用户名: 密码: 验证码:
岩土构筑物抗震动力特性及地震动土压力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以无砟轨道单线铁路路堤为原型,设计和完成了4种压实度和2种加筋形式路堤结构的大型振动台模型试验,并建立了路堤数值模型,完成了振动台试验主要工况的模拟;开展了加筋格宾挡墙、绿色加筋格宾挡墙、柔性网面土工格栅挡墙等新型加筋土结构的力学特性和抗震动力特性的一系列室内试验研究;采用水平层分析法对现行抗震规范中用于地震动土压力计算的Mononobe-Okabe公式进行了拓展和补充。主要研究工作如下:
     (1)完成了4种压实度(95%、93%、90%和87%)和2种加筋形式(加筋2层和加筋4层)路堤结构的振动台模型试验设计。根据相似原理,推导了路堤振动台试验相似关系,确定了模型试验的模拟材料,开展了填料的大型三轴试验及其他常规土工试验,得到了填料的主要物理力学性能指标。
     (2)以95%压实度路堤振动台试验成果为例,分析了路堤动力特性参数变化规律及其影响因素。研究了不同地震波和不同地震动强度激励下的路堤水平加速度响应、垂直加速度响应、动土压力响应、动位移响应等内容,并分析了地震动类型、地震动强度、多向输入、时间压缩比等因素对水平和垂直加速度放大倍数的影响。同时结合路堤动力特性试验结果,从时域和频域的角度分析了地震波在路堤中的传播特性。测试了震陷变形和侧向残余变形,得出了震陷变形和侧向残余变形的分布特点。并通过FLAC3D建立了振动台试验的数值模型,模拟了振动台试验主要加载工况,数值模拟结果可作为试验结果的补充和验证。
     (3)完成了压实度为95%、91%、87%和83%以及加筋2层和加筋4层路堤的振动台模型试验。得到了不同压实度和不同加筋形式路堤动力特性参数,分析了路堤动力特性的变化规律及其影响因素。对比和分析了不同压实度和不同加筋形式路堤水平和垂直加速度放大倍数分布的差异性及其影响因素、动土压力响应特性、动位移响应特性,以及路堤震陷变形和侧向残余变形的分布特点,并研究了压实度、加筋形式等因素对残余变形的影响。通过FLAC3D建立了不同压实度和不同加筋形式路堤的数值模型,模拟了振动台试验主要加载工况,并将数值模拟结果同试验结果进行了对比分析。
     (4)通过拉伸试验研究和对比了不同加筋土筋材的拉伸力学特性。以红砂岩为填料,开展了格宾网和土工格栅的界面摩擦特性拉拔试验研究。通过在挡墙顶部施加不同荷载水平的循环加卸载,研究了加筋格宾挡墙、绿色加筋格宾挡墙、柔性网面土工格栅挡墙等3种新型加筋土结构的承载力特性。通过施加不同幅值和频率的动力荷载,研究了这3种新型加筋土结构的动变形特性。通过施加不同类型和不同强度的水平地震动激励,研究了这3种新型加筋土结构的抗震动力特性。研究表明,新型加筋土结构有优良的构造措施,且为柔性结构,当遭遇强烈地震时能消耗大量地震能量,具备良好的变形特性。
     (5)基于Mononobe-Okabe的破裂面假设,采用水平层分析法推导了地震作用下主动和被动土压力合力及其作用点位置、土压力强度分布情况的解析解,采用图解法得到了主动和被动土压力临界破裂角的显式解答。提出了求解主动土压力裂缝深度的迭代计算方法。推导的主动和被动土压力公式考虑了水平地震系数、垂直地震系数、墙背倾角、填料粘聚力和内摩擦角、填料与墙背的粘结力和外摩擦角、均布超载等诸多因素的影响,并对这些影响因素作了参数分析。通过与已有的主动和被动土压力公式比较表明,在相应的简化条件下,动土压力公式与已有土压力公式是完全一致的;并结合算例,证实了公式的可靠性和有效性。
     (6)根据所推导的地震条件下主动和被动土压力公式,基于Visual Basic 6.0开发了地震动土压力计算程序。
Based on the prototype of single-line unballasted track railway embankment, shaking table model tests of 4 types of compaction embankments and 2 patterns of reinforced embankments were designed and carried out. Numerical models of embankments were established and the main shaking table test conditions were simulated. A series of laboratory tests on mechanical properties and seismic behaviors of new patterns of reinforced earth structures including reinforced gabion retaining wall, green reinforced gabion retaining wall, and geogrid reinforced earth retaining wall of flexible wall face were widely carried out. Horizontal slices analysis method was adopted to deduce seismic earth pressure formulas to compensate the shortcomings of Mononobe-Okabe formula which was widely used in current seismic codes. The main researches can be concluded as follows:
     (1) Shaking table model tests of embankments with compactions of 95%,93%,90% and 87%, and reinforced embankments with 2-layer or 4-layer reinforcements were designed. According to similarity theory, the similarity relations of main physical quantities for shaking table model tests were deduced, and simulation materials were selected. Large-scale triaxial tests and other routine soil tests were carried out and the main physical and mechanical properties of filler were obtained.
