用户名: 密码: 验证码:
不确定非线性系统全局自适应跟踪控制分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了几类不确定非线性系统的全局自适应实际输出跟踪问题.主要利用增加幂次积分方法、反推方法和通用控制及死区思想与技巧,分别设计了两类具有未知控制方向高阶非线性系统的全局自适应状态反馈跟踪控制器和两类具有未知增长率不确定非线性系统的全局自适应输出反馈跟踪控制器.本文主要内容分为以下四个部分:
     一、控制方向未知高阶不确定非线性系统的全局实际跟踪控制设计
     本部分在较弱的条件下,研究了一类具有未知控制方向的高阶不确定非线性系统的全局实际跟踪问题.受近期跟踪结果和通用控制及死区思想的启发,通过采用Nussbaum增益方法和增加幂次积分法,并引入一个新颖的坐标变换、新的调节律和拟符号函数,去除了密切相关跟踪文献中控制方向要求已知的这一本质性假设,给出了一个连续自适应状态反馈跟踪控制器的解析解.该控制器确保跟踪误差经有限时间后收敛于设定的原点的任意小邻域,同时闭环系统的所有信号皆有界.
     二、更一般高阶不确定非线性系统的全局实际跟踪控制设计
     本部分研究了一类更一般高阶不确定非线性系统的全局实际跟踪控制设计问题.特别地,将未知控制系数由上一部分中的上下界均为常数扩展成可以取任意大和/或任意小值.通过Nussbaum增益方法和增加幂次积分法,引入新的调节律和一个相对简单的连续可微函数,提出了新的全局自适应状态反馈实际跟踪控制设计方案.所得结果表明,该控制器能够确保闭环系统的所有状态皆有界,且跟踪误差经一个有限时间后收敛于设定的原点的任意小邻域.
     三、增长率未知非线性系统全局输出反馈实际跟踪控制设计
     本部分研究了一类具有依赖于不可测状态的增长且增长率为未知常数的不确定非线性系统的全局输出反馈实际跟踪问题.受相关镇定结果的启发,通过灵活运用通用控制和死区的方法与技巧,并引入一个基于新的动态高增益的观测器,设计出了全局自适应输出反馈跟踪控制器.结合所提出的性能分析新模式,证明了所设计的控制器能够确保跟踪误差经有限时间后收敛于设定的原点的任意小邻域,同时闭环系统的所有信号皆有界.
     四、增长率和控制系数未知串联系统全局输出反馈实际跟踪控制设计
     本部分考虑了一类具有更多不确定性非线性系统的全局输出反馈实际跟踪问题.所研究系统同时具有零动态、增长依赖于不可测状态且增长率为未知常数、未知时变控制系数且上界为未知常数.这些特征使得所研究系统大不同于密切相关文献,进而导致该问题较难解决.通过灵活将通用控制及死区思想与反推技巧相结合,并引入一个不同的基于新的动态高增益的观测器,成功提出了一种全局自适应实际跟踪控制设计的新方案.采用第三部分中所提出的性能分析模式,验证了所设计的控制器保证了所得闭环系统的所有状态是全局有界的,且跟踪误差在一个有限时间后收敛于设定的原点的任意小邻域.
     以上四部分分别给出了相应的仿真算例,验证了所给出的全局自适应实际跟踪控制设计方案的有效性与可行性.
This dissertation investigates the problem of global adaptive practical out-put tracking for several classes of uncertain nonlinear systems. Mainly by the approaches of adding a power integrator and backstepping, and the ideas of uni-versal control and dead zone, global adaptive state-feedback tracking controllers and global adaptive output-feedback tracking controllers are designed respectively for two classes of high-order nonlinear systems with unknown control directions, and for two classes of uncertain nonlinear systems with unknown growth rate. The main contents of this dissertation are composed of the following four parts:
     (I) Global practical tracking control design for high-order uncertain nonlinear systems with unknown control directions
     This part addresses the global practical tracking problem for a class of high-order uncertain nonlinear systems with unknown control directions under fairly weak conditions. Motivated by the recent tracking works and the ideas of universal control and dead zone, by the approaches of Nussbaum-gain and adding a power integrator, and introducing a novel coordinate transformation, new updating laws, and pseudosign functions, the basic assumption that the control directions are required to be known in closely related tracking works is successfully removed, and a continuous adaptive state-feedback tracking controller is proposed. The designed controller is completely explicit, and guarantees that the tracking error becomes prescribed arbitrarily small after a finite time, and simultaneously all the closed-loop states are bounded.
