用户名: 密码: 验证码:
随机、不确定非线性系统的若干控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从随机稳定性理论被建立和发展以来,随机非线性系统控制器设计和稳定性分析取得了丰富的理论成果.由于时滞现象广泛存在于许多的实际系统中,并且时滞的存在往往是导致系统性能恶化和不稳定的一个重要因素.因此,近些年来,随机非线性时滞系统的研究受到了广泛的关注.本文针对几类重要的随机、不确定非线性系统,研究了控制器设计和稳定性分析等问题.主要成果包括:
     1、针对一类具有随机逆动态的随机高阶非线性系统,研究了状态反馈控制问题.在子系统的逆动态是随机输入状态稳定(SISS)的假设下,通过推广增加幂次积分方法,选取合适的Lyapunov函数,并使用改变供能函数的思想,构造出一个光滑的状态反馈控制器使得闭环系统的平衡点在原点是依概率全局渐近稳定的,状态几乎处处调节到零点.
     2、本章首次研究了一类具有时变时滞的随机高阶非线性系统的输出反馈控制.通过在随机系统中引入增加幂次积分方法和标量变换,并且选取一个合适的Lyapunov-Krasoviskii泛函,构造出一个输出反馈控制器使得闭环系统是依概率全局渐近稳定的,输出几乎处处调节到零点.
     3、本章引入了齐次占优方法,解决了一类具有时变时滞的随机高阶非线性系统的状态反馈镇定问题.在漂移和扩散项的微弱条件下,通过使用齐次占优方法,并解决设计和分析过程中的一些障碍,构造出一个状态反馈控制器使得闭环系统是依概率全局渐近稳定的.
     4、本章进一步研究了具有时变时滞的随机高阶非线性系统的输出反馈镇定问题.在非线性漂移和扩散向量场的微弱条件下,通过使用齐次占优方法的思想,巧妙的选取一个合适的Lyapunov-Krasoviskii泛函,并成功的解决了设计和分析过程中的一些障碍,构造出一个输出反馈控制器使得闭环系统是依概率全局渐近稳定的.
     5、本章研究了一类具有时变时滞的随机前馈非线性系统.通过将齐次占优方法引入到随机系统中,构造出一个状态反馈控制器使得闭环系统是依概率全局渐近稳定的.
     6、本章通过使用MT滤波器和反推设计方法研究了一类具有动态输入、输出和非线性交互作用的关联系统的分散自适应输出反馈镇定问题.并且证明了基于MT滤波器的闭环分散系统是全局一致有界的,除了参数估计外的所有信号都渐近调节到零点,并且系统输出的L2和L∞范数可通过设计参数的函数来限定.
     7、本章通过使用MT滤波器和反推设计方法研究了一类具有未知输入和输出时滞的非线性系统的自适应输出反馈镇定问题.并且证明了闭环系统的所有信号都是全局一致有界的,输出调节到零点.
Ever since the stochastic stability theory is established and improved, the controllerdesign and stability analysis for stochastic nonlinear systems have achieved remarkable the-oretical results. Due to time-delay phenomena existing in many practical systems, and theexistence of time-delay being often a significant cause of instability and deteriorative per-formance, the study on stochastic nonlinear time-delay systems has received much attentionin recent years. This paper investigated problems of controller design and stability analysisfor several classes of important stochastic、uncertain nonlinear systems. The main contri-butions include:
     1. For a class of stochastic high-order nonlinear systems with stochastic inverse dynam-ics, this chapter investigates state-feedback control problem. Under the assumption thatthe inverse dynamics of the subsystem is stochastic input-to-state stable, by extending theadding a power integrator technique, choosing an appropriate Lyapunov function and usingthe idea of changing supply function, a smooth state-feedback controller is constructed toensure that the equilibrium at the origin of the closed-loop system is globally asymptoticallystable in probability and the states can be regulated to the origin almost surely.
     2. This chapter investigates output-feedback control for a class of stochastic high-ordernonlinear systems with time-varying delay for the first time. By introducing the adding apower integrator technique in the stochastic systems and a rescaling transformation, andchoosing an appropriate Lyapunov-Krasoviskii functional, an output-feedback controller isconstructed to render the closed-loop system globally asymptotically stable in probability,the output can be regulated to the origin almost surely.
