91朱秀军,熊建钢,黄安国,李志远,胡强.钛合金TC4的激光焊接.电焊机. 2004,34(9):13~16
    92吴铭方,蒋成禹,于治水,粱超. TC4/72Ag-28Cu钎焊组织及Ti-Cu化合物生长机理研究.航空材料学报. 2001,21(3):29~32
    93戚运莲,洪权,刘向,赵永庆.钛及钛合金的焊接技术.钛工业进展. 2004,(6):1~5
    94吴欣,康慧,朱颖,曲平. TC4钛合金真空钎焊的研究.航空制造技术. 2004,(9):1~3
    95宋西平,邵潭华,王士元,孟卫如,刘效方.提高TC4钛合金惯性摩擦焊接头塑性的研究.热加工工艺. 1996,(2):1~3
    96李志远.先进连接方法.北京机械工业出版社. 2000:176~178
    97 B. A. Kolachev, A. A. IIyin, V. K. Nosov. Hydrogentechnology as New Perspective Type of Titanium Alloy Processing. Advances in the science and technology of titanium alloy processing. 1996, (2): 331~338
    98胡荣祖,史启祯.热分析动力学.科学出版社. 2001:1~180
    99陆昌伟,奚同庚.热分析质谱法.上海科学技术文献出版社. 2002:43~124
    100 L. Yao, J. Deng, B. J. Qu, W. F. Shi. Cure Kinetics of DGEBA with Hyperbranched Poly (3-hydroxyphenyl) Phosphate as Curing Agent Studied by Non-isothermal DSC. Chemical Research in Chinese Universities. 2006,22(1):118~122
    101 J. Hong, G. Guo, K. Zhang. Kinetics and Mechanism of Non-isothermal Dehydration of Nickel Acetate Tetrahydrate in Air. Journal of Analytical and Applied Pyrolysis. 2006,77(2):111~115
    102 G. Singh, C. P. Singh, S. M. Mannan. Kinetics of Thermolysis of Some Transition Metal Nitrate Complexes with 1,6-diaminohexane Ligand. Journal of Hazardous Materials A. 2006,135:10~14
    103 Z. Z. Yuan, X. D. Chen, B. X. Wang, Y. J. Wang. Kinetics Study on Non-isothermal Crystallization of the Metallic Co43Fe20Ta5.5B31.5 Glass. Journal of Alloys and Compounds. 2006,407(1-2):163~169
    104 S. Vyazovkin. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. Journal of Computational Chemistry. 1997,18(3):393~402
    105 S. Vyazovkin. Modification of the integral isoconversional method to account for variation in the activation energy. Journal of Computational Chemistry. 2001,22(2):178~183
    106 N. Sbirrazzuoli, S. Vyazovkin. Learning about Epoxy Cure Mechanisms from Isoconversional Analysis of DSC Date. Thermochimica Acta. 2002,388(1-2):289~298
    107 Y. Zhang, S. Vyazovkin. Comparative Cure Behavior of DGEBA and DGEBP with 4-nitro-1, 2-phenylenediamine. Polymer. 2006,47(19):6659~6663
    108 N. Sbirrazzuoli, L. Vincent, S. Vyazovkin. Comparison of Several Computational Procedures for Evaluating the Kinetics of thermally Stimulated Condensed Phase Reactions. Chemometrics and Intelligent Laboratory Systems. 2000,54(1):53~60
    109 N. Sbirrazzuoli, L. Vincent, S. Vyazovkin. Electronic Solution to the Problem of a Kinetic Standard for DSC Measurements. Chemometrics and Intelligent Laboratory Systems. 2000,52(1):23~32
    110 S. Vyazovkin, C. A. Wight. Model-free and Model-fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data. Thermochimica Acta. 1999,340-341:53~68
    111 S. Vyazovkin. Computational Aspects of Kinetic Analysis Part C: The ICTAC Kinetics Project—“the Light at the End of the Tunnel?”. Thermochimica Acta. 2000,355(1-2):155~163
    112 N. Sbirrazzuoli, A. Mititelu-Mija, L. Vincent, C. Alzina. Isoconversional Kinetic Analysis of Stoichiometric and Off-stoichiometric Epoxy-amine Cures. Thermochimica Acta. 2006,447(2):167~177
    113 B. Saha, A. K. Maiti, A. K. Ghoshal. Model-free Method for Isothermal and Non-isothermal Decomposition Kinetics Analysis of PET Sample. Thermochimica Acta. 2006,444(1):46~52
    114 A. J. Lang, S. Vyazovkin. Effect of Pressure and Sample Type on Decomposition of Ammonium Perchlorate. Combustion and Flame. 2006,145(4):779~790
    115 A. A. Joraid. Estimating the Activation Energy for the Non-isothermal Crystallization of an Amorphous Sb9.1Te20.1Se70.8 Alloy. Thermochimica Acta. 2007,456(1):1~6
    116 A. A. Abu-Sehly, A. A. Elabbar. Kinetics of Crystallization in Amorphous Se73.2Te21.1Sb5.7 under Isochronal Conditions: Effect of Heating Rate on the Activation Energy. Physica B. 2007,390(1-2):196~202
    117 A. Khawam, D. R. Flanagan. Role of Isoconversional Methods in Varying Activation Energies of Solid-state Kinetics II. Nonisothermal Kinetic Studies. Thermochimica Acta. 2005,436(1-2):101~112