     (II) Global practical tracking control design for a large class of high-order uncertain nonlinear systems
     This part addresses the global practical tracking problem for a more gen-eral class of high-order uncertain nonlinear systems, and particularly extends the unknown control coefficients with lower and upper constant bounds in the first part to the ones which may take arbitrarily large and/or small values. By the approaches of Nussbaum-gain and adding a power integrator, and introducing new updating laws, and a continuously differentiable function with a relatively simple structure, the new control design scheme of global adaptive state-feedback practical tracking is proposed. It is shown that the designed controller guarantees that all the closed-loop system states are bounded and the tracking error becomes prescribed arbitrarily small after a finite time.
     (Ⅲ) Global practical tracking by output-feedback for nonlinear sys-tems with unknown growth rate
     This part is devoted to the global practical tracking by output-feedback for a class of uncertain nonlinear systems which have unmeasured states dependent growth with unknown constant rate. Motivated by the related stabilization re-sults, flexibly using the ideas of universal control and dead zone, and introducing an observer with a new dynamic high-gain, a global adaptive output-feedback tracking controller is designed. Moreover, with the aid of the proposed new pat-tern of performance analysis, the designed controller can make the tracking error prescribed arbitrarily small after a finite time while keeping all the states of the closed-loop system bounded.
     (Ⅳ) Global practical tracking via output-feedback for cascade sys-tems with unknown growth rate and unknown control coefficients
     This part considers the global practical tracking problem by output-feedback for a class of uncertain cascade systems with more uncertainties. The systems in-vestigated are substantially different from the closely related work. The problem becomes much more difficult to solve due to the simultaneous existence of zero-dynamics, unmeasured states dependent growth with unknown constant rate, and unknown time-varying control coefficients with unknown constant bounds. By skillfully combining the methods of universal control and dead zone with backstep-ping technique, and introducing a distinct observer with a new dynamic high-gain, a new adaptive tracking control design scheme is successfully proposed. With the help of the pattern of performance analysis proposed in the third part, it is shown that the designed controller guarantees that all states of the resulting closed-loop system are globally bounded and the tracking error remains prescribed arbitrarily small after a finite time.
     The above four parts also give the corresponding simulation examples, re-spectively, to illustrate the correctness and effectiveness of the proposed control design schemes of global adaptive practical tracking.
引文
[1]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安,西安交通大学出版社,2001.
    [2]Logemann H, Hchmann A. An adaptive servomechanism for a class of infinite-dimensional systems[J]. SIAM Journal of Control and Optimization, 1994,32(4):917-936.
    [3]Pan Z G, Basar T. Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems [J]. IEEE Trans-actions on Automatic Control,1998,43(8):1066-1083.
    [4]Marino R, Tomei P. Nonlinear output feedback tracking with almost distur-bance decoupling[J]. IEEE Transactions on Automatic Control,1999,44(1): 18-28.
    [5]Jiang Z P. Decentralized and adaptive nonlinear tracking large-scale systems via output feedback[J]. IEEE Transactions on Automatic Control,2000, 45(11):2122-2128.
    [6]Lin W, Qian C J. Robust regulation of a chain of power integrators per-turbed by a lower-triangular vector field[J]. International Journal on Robust Nonlinear Control,2000,10(5):397-421.
    [7]Jiang Z P, Kanellakopoulos I. Global output-feedback tracking for a bench-mark nonlinear system[J]. IEEE Transactions on Automatic Control,2002, 45(5):1023-1027.
    [8]Krishnamurthy P, Khorrami F. Global adaptive output feedback tracking for nonlinear systems linear in unmeasured states[C]. In:Proceedings of the 2001 American Control Conference, Arlington, VA, USA,2001:4814-4819.
    [9]Krishnamurthy P, Khorrami F, Jiang Z P. Global output feedback track-ing for nonlinear systems in generalized output-feedback canonical form[J]. IEEE Transactions on Automatic Control,2002,47(5):814-819.