     3. The homogeneous domination approach is introduced to solve the state feedback sta-bilization problem for a class of stochastic high-order nonlinear systems with time-varyingdelay. Under the weaker conditions on the drift and difusion terms, by using the homo-geneous domination approach and solving several troublesome obstacles in the design andanalysis procedure, a state feedback controller is constructed to render the closed-loop systemglobally asymptotically stable in probability.
     4. This chapter further discusses the output feedback stabilization problem for stochas-tic high-order nonlinear systems with time-varying delay. Under the weaker conditions onnonlinearities in drift and difusion vector fields, by using the idea of homogeneous dom- ination approach, skillfully choosing an appropriate Lyapunov-Krasoviskii functional, andsuccessfully solving several troublesome obstacles in the design and analysis procedure, anoutput feedback controller is constructed to render the closed-loop system globally asymp-totically stable in probability.
     5. This chapter investigates a class of stochastic feedforward nonlinear systems withtime-varying delay. By introducing the homogeneous domination approach to stochasticsystem, a state feedback controller is constructed to render the closed-loop system globallyasymptotically stable in probability.
     6. This paper studies the problem of decentralized adaptive output feedback stabiliza-tion for a class of interconnected systems with dynamic input and output interactions andnonlinear interactions by using MT-filters and the backstepping design method. It is shownthat the closed-loop decentralized system based on MT-filters is globally uniformly bounded,all the signals except for the parameter estimates can be regulated to zero asymptotically,and the L2and L∞norms of the system outputs are also be bounded by functions of designparameters.
     7. This chapter investigates the problem of adaptive output feedback stabilizationusing MT-filters and the backstepping design method for a class of nonlinear systems withunknown input and output time-delay. It is shown that all the signals in the closed-loopsystem are globally uniformly bounded, and the output can be regulated to zero.
引文
[1] X. Y. An, W. H. Zhang, Q. H. Li. Robust H∞filtering of stochastic time-delay systemswith state dependent noise[J]. Asian Journal of Control,2008,10:384-391.
    [2] M. Basin, E. Sanchez, R. Martinez-Zuniga. Optimal linear filtering for systems withmultiple state and observation delays[J]. International Journal of Innovative Computing,Information and Control,2007,3:1309-1320.
    [3] N. Bekiaris-Liberis, M. Krstic′. Delay-adaptive feedback for linear feedforward sys-tems[J]. Systems and Control Letters,2010,59:277-283.
    [4] E. K. Boukas, N. K. M sirdi. Stabilization of linear systems via delayed state feedbackcontroller[J]. ICIC Express Letters,2008,2:1-6.
    [5] E. K. Boukas, N. K. M sirdi. Stabilization of stochastic systems with partially knowntransition jumps rates[J]. International Journal of Innovative Computing, Informationand Control,2010,6:1199-1206.
    [6] R. W. Brockett. Volterra series and geometry control theory[J]. Automatica,1976,12:167-176.
    [7] Y. C. Chang. An adaptive H∞tracking control for a class of nonlinear multiple-input-multiple-output (MIMO)[J]. IEEE Transactions on Automatic Control,2001,46:1432-1437.
    [8] C. T. Chen. Linear System Theory and Design (3rd ed.)[M]. New York: Oxford Uni-versity Press,1999.
    [9] W. S. Chen, L. C. Jiao, J. Li, R. H. Li. Adaptive NN backstepping output-feedback con-trol for stochastic nonlinear strict-feedback systems with time-varying delays[J]. IEEETransactions on Systems, Man and Cybernetics-Part B: Cybernetics,2010,40:939-950.
    [10] W. S. Chen, J. Wu, L. C. Jiao. State-feedback stabilization for a class of stochastictime-delay nonlinear systems[J]. International Journal of Robust and Nonlinear Control,2012,22:1921-1937.
    [11] H. Deng, M. Krstic′. Stochastic nonlinear stabilization I: A backstepping design[J]. Sys-tems and Control Letters,1997,32:143-150.
    [12] H. Deng, M. Krstic′. Stochastic nonlinear stabilization II: Inverse optimality[J]. Systemsand Control Letters,1997,32:151-159.
    [13] H. Deng, M. Krstic′. Output-feedback stochastic nonlinear stabilization[J]. IEEE Trans-actions on Automatic Control,1999,44,328-333.
    [14] H. Deng, M. Krstic′. Output-feedback stabilization of stochastic nonlinear systems drivenby noise of unknown covariance[J]. Systems and Control Letters,2000,39:173-182.