    118 S. Vyazovkin. Thermal Analysis. Analytical Chemistry. 2006,78(12):3875~3886
    119 S. Vyazovkin. Thermal Analysis. Analytical Chemistry. 2004,76(12):3299~3312
    120 S. Vyazovkin. Thermal Analysis. Analytical Chemistry. 2002,74(12):2749~2762
    121 S. Vyazovkin. Thermal Analysis. Analytical Chemistry. 2008,80(12):4301~4316
    122 D. H. Yang, B. Y. Hur, D. P. He, S.R. Yang. Effect of Decomposition Properties of Titanium Hydride on the Foaming Process and Pore Structures of Al Alloy Melt Foam. Materials Science and Engineering A. 2007,445-446:415~426
    123 M. Ito, D. Setoyama, J. Matsunaga, H. Muta, K. Kurosaki, M. Uno, S. Yamanaka. Electrical and Thermal Properties of Titanium Hydrides. Journal of Alloys and Compounds. 2006,420(1-2):25~28
    124 D. Setoyama, J. Matsunaga, H. Muta, M. Uno, S. Yamanaka. Mechanical Properties of Titanium Hydride. Journal of Alloys and Compounds. 2004,381(1-2):215~220
    125 D. Yang, B. Hur. The Relationship between Thermal Decomposition Properties of Titanium Hydride and the Al Alloy Melt Foaming Process. Materials Letters. 2006,60(29-30):3635~3641
    126 D. Setoyama, J. Matsunaga, M. Ito, H. Muta, K. Kurosaki, M. Uno, S. Yamanaka. Thermal Properties of Titanium Hydrides. Journal of Nuclear Materials. 2005,344:298~300
    127 D. V. Schur, S. YU. Zaginaichenko, V. M. Adejev, V. B. Voitovich, A. A. Lyashenko, V. I. Trefilov. Phase Transformation in Titanium Hydrides. International Journal of Hydrogen Energy. 1996,21(11-12):1121~1124
    128 S. J. Gao, L. J. Huang. Hydrogen Absorption and Desorption by Ti, Ti-5Cr and Ti-5Ni Alloys. Journal of Alloys and Compounds. 1999,293-295:412~416
    129 Wei-E. Wang. Thermodynamic Evaluation of the Titanium-hydrogen System. Journal of Alloys and Compounds. 1996,238(1-2):6~12
    130 L. N. Padurets, Zh. V. Dobrokhotova, A. L. Shilov. Transformations in Titanium Dihydride Phase. International Journal of Hydrogen Energy. 1999,24(11-12):153~156
    131 J. L. Bobet, C. Even, J. M. Quenisset. On the Production of Ultra-fine Titanium Hydride Powder at Room Temperature. Journal of Alloys and Compounds. 2003,348(1-2):247~251
    132 H. Numakura, M. Koiwa. Hydride Precipitation in titanium. Acta Materialia. 1984,32(10):1799~1807
    133 V. Bhosle, E. G. Baburaj, M. Miranova, K. Salama. Dehydrogenation of Nanocrystalline TiH2 and Consequent Consolidation to Form Dense Ti. Metallurgical and Materials Transactions A. 2003,34:2793~2799
    134 H. Zhang, E. H. Kisi. Formation of Titanium hydride at Room Temperature by Ball Milling. Journal of Physics-condensed Matter. 1997,9:L185~190
    135 J. E. Garay, U. Anselmi-tamburini, Z. A. Munir. Enhanced Growth of Intermetallic Phases in the Ni-Ti Systerm by Current Effects. Acta Materialia. 2003,51:4487~4495
    136 Y. Wei, W. Aiping, Z. Guisheng, R. Jialie. Formation Process of the bonding joints in Ti/Al Diffuison Bonding. Materials Science and Engineering A. 2008,480(1):456~463
    137 S. Vyazovkin, N. Sbirrazzuoli. Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers. Macromolecular Rapid Communications. 2006,27(18):1515~1532
    138 S. Vyazovkin, C. A. Wight. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochimica Acta. 1999,340-341:53~68
    139 S. Vyazovkin, I. Dranca, X. Fan, R. Advincula. Degradation and Relaxation Kinetics of Polystyrene-Clay Nanocomposite Prepared by Surface Initiated Polymerization. Journal of Physical Chemistry B. 2004,108(31):11672~11679
    140 S. Vyazovkin, N. Sbirrazzuoli. Mechanism and Kinetics of Epoxy-Amine Cure Studied by Differential Scanning Calorimetry. Macromolecules. 1996,29(6):1867~1873
    141 A. Hill, E. R. Wallach. Modelling Solid-state Diffusion bonding. Acta Materialia. 1989,37(9):2425~2437

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700