    [10]Ryan E P. A nonlinear universal servomechanism[J]. IEEE Transactions on Automatic Control,1994,39(4):753-761.
    [11]Ilchmann A, Ryan E P. Universal λ-tracking for nonlinearly-perturbed sys-tems in the presence of noise[J]. Automatica,1994,30(2):337-346.
    [12]Allgower F, Ashman J, Ilchmann A. High-gain adaptive A-tracking for non-linear systems[J]. Automatica,1997,33(5):881-888.
    [13]Ilchmann A. Adaptive λ-tracking for polynomial minimum phase systems [J]. Dynamics and Stability of Systems,1998,13(4):341-371.
    [14]Ilchmann A, Townley S. Adaptive high-gain λ-tracking with variable sam-pling rate[J]. Systems & Control Letters,1999,36(4):285-293.
    [15]Ilchmann A, Ryan E P, Sangwin, C J. Systems of controlled functional differential equations and adaptive tracking [J]. SIAM Journal of Control and Optimization,2002,40(6):1746-1764.
    [16]Celikovsky S, Huang J. Continuous feedback practical output regulation for a class of nonlinear systems having nonstabilizable linearization[C]. In: Proceeding of 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA,1999:4796-4801.
    [17]Ye X D, Ding Z T. Robust tracking control of uncertain nonlinear systems with unknown control directions[J]. Systems & Control Letters,2001,42(1): 1-10.
    [18]Qian C J, Lin W. Practical output tracking of nonlinear systems with ap-plications to underactuated mechanical systems[C]. In:Proceeding of 39th IEEE Conference on Decision and Control, Sydney, Australia,2000:2090-2095.
    [19]Qian C J, Lin W. Practical output tracking of nonlinear systems with uncon-trollable unstable linearization [J]. IEEE Transactions on Automatic Control, 2002,47(1):21-35.
    [20]Lin W, Pongvuthithum R. Adaptive output tracking of inherently nonlinear systems with nonlinear parameterization [J]. IEEE Transactions on Auto-matic Control 2003,48(10):1737-1749.
    [21]Sun Z Y, Liu Y G. Adaptive practical output tracking control for high-order nonlinear uncertain systems[J]. Acta Automatica Sinica,2008,34(8): 984-989.
    [22]Mareels I M Y. A simple selftuning controller for stably invertible systems[J]. Systems & Control Letters,1984,4(1):5-16.
    [23]Ye X D. Universal λ-tracking for nonlinearly-perturbed systems without restrictions on the relative degree [J]. Automatica,1999,35(1):109-119.
    [24]Bullinger E, Allgower F. Adaptive λ-tracking for nonlinear higher relative degree systems[J]. Automatica,2005,41(7):1191-1200.
    [25]Gong Q, Qian C J. Global practical tracking of a class of nonlinear systems by output feedback[J]. Automatica,2007,43(1):184-189.
    [26]尚芳,刘允刚,张承慧.一类不确定非线性系统自适应输出反馈跟踪控制的新结果[J].控制理论与应用,2010,27(6):721-730.
    [27]Zhai J Y, Fei S M. Global practical tracking control for a class of uncertain nonlinear systems [J]. IET Control Theory and Applications,2011,5(11): 1343-1351.
    [28]Miller D E, Davison E J. An adaptive controller which provides an arbi-trarily good transient and steady-state response[J]. IEEE Transactions on Automatic Control,1991,36(1):68-81.
    [29]Ilchmann A, Ryan E P, Sangwin C J. Tracking with prescribed transient behaviour [J]. ESAIM:Control, Optimization and Calculus of Variations, 2002,7:471-493.
    [30]Ilchmann A, Ryan E P, Townsend P. Tracking control with prescribed tran-sient behaviour for systems of known relative degree[J]. Systems & Control Letters,2006,55(5):396-406.
    [31]Ilchmann A, Ryan E P, Townsend P. Tracking with prescribed transient behavior for nonlinear systems of known relative degree [J]. SIAM Journal on Control and Optimization,2007,46(1):210-230.
    Tsien H S. Engineering Cybernetics[M]. New York, NY:McGraw-Hill,1954.