    [15] H. Deng, M. Krstic′, R. J. Williams. Stabilization of stochastic nonlinear systems drivenby noise of unknown covariance[J]. IEEE Transactions on Automatic Control,2001,46:1237-1253.
    [16] S. H. Ding, C. J. Qian, S. H. Li. Global stabilization of a class of feedforward systemswith lower-order nonlinearities[J]. IEEE Transactions on Automatic Control,2010,55:691-696.
    [17] S. H. Ding, C. J. Qian, S. H. Li, Q. Li. Global stabilization of a class of upper-triangularsystems with unbounded or uncontrollable linearizations[J]. International Journal ofRobust and Nonlinear Control,2010,21:271-294.
    [18] N. Duan, X. J. Xie. Further results on output-feedback stabilization for a class ofstochastic nonlinear systems[J]. IEEE Transactions on Automatic Control,2011,56:1208-1213.
    [19] N. Duan, X. J. Xie, X. Yu. State feedback stabilization of stochastic nonlinear systemswith SiISS inverse dynamics[J]. International Journal of Robust and Nonlinear Control,2011,21:1903-1919.
    [20] N. Duan, X. Yu, X. J. Xie. Output feedback control using small-gain conditions forstochastic nonlinear with SiISS inverse dynamics[J]. International Journal of Control,2011,84:47-56.
    [21]冯纯伯,费树岷.非线性控制系统分析与设计[M].北京:电子工业出版社,1998.
    [22] J. E. Feng, S. Y. Xu. Output feedback stabilization for a class of stochastic nonlinearsystems with delays in input[J]. Asian Journal of Control,2010,12:110-115.
    [23] Y. S. Fu, Z. H. Tian, S. J. Shi. Output-feedback stabilization for a class of stochastictime-delay nonlinear systems[J]. IEEE Transactions on Automatic Control,2005,50:847-850.
    [24] R. A. Freeman. Stochastic Diferential Equations and Their Applications[M]. San Diego:Academic Press,1976.
    [25] R. A. Freeman, P. V. Kokotovic′. Robust Nonlinear Control Design[M]. Birkhauser,Boston,1995.
    [26] S. S. Ge, F. Hang, T. H. Lee. Adaptive neural network control of nonlinear systems withunknown time delays[J]. IEEE Transactions on Automatic Control,2003,48:2004-2010.
    [27] K. Q. Gu, V. L. Karitonov, J. Chen. Stability of Time-Delay Systems[M]. Boston:Birkhauser,2003.
    [28] R. Z. Has minskii. Stochastic Stability of Diferential Equations[M]. Norwell, Mas-sachusetts: Kluwer Academic Publishers,1980.
    [29] C. C. Hua, X. P. Guan, P. Shi. Robust backstepping control for a class of time delayedsystems[J]. IEEE Transactions on Automatic Control,2005,50:894-899.
    [30] C. C. Hua, X. P. Guan, P. Shi. Robust output feedback tracking control for time-delaynonlinear systems using neural network[J]. IEEE Transactions on Neural Networks,2007,18:495-505.
    [31] J. Huang. Nonlinear Output Regulation: Theory and Applications[M]. SIAM,2004.
    [32] P. A. Ioannou, J. Sun. Robust Adaptive Control[M]. New Jersey: Prentice-Hall,1996.
    [33] S. Jain, F. Khorrami. Decentralized adaptive output feedback design for large-scalenonlinear systems[J]. IEEE Transactions on Automatic Control,1997,42:729-735.
    [34] Z. P. Jiang. Decentralized and adaptive nonlinear tracking of large-scale systems viaoutput feedback[J]. IEEE Transactions on Automatic Control,2000,45:2122-2128.
    [35] Z. P. Jiang, I. Mareels. A small gain control method for nonlinear cascaded systems withdynamic uncertainties[J]. IEEE Transactions on Automatic Control,1997,42:292-308.
    [36] Z. P. Jiang, I. Mareels, Y. Wang. A Lyapunov formulation of the nonlinear small-gaintheorem for interconnected ISS systems[J]. Automatica,1996,32:1211-1215.
    [37] Z. P. Jiang, D. W. Repperger. New results in decentralized adaptive nonlinear stabi-lization using output feedback[J]. International Journal of Control,2001,74:659-673.
    [38] Z. P. Jiang, A. R. Teel, L. Praly. Small-gain theorem for ISS systems and application[J].Mathematics of Control, Signals and Systems,1994,7:95-120.
    [39] I. Kanellakopoulos, P. V. Kokotovic′, A. S. Morse. Adaptive feedback linearization ofnonlinear systems[J], Foundations of adaptive control, Berkub: Springer,1991,311-346.
    [40] H. K. Khalil. Nonlinear Systems (3rd ed.)[M]. Beijing: Publishing House of ElectronicsIndustry,2007.
    [41] P. V. Kokotovic′, M. Arcak. Constructive nonlinear control: a historical perspective[J].Automatica,2001,37:637-662.
    [42] M. Krstic′, H. Deng. Stabilization of Uncertain Nonlinear Systems[M]. Springer, NewYork,1998.
    [43] M. Krstic′, A. Smyshlyaev. Boundary Control of PDEs: A Course on BacksteppingDesigns[M]. Singapore: SIAM,2008.
    [44] M. Krstic′. Input delay compensation for forward complete and strict-feedforward non-linear systems[J]. IEEE Transactions on Automatic Control,2010,55:287-302.
    [45] M. Krstic′, I. Kanellakopoulos, P. V. Kokotovic′. Nonlinear and Adaptive Control De-sign[M]. New York: Wiley,1995.
    [46] H. J. Kushner. Stochastic Stability and Control[M]. San Diego: Academic Press,1967.
    [47] H. Lei, W. Lin. Robust control of uncertain systems with polynomial nonlinearity byoutput feedback[J]. International Journal of Robust and Nonlinear Control,2009,19:692-723.
    [48] W. Q. Li, X. J. Xie. Inverse optimal stabilization for stochastic nonlinear systems whoselinearizations are not stabilizable[J]. Automatica,2009,45:498-503.
    [49] W. Q. Li, Y. W. Jing, S. Y. Zhang. Output-feedback stabilization for stochastic nonlin-ear systems whose linearizations are not stabilizable[J]. Automatica,2010,46:752-760.
    [50] W. Q. Li, X. J. Xie, S. Y. Zhang. Output-feedback stabilization of stochastic high-ordernonlinear systems under weaker conditions[J]. SIAM Journal on Control and Optimiza-tion,2011,49:1262-1282.
    [51] W. Lin, http://nonlinear.case.edu/~linwei/,2012.
    [52] W. Lin, C. J. Qian. Adding one power integrator: a tool for global stabilization ofhigh-order lower-triangular systems[J]. Systems and Control Letters,2000,39:339-351.
    [53] W. Lin, C. J. Qian. Adaptive regulation of high-order lower-triangular systems: anadding a power integrator technique[J]. Systems and Control Letters,2000,39:353-364.
    [54] W. Lin, H. Lei. Taking advantage of homogeneity: a unified framework for outputfeedback control of nonlinear systems[C]. in Proceedings of the7th IFAC NOLCOS,2007,27-38.
    [55] L. Liu, N. Duan. State-feedback stabilization for stochastic high-order nonlinear systemswith a ratio of odd integers power[J]. Nonlinear Analysis: Modelling and Control,2010,15:39-53.
    [56] L. Liu, N. Duan, X. J. Xie. Output-feedback stabilization for stochastic high-ordernonlinear systems with a ratio of odd integers power[J]. Acta Automatica Sinica,2010,36:858-864.
    [57] L. Liu, X.J. Xie. Decentralized adaptive stabilization for interconnected systems withdynamic input-output and nonlinear interactions[J]. Automatica,2010,46:1060-1067.
    [58] L. Liu, X. J. Xie. Output-feedback stabilization for stochastic high-order nonlinearsystems with time-varying delay[J]. Automatica,2011,47:2772-2779.
    [59] L. Liu, X. J. Xie. State-feedback stabilization for stochastic high-order nonlinear systemswith SISS inverse dynamics[J]. Asian Journal of Control,2012,14:207-216.
    [60] S. J. Liu, S. Z. Ge, J. F. Zhang. Adaptive output-feedback control for a class of uncertainstochastic nonlinear systems with time delays[J]. International Journal of Control,2008,81:1210-1220.