    [33]Banner A H, Drennick R F. An adaptive servo systems[J]. IRE convention record,1955,4:8-14.
    [34]Whitaker H P, Yamran J, Kezer A. Design of model reference adaptive con-trol systems for aircraft[R]. Technical Report, Instrumentation Laboratory, Massachusetts Institute of Technology, Boston, MA,1958.
    [35]Gregory P C. Proceeding of the self adaptive flight control systems sym-posium [R]. Technical Report, Wright Air Development Center, Wright-Patterson Air Force Base, USA,1959:49-59.
    [36]Miskin E, Braun L. Adaptive Control Systems[M]. New York, NY:McGraw-Hill,1961.
    [37]Kalman R E. Design of a self-optimising control system [J]. Transactions of the American Society of Mechanical Engineers,1958,80:468-478.
    [38]Parks P C. Liapunov redesign of model reference adaptive control systems [J]. IEEE Transactions on Automatic Control,1966,11(3):362-367.
    [39]Bellman R. Adaptive Control Processes:A Guided Tour[M]. Princeton, NJ: Princeton University Press,1961.
    [40]Feldbaum A A. Dual control theory I-IV[J]. Automation and Remote Con-trol,1960,21:874-880,1033-1039; 1961,22:1-12,109-121.
    [41]Astrom K J, Wittenmark B. On self-tuning regulators [J]. Automatica,1973, 9(2):185-199.
    [42]Ioannou P A, Sun J. Robust Adaptive Control[M]. Upper Saddle River, NJ: Prentice Hall,1996.
    [43]Monopoli R V. Model reference adaptive control with an augmented signed [J]. IEEE Transactions on Automatic Control,1974,19(5):474-484.
    [44]Landau Y D. Adaptive Control[M]. New York:Mareel Dekker,1979.
    [45]Ljung L. Convergence analysis of parametric identification methods[J]. IEEE Transactions on Automatic Control,1978,23(5):770-783.
    [46]Egardt B. Stability of Adaptive Controllers[M]. New York:Springer,1979.
    [47]Goodwin G, Ramadge P, Caines P. Discrete-time multivariable adaptive control[J]. IEEE Transactions on Automatic Control,1978,25(3):449-456.
    [48]Narendra K S, Annaswamy, A M. Robust adaptive control in the presence of bounded disturbances [J]. IEEE Transactions on Automatic Control,1986, 31(4):306-315.
    [49]Isidori A. Nonlinear Control Systems[M]. London:Springer Verlag,1995.
    [50]Slotine J J, Li W P. On the adaptive control of robot manipulators [J]. In-ternational Journal of Robotics Research,1987,6(3):49-59.
    [51]Middleton R H, Goodwin G C. Adaptive computed torque control for rigid link manipulators [J]. Systems and Control Letters,1988,10(1):9-16.
    [52]Slotine J J, Li W P. Adaptive manipulator control:a case study[J]. IEEE Transactions on Automatic Control,1988,33(11):995-1003.
    [53]Taylor D, Kokotovic P V, Marino R, Kanellakopoulos I. Adaptive regulation of nonlinear systems with unmodeled dynamics [J]. IEEE Transactions on Automatic Control,1989,34(4):405-412.
    [54]Marino M, Tomei P. Nonlinear Control Design:Gemetric, Adaptive and Robust[M]. London:Prentice Hall,1995.
    [55]Kanellakopoulos I, Kokotovic P V, Morse S. Systematic design of adaptive controllers for feedback linearizable systems [J]. IEEE Transactions on Au-tomatic Control,1991,36(11):1241-1253.
    [56]Jiang Z P, Praly L. Iterative designs of adaptive controllers for systems with nonlinear integrators[C]. In:Proceeding of 30th IEEE Conference on Decision and Control, Brighton, U.K.,1991:2482-2487.
    [57]Krstic M, Kanellakopoulos I, Kokotovic P V. Adaptive nonlinear control without overparameterization[J]. Systems & Control Letters,1992,19(3): 177-185.
    [58]Polyearpou M M, Ioannou P A. A robust adaptive nonlinear control de-sign[C]. In:Proceedings of the 1993 American Control Conference, San Francisco, USA,1993:1365-1369.