    [61] S. J. Liu, Z. P. Jiang, J. F. Zhang. Global output-feedback stabilization for a class ofstochastic non-minimum-phase nonlinear systems[J]. Automatica,2008,44:1944-1957.
    [62] S. J. Liu, J. F. Zhang. Output-feedback control of a class of stochastic nonlinear sys-tems with linearly bounded unmeasurable states[J]. International Journal of Robust andNonlinear Control,2008,18:665-687.
    [63] S. J. Liu, J. F. Zhang, Z. P. Jiang. Decentralized adaptive output-feedback stabilizationfor large-scale stochastic nonlinear systems[J]. Automatica,2007,43:238-251.
    [64] S. J. Liu, J. F. Zhang, Z. P. Jiang. A notion of stochastic input-to-state stability and itsapplication to stability of cascaded stochastic nonlinear systems[J]. Acta MathematicaeApplicatae Sinica (English Series),2008,24:141-156.
    [65] Y. S. Liu, X. Y. Li. Decentralized robust adaptive control of nonlinear systems withunmodeled dynamics[J]. IEEE Transactions on Automatic Control,2002,47:848-853.
    [66] Y. G. Liu, Z. G. Pan, S. J. Shi. Output feedback control design for strict-feedbackstochastic nonlinear systems under a risk-sensitive cost[J]. IEEE Transactions on Auto-matic Control,2003,48:509-513.
    [67] Y. G. Liu, J. F. Zhang. Reduced-order observer-based control design for stochasticnonlinear systems[J]. Systems and Control Letters,2004,52:123-135.
    [68] Y. G. Liu, J. F. Zhang. Minimal-order observer and output-feedback stabilization controldesign of stochastic nonlinear systems[J]. Science in China (Ser.F),2004,47:527-544.
    [69] Y. G. Liu, J. F. Zhang. Practical output-feedback risk-sensitive control for stochasticnonlinear systems with stable zero-dynamics[J]. SIAM Journal on Control and Opti-mization,2006,45:885-926.
    [70] Y. G. Liu, J. F. Zhang, Z. G. Pan. Design of satisfaction output feedback controls forstochastic nonlinear systems under quadratic tracking risk-sensitive index[J]. Science inChina (Ser.F),2003,46:126-145.
    [71] C. Y. Lu, T. J. Su, J. S. H. Tsai. On robust stabilisation of uncertain stochastic time-delay systems an LMI-based approach[J]. Journal of the Franklin Institute,2005,342:473-487.
    [72] X. Y. Lu, S. K. Spurgeon. Robust sliding mode control of uncertain nonlinear systems[J].Systems and Control Letters,1997,32:75-90.
    [73] M. S. Mahmoud, Y. Shi, H. N. Nounou. Resilient observer-based control of uncertaintime-delay systems[J]. International Journal of Innovative Computing, Information andControl,2007,3:407-418.
    [74] X. R. Mao. Exponential Stability of Stochastic Diferential Equations[M]. New York:Dekker,1994.
    [75] X. R. Mao. Stochastic Diferential Equations and Their Applications (3rd ed.)[M].Chichester: Horwood Publishing,2007.
    [76] L. Marconi, A. Isidori. Robust global stabilization of a class of uncertain feedforwardnonlinear systems[J]. Systems and Control Letters,2000,41:281-289.
    [77] R. Marino, P. Tomei. Global adaptive observers for nonlinear systems via filtered trans-formations[J]. IEEE Transactions on Automatic Control,1992,37:1239-1245.
    [78] R. Marino, P. Tomei. Global adaptive output-feedback control of nonlinear systems,Part I: linear parametrization[J]. IEEE Transactions on Automatic Control,1993,38:17-32.
    [79] R. Marino, P. Tomei. Nonlinear Control Design-Geometric, Adaptive and Robust[M].London: Prentice-Hall,1995.
    [80] F. Mazenc. Stabilization of feedforward systems approximated by a nonlinear chain ofintegrators[J]. Systems and Control Letters,1997,32:223-229.
    [81] F. Mazenc, S. Bowong. Tracking trajectories of the cart-pendulum system[J]. Automat-ica,2003,39:677-684.
    [82] F. Mazenc, S. Mondie, R. Francisco. Global asymptotic stabilization of feedforwardsystems with delay in the input[J]. IEEE Transactions on Automatic Control,2004,49:844-850.