    [59]Jiang Z P, Pomet J B. Combining backstepping and time-varying techniques for a new set of adaptive controllers[C]. In:Proceedings of 33rd IEEE con-ference On Decision and Control, Lake Buena Vista, FL, USA,1994:2207-2212.
    [60]Jain S, Khorrami F. Decentralized adaptive control of a class of large-scaleinterconnected nonlinear systems[J]. IEEE Transactions on Automatic Control,1997,42(2):136-154.
    [61]Karagiannis D, Astolfi A. Nonlinear adaptive control of systems in feedback form:an alternative to adaptive backstepping [J]. Systems & Control Letters, 2008,57(9):733-739.
    [62]Kanellakopoulos I, Kokotovic P V, Middleton R H. Observer-based adaptive control of nonlinear systems under matching conditions[C]. In:Proceedings of the 1990 American Control Conference, San Diego, CA, USA,1990:549-552.
    [63]Marino R, Tomei P. Dynamic output-feedback linearization and global sta-bilization[J]. Systems & Control Letters,1991,17(2):115-121.
    [64]Marino R, Tomei P. Global adaptive out-feedback control of nonlinear sys-tems, Part II:nonlinear parameterization[J]. IEEE Transactions on Auto-matic Control,1993,38(1):33-49.
    [65]Kanellakopoulos I. Passive adaptive control of nonlinear systems [J]. Inter-national Journal of Adaptive Control and Signal Processing,1993,7(5): 339-352.
    [66]Krstic M, Kokotovic P V. Adaptive nonlinear output-feedback scheme with Marino-Tomei controller [J]. IEEE Transactions on Automatic Control,1996, 41(2):274-280.
    [67]Byrnes C I, Willems J C. Adaptive stabilization of multivariable linear sys-tems [C]. In:Proceeding of 23rd IEEE conforence Decision and Control, Las Vegas, NV, USA,1984:1574-1577.
    [68]Willems J C, Byrnes C I. Global adaptive stabilization in the absence of in-formation on the sign of the high frequency gain[J]. Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin,1984,62.
    [69]Lei H, Lin W. A universal control approach for a family of uncertain non-linear systems[C]. In:Prococeeding of 44th IEEE conforence Decision and Control and the European Control Conference, Seville, Spain,2005:802-807.
    [70]Lei H, Lin W. Universal adaptive control of nonlinear systems with unknown growth rate by output feedback [J]. Automatica,2006,42(10):1783-1789.
    [71]Lei H, Lin W. Using an adaptive reduced-order observer for output feedback stabilization of uncertain cascade systems[C]. In:Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA,2006:4016-4017.
    [72]Qian C J. A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems[C]. In:Proceeding of the 2005 American Control Conference, Portland, OR, USA,2005:8-10.
    [73]Qian C J, Li J. Global finite-time stabilization by output feedback for pla-nar systems without observable linearization [J]. IEEE Transactions on Au-tomatic Control,2005,50(6):885-890.
    [74]Lei H, Lin W. Robust control of uncertain systems with polynomial nonlin-earity by output feedback[J]. International Journal of Robust and Nonlinear Control,2009,19(6):692-723.
    [75]Qian C J, Li J. Global output feedback stabilization of upper-triangular non-linear systems using a homogeneous domination approach [J]. International Journal of Robust and Nonlinear Control,2006,16(9):441-463.
    [76]Qian C J, Li J. Global stabilization of a class of feedforward systems with lower-order nonlinearities[J]. IEEE Transactions on Automatic Con-trol,2010,55(3):691-696.
    [77]Qian C J, Lin W. Recursive observer design, homogeneous approximation, and nonlinear output feedback stabilization of nonlinear systems[J]. IEEE Transactions on Automatic Control,2006,51(9):1457-1471.
    [78]Polendo J, Qian C J. A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback[J], International Journal of Robust and Nonlinear Control,2007,17(7):605-629.
    [79]Ding S H, Qian C J, Li S H, Li Q. Global stabilization of an upper-triangular systems with unbounded or uncontrollable linearizations[J]. International Journal of Robust and Nonlinear Control,2011,21(3):271-294.