    [83] A. Mazurov, P. Pakshin. Stochastic dissipativity with risk-sensitive storage function andrelated control problems[J]. ICIC Express Letters,2009,3:53-60.
    [84] W. Michiels, S. I. Niculescu. Stability and Stabilization of Time-Delay Systems: AnEigenvalue-Based Approach[M]. Singapore: SIAM,2007.
    [85] S. I. Niculescu. Delay Efects on Stability[M]. New York: Springer,2001.
    [86] Z. G. Pan, T. Basar. Adaptive controller design for tracking and disturbance attenuationin parametric-feedback nonlinear systems[J]. IEEE Transactions on Automatic Control,1998,43:1066-1083.
    [87] Z. G. Pan, T. Basar. Backstepping controller design for nonlinear stochastic systemsunder a risk-sensitive cost criterion[J]. SIAM Journal on Control and Optimization,1999,37:957-995.
    [88] Z. G. Pan, K. Ezal, A. Krener, P. V. Kokotovic′. Backstepping design with local opti-mality matching. IEEE Transactions on Automatic Control,2001,46:1014-1027.
    [89] Z. G. Pan, Y. G. Liu, S. J. Shi. Output feedback stabilization for stochastic nonlin-ear systems in observer canonical form with stable zero-dynamics[J]. Science in China(Ser.F),2001,44:292-308.
    [90] Z. G. Pan, Y. G. Liu, S. J. Shi. Output feedback stabilization for stochastic nonlinearsystems in observer canonical form[J]. Science in China (Ser.E),2002,32:561-576.
    [91] J. Polendo, C. J. Qian. A generalized framework for global output feedback stabiliza-tion of genuinely nonlinear systems[C]. in Proceedings of the44th IEEE Conference onDecision and Control,2005,12:2646-2651.
    [92] C. J. Qian. Global Synthesis of Nonlinear Systems with Uncontrollable Linearization[M].Ph.D. Dissertation, Department of Electrical and Computer Science, Case WesternReserve University,2001.
    [93] C. J. Qian, J. Li. Global output feedback stabilization of upper-triangular nonlinearsystems using a homogeneous domination approach[J]. International Journal of Robustand Nonlinear Control,2006,16:441-463.
    [94] C. J. Qian, W. Lin. Non-Lipschitz continuous stabilizers for nonlinear systems withuncontrollable unstable linearization[J]. Systems and Control Letters,2001,42:185-200.
    [95] J. P. Richard. Time-delay systems: an overview of some recent advances and openproblems[J]. Automatica,2003,39:1667-1694.
    [96] R. Sepulchre, M. Jankovic′, P. V. Kokotovic′. Constructive Nonlinear Control[M].Springer: London,1997.
    [97] T. L. Shen, T. Katsutoshi. Globally robust stabilization of nonlinear systems havingrelative degree one via passivity theory[J]. Transaction of Society of Instrumentationand Control Engineers,1998,34:577-583.
    [98] L. Sheng, Y. J. Pan. Stochastic stabilization of sampled-data networked control sys-tems[J]. International Journal of Innovative Computing, Information and Control,2010,6:1949-1972.
    [99] E. D. Sontag. Smooth stabilization implies coprime factorization[J]. IEEE Transactionson Automatic Control,1989,34:435-443.
    [100] E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Sys-tems[M]. Springer-Verlag, New York,1998.
    [101] E. D. Sontag, A. R. Teel. Changing supply functions in input/state stable systems[J].IEEE Transactions on Automatic Control,1995,40:1476-1478.
    [102] E. D. Sontag, Y. Wang. On characterizations of the input-to-state stability property[J].Systems and Control Letters,1995,24:351-359.
    [103] E. D. Sontag, Y. Wang. New characterizations of the input-to-state stability prop-erty[J]. IEEE Transactions on Automatic Control,1996,41:1283-1294.
    [104] J. T. Spooner, M. Maggiore, R. Ordonez, K. M. Passino. Stable Adaptive Control andEstimation for Nonlinear Systems[M]. New York: John Wiley and Sons,2002.
    [105] C. Tang, T. Basar. Stochastic stability of singularly perturbed nonlinear systems[C].in Proceedings of the40th IEEE Conference on Decision and Control,2001,399-404.
    [106] A. Teel. Using saturation to stabilize a class of single-input partially linear compositesystems[C]. in Proceedings of the IFAC NOLCOS. Bordeaux, France.1992:379–384.
    [107] A. Teel. Feedback Stabilization: Nonlinear Solution to Inherently Nonlinear Prob-lems[M]. PH.D. Thesis, University of California, Berkeley,1992.
    [108] J. Tian, X. J. Xie. Adaptive state-feedback stabilization for high-order stochastic non-linear systems with uncertain control coefcients[J]. International Journal of Control,2007,80:1503-1516.
    [109] J. Tian, X. J. Xie. Adaptive state-feedback stabilization for high-order stochastic non-linear systems with time-varying control coefcients[J]. Acta Automatica Sinica,2008,34:1188-1191.
    [110] J. Tsinias. Stochastic ISS and applications to global feedback stabilization[J]. Interna-tional Journal of Control,1998,71:907-930.
    [111] Q. D. Wang, C. L. Wei, Y. Q. Wu. Adaptive control of stochastic nonlinear systemswith uncontrollable linearization[J]. International Journal of Adaptive Control and Sig-nal Processing,2009,23:667-678.
    [112] C. Y. Wen. Decentralized adaptive regulation[J]. IEEE Transactions on AutomaticControl,1994,39:2163-2166.
    [113] C. Y. Wen, Y. C. Soh. Decentralized adaptive control using integrator backstepping[J].Automatica,1997,33:1719-1724.
    [114] C. Y. Wen, Y. C. Soh, Y. Zhang. Adaptive control of linear systems with unknowntime delay[J]. In G. Tao and F. Lewis (Eds.), Adaptive Control of Nonsmooth DynamicSystems, Springer-Verlag, UK,2000.
    [115] C. Y. Wen, J. Zhou. Decentralized adaptive stabilization in the presence of unknownbacklash-like hysteresis[J]. Automatica,2007,43:426-440.
    [116] C. Y. Wen, J. Zhou, W. Wang. Decentralized adaptive backstepping stabilization ofinterconnected systems with dynamic input and output interactions[J]. Automatica,2009,45:55-67.
    [117] B. Widrow, E. Walach著,刘树棠,韩崇昭译.自适应逆控制[M].西安:西安交通大学出版社,2000.
    [118] Z. J. Wu, X. J. Xie, S. Y. Zhang. Stochastic adaptive backstepping controller designby introducing dynamic signal and changing supply function[J]. International Journalof Control,2006,79:1635-1646.
    [119] Z. J. Wu, X. J. Xie, S. Y. Zhang. Adaptive backstepping controller design using stochas-tic small-gain theorem[J]. Automatica,2007,43:608-620.
    [120] Z. J. Wu, X. J. Xie, P. Shi, Y. Q. Xia. Backstepping controller design for a class ofstochastic nonlinear systems with Markovian switching[J]. Automatica,2009,45:997-1004.
    [121]夏小华,高为炳.非线性系统控制及解耦[M].北京:科学出版社,1997.
    [122] X. J. Xie, N. Duan. Output tracking of high-order stochastic nonlinear systems withapplication to benchmark mechanical system[J]. IEEE Transactions on Automatic Con-trol,2010,55:1197-1202.
    [123] X. J. Xie, N. Duan, X. Yu. State-feedback control of high-order stochastic nonlinearsystems with SiISS inverse dynamics[J]. IEEE Transactions on Automatic Control,2011,56:1921-1926.
    [124] X. J. Xie, W. Q. Li. Output-feedback control of a class of high-order stochastic non-linear systems[J]. International Journal of Control,2009,82:1692-1705.
    [125] X. J. Xie, J. Tian. State-feedback stabilization for high-order stochastic nonlinear sys-tems with stochastic inverse dynamics[J]. International Journal of Robust and NonlinearControl,2007,17:1343-1362.
    [126] X. J. Xie, J. Tian. Adaptive state-feedback stabilization of high-order stochastic sys-tems with nonlinear parameterization[J]. Automatica,2009,45:126-133.
    [127] S. L. Xie, L. H. Xie. Stabilization of a class of uncertain large-scale stochastic systemswith time delays[J]. Automatica,2000,36:161-167.
    [128] S. Y. Xu, T. W. Chen. Robust H∞control for uncertain stochastic systems with statedelay[J]. IEEE Transactions on Automatic Control,2002,47:2089-2094.
    [129] B. Yang, W. Lin. Homogeneous observers, iterative design and global stabilizationof high order nonlinear systems by smooth output feedback[J]. IEEE Transactions onAutomatic Control,2004,49:1069-1080.