    [80]Qian C J, Schrader C B, Lin W. Global regulation of a class of uncertain nonlinear systems using output feedback[C]. In:Proceedings of the 2003 American Control Conference, Denver, CO, USA,2003:1542-1547.
    [81]Shang F, Liu Y G, Zhang C H. Adaptive output feedback control for a class of planar nonlinear systems[J]. Asian Journal of Control,2009,11(5): 578-586.
    [82]Shang F, Liu Y G. Adaptive output-feedback stabilization for a class of uncertain nonlinear systems[J]. Acta Automatica Sinica,2010,36(1):92-100.
    [83]Qian C J, Lin W. Smooth output feedback stabilization of planar systems without controllable/observable linearization [J]. IEEE Transactions on Au-tomatic Control,2002,47(12):2068-2073.
    [84]Qian C J, Lin W. Nonsmooth output feedback stabilization of a class of gen-uinely nonlinear systems in the plane [J]. IEEE Transactions on Automatic Control,2003,48(10):1824-1829.
    [85]Yang B, Lin W. Homogeneous observers, iterative design, and global stabi-lization of high-order nonlinear systems by smooth output feedback[J]. IEEE Transactions on Automatic Control,2004,49(7):1069-1080.
    [86]Yang B, Lin W. Robust output feedback stabilization of uncertain nonlinear systems with uncontrollable and unobservable linearization [J]. IEEE Trans-actions on Automatic Control,2005,50(5):619-630.
    [87]孙宗耀,刘允刚.一类2维不确定非线性系统自适应输出反馈镇定[J].山东大学学报(工学版),2007,37(5):34-39.
    [88]Lin W, Qian C J. Adding one power integrator:a tool for global stabilization of high-order lower-triangular systems[J]. Systems & Control Letters,2000, 39(5):339-351.
    [89]Lin W, Qian C J. Adaptive regulation of high-order lower-triangular systems: an adding a power integrator technique[J]. Systems & Control Letters,2000, 39(5):353-364.
    [90]Qian C J, Lin W. A continuous feedback approach to global strong stabi-lization of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2001,46(7):1061-1079.
    [91]Lin W, Qian C J. Adaptive control of nonlinear parameterized systems: the nonsmooth feedback framework [J]. IEEE Transactions on Automatic Control,2002,47(5):757-774.
    [92]Lin W, Qian C J. Adaptive control of nonlinear parameterized systems:the smooth feedback case[J]. IEEE Transactions on Automatic Control,2002, 47(8):1249-1266.
    [93]Qian C J, Lin W, Dayawansa W P. Smooth feedback, global stabilization and disturbance attenuation of nonlinear systems with uncontrollable lineariza-tion[J]. SIAM Journal of Control and Optimization,2002,40(1):191-210.
    [94]Sun Z Y, Liu Y G. Adaptive state-feedback stabilization for a class of high-order nonlinear uncertain systems [J]. Automatica,2007,43(10):1772-1783.
    [95]Sun Z Y, Liu Y G. Adaptive stabilization for a large class of high-order uncertain nonlinear systems [J]. International Journal of Control,2009,82(7): 1275-1287.
    [96]魏春玲,王强德,武玉强.控制方向未知的高次非线性系统的鲁棒自适应控制[J].控制理论与应用,2007,24(4):519524.
    [97]Wei C L, Wu Y Q, Wang Q D. Partial-state feedback control of high-order cascade systems with unknown control direction[J]. International Journal of Control,2008,81(6):931-939.
    [98]Nussbaum R D. Some remark on the conjecture in parameter adaptive con-trol[J]. Systems & Control Letters,1983,3(4):243-246.
    Ye X D. Asymptotic regulation of time-varying uncertain nonlinear systems with unknown control directions[J]. Automatica,1999,35(5):929-935.
    [100]Zhang Y, Wen C Y, Soh Y C. Adaptive backstepping control design for systems with unknown high-frequency gain[J]. IEEE Transactions on Auto-matic Control,2000,45(12):2350-2354.
    [101]Ding Z T. Adaptive control of nonlinear systems with unknown virtual con-trol coefficients[J]. International Journal of Adaptive Control and Signal Process,2000,14(4):505-517.
    [102]Ye X D. Adaptive nonlinear output-feedback control with unknown high-frequency gain sign[J]. IEEE Transactions on Automatic Control,2001, 46(1):112-115.
    [103]Jiang Z P, Hill D J, Huang J. A unifying framework for global regulation via nonlinear output feedback:from ISS to iISS[J]. IEEE Transactions on Automatic Control,2004,49(4):549-562.
    [104]Liu Y G. Output-feedback adaptive control for a class of nonlinear systems with unknown control directions[J]. Acta Automatica Sinica,2007,33(12): 1306-1312.
    [105]Huang X Q. Finite-time stabilization and detection of nonlinear systems[D]. Ph. D. thesis, Case Western Reserve University,2002.
    [106]Brockett R W. Asymptotic stability and feedback stabilization[M].In Dif-ferential Geometric Control Theory, R. W. Brockett, R. S. Millman, and H. J. Sussmann, Eds., pp.181-191, Boston, MA:Birkauser,1983.
    [107]Krstic M., Kanellakopoulos I., and Kokotovic P. V., Nonlinear design of adaptive controllers for linear systems [J]. IEEE Transactions on Automatic Control,1994,39(4):738-752.
    [108]Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Con-trol Design[M]. New York:Wiley,1995.
    [109]魏春玲.具有高次非线性及不确定性系统的自适应控制[D].东南大学博士论文.2007.
    [110]孙宗耀.高阶不确定非线性系统的控制设计和性能分析[D].山东大学博士论文,2009.
    [111]Lei H. Universal output feedback control of nonlinear systems[D]. Ph. D. thesis, Case Western Reserve University,2008.
    [112]Ilchmann A. Non-Identifier-Based High-Gain Adaptive Control[M]. New York:Springer-Verlag,1984.
    [113]Ye X D, Jiang J P. Adaptive nonlinear design without a priori knowledge of control directions [J]. IEEE Transactions on Automatic Control,1998, 43(11):1617-1621.
    [114]Liu L, Huang J. Global robust output regulation of lower triangular systems with unknown control direction[J]. Automatica,2008,44(5):1278-1284.
    [115]叶旭东,陈彭年.具有未知控制方向非线性系统的全局自适应控制非过度参数化方案[J].中国计量学院学报,2005,16(1):2426,41.
    [116]Zhang J F, Liu Y G. Sub-optimal tracking control of uncertain systems [J]. Technical note, Institute of Systems Science, Chinese Academy of Sciences, Beijing, China, November,2001.
    [117]Meurer T, Kugi A. Tracking control for boundary controlled parabolic PDEs with varying parameters:combining backstepping and differential flatness[J]. Automatica,2009,45(5):1182-1194.
    [118]Polycarpou M M, Ioannou P A. A robust adaptive nonlinear control de-sign[J]. Automatica,1996,32(3):423-427.
    [119]Khalil H K. Nonlinear Systems(third edition)[M]. Englewood Cliffs, NJ: Prentice Hall,2002.
    [120]闵颖颖,刘允刚Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(1):51-55.
    [121]Slotine J J E, Li W P. Applied Nonlinear Control[M]. New Jersey:Prentice Hall,1991.
    [122]Mitrinovic D S. Analytic Inequalities[M]. New York:Springer,1970.
    [123]Hale J K. Ordinary Differential Equations (second edition) [M]. Huntington, New York:Krieger,1980.
    [124]Yan X H, Liu Y G. Global practical tracking for high-order uncertain non-linear systems with unknown control directions [J]. SIAM Journal on Control and Optimization,2010,48(7):4453-4473.
    [125]Praly L, Jiang Z P. Linear output feedback with dynamic high gain for nonlinear systems [J]. Systems & Control Letters,2004,53(2):107-116.
    [126]Yan X H, Liu Y G. Global practical tracking by output-feedback for non-linear systems with unknown growth rate[J]. Sciences in China, Series F: Information Sciences,2011,54(10):2079-2090.
    [127]Yan X H, Liu Y G. Global output-feedback asymptotic stabilization for a class of uncertain nonlinear systems with unknown growth rate[C]. In: Proceedings of the 30th Chinese Control Conference, Yantai, China,2011: 6656-6661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700