    [130] K. C. Yao, C. H. Hsu. Robust optimal stabilizing observer-based control design ofdecentralized stochastic singularly-perturbed computer controlled systems with multipletime-varying delays[J]. International Journal of Innovative Computing, Information andControl,2009,5:467-477.
    [131] X. D. Ye. Logic-based switching adaptive stabilization of feedforward nonlinear sys-tems[J]. IEEE Transactions on Automatic Control,1999,44:2174–2178.
    [132] X. D. Ye. Universal stabilization of feedforward nonlinear systems[J]. Automatica,2003,39:141-147.
    [133] X. D. Ye. Pseudo-decentralized adaptive stabilization of large-scale feedforward non-linear systems[J]. Automatica,2009,45:1232-1236.
    [134] X. D. Ye. Adaptive stabilization of time-delay feedforward nonlinear systems[J]. Au-tomatica,2011,47:950-955.
    [135] J. L. Yin, S. Y. Khoo, Z. H. Man, X. H. Yu. Finite-time stability and instability ofstochastic nonlinear systems[J]. Automatica,2011,47:2671-2677.
    [136] X. Yu, X. J. Xie. Output feedback regulation of stochastic nonlinear systems withstochastic iISS inverse dynamics[J]. IEEE Transactions on Automatic Control,2010,55:304-320.
    [137] X. Yu, X. J. Xie, N. Duan. Small-gain control method for stochastic nonlinear systemswith stochastic iISS inverse dynamics[J]. Automatica,2010,46:1790-1798.
    [138] X. Yu, X. J. Xie, Y. Q. Wu. Further results on output-feedback regulation of stochasticnonlinear systems with SiISS inverse dynamics[J]. International Journal of Control,2010,83:2140-2152.
    [139] X. Yu, X. J. Xie, Y. Q. Wu. Decentralized adaptive output-feedback control for stochas-tic interconnected systems with stochastic unmodeled dynamic interactions[J]. Interna-tional Journal of Adaptive Control and Signal Processing,2011,25:740-757.
    [140] D. Yue, Q. L. Han. Delay-dependent exponential stability of stochastic systems withtime-varying delay, nonlinearity, and Markovian switching[J]. IEEE Transactions onAutomatic Control,2005,50:217-222.
    [141] L. A. Zadeh. Fuzzy sets[J]. Information and Control,1965,8:338-353.
    [142] L. X. Zhang, E. Boukas, J. Lam. Analysis and synthesis of markov jump linear sys-tems with time-varying delays and partially known transition probabilities[J]. IEEETransactions on Automatic Control,2008,53:2458-2464.
    [143] X. F. Zhang, E. K. Boukas, Y. G. Liu, L. Baron. Asymptotic stabilization of high-orderfeedforward systems with delays in the input[J]. International Journal of Robust andNonlinear Control,2010,20:1395-1406.
    [144] X. F. Zhang, L. Baron, Q. R. Liu, E. K. Boukas. Design of stabilizing controllers witha dynamic gain for feedforward nonlinear time-delay systems[J]. IEEE Transactions onAutomatic Control,2011,56:692-697.
    [145] X. F. Zhang, H. Gao, C. J. Zhang. Global asymptotic stabilization of feedforwardnonlinear systems with a delay in the input[J]. International Journal of Systems Science,2006,37:141–148.
    [146] X. F. Zhang, Q. R. Liu, L. Baron, E. K. Boukas. Feedback stabilization for high orderfeedforward nonlinear time-delay systems[J]. Automatica,2011,47:962-967.
    [147] Y. Zhang, C. Y. Wen, Y. C. Soh. Robust decentralized adaptive stabilization of in-terconnected systems with guaranteed transient performance[J]. Automatica,2000,36:907-915.
    [148] Q. C. Zhong. Robust Control of Time-Delay Systems[M]. New York: Springer,2006.
    [149] J. Zhou, C. Y. Wen. Decentralized backstepping adaptive output tracking of inter-connected nonlinear systems[J]. IEEE Transactions on Automatic Control,2008,53:2378-2384.
    [150] J. Zhou, C. Y. Wen, W. Wang. Adaptive backstepping control of uncertain systemswith unknown input time-delay[J]. Automatica,2009,45:1415-1422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700