     (2) Taking the shaking table test results of embankment with compaction of 95% as example, dynamic characteristics of embankment and their influencing factors were analyzed. The behaviors of horizontal acceleration response, vertical acceleration response, seismic earth pressure response, and dynamic displacement response under different intense excitations of different seismic waves were studied. The factors which influenced horizontal and vertical acceleration magnification were analyzed including the types of seismic waves, the intensity of excitation, multi-directional input, time compression ratio, etc. Combined with the dynamic characteristics of embankment, seismic wave propagation characteristics were studied by time domain analysis and frequency domain analysis. Seismic settlement and lateral residual deformation of embankment were measured, and the distributions of residual deformation were obtained. Numerical model was established by FLAC3D based on shaking table test model, and the major loading conditions of shaking table test were simulated. Numerical simulation results could be taken as a supplement or verification for shaking table test.
     (3) Shaking table model tests of embankments with compactions of 95%,93%,90% and 87%, and reinforced embankments with 2-layer or 4-layer reinforcements were carried out. Dynamic parameters of different types of compaction embankments and different patterns of reinforced embankments were obtained, and the dynamic characteristics and their influencing factors were analyzed and compared. The differences of horizontal and vertical acceleration magnification distribution among different types of compaction embankments and different patterns of reinforced embankments were analyzed. The behaviors of the dynamic earth pressure response, dynamic displacement response, seismic settlement and lateral residual deformation of different types of compaction embankments and different patterns of reinforced embankments were compared. And the influencing factors such as the compaction of filler, the reinforced forms of embankments were analyzed. Meanwhile, numerical models were established by FLAC3D based on shaking table test models of different types compaction embankments and different patterns of reinforced embankments, and the major loading conditions of shaking table test were simulated. Numerical simulation results were compared with shaking table model test results.
     (4) Tensile mechanical properties of different reinforcements were studied and compared according to the tensile tests. With red sandstone as filler, pull out tests of gabion meshes and geogrid were carried out. By applying cyclic loading and unloading of different magnitudes at the top of retaining wall, bearing capacity behaviors of reinforced gabion retaining wall, green reinforced gabion retaining wall and geogrid reinforced earth retaining wall of flexible wall face were studied. By applying dynamic load of different amplitudes and frequencies, dynamic deformation behaviors of these three new patterns of reinforced earth structures were studied. By applying different intense horizontal excitations of different seismic waves, the seismic behaviors of new patterns of reinforced earth structures were studied. Test results showed that the new patterns of reinforced earth structures, as flexible structures with excellent structural measures, could consume lots of seismic energy and presented good deformation behaviors even under strong seismic excitations.
     (5) Based on planar rupture surface assumption of Mononobe-Okabe theory, horizontal slices analysis method was adopted to deduce analytical formulas of resultant force of active and passive earth pressure, application position of resultant force and distribution of seismic earth pressure. The explicit solutions of critical rupture angles both for active and passive earth pressure were obtained by graphic method. And iterative method for crack depth calculation of active earth pressure was proposed. The influencing factors were considered in formulas such as horizontal and vertical seismic acceleration, batter angle of wall back, cohesion and internal friction of filler, cohesive force and external friction angle between filler and the back of retaining wall, equispaced overloading, etc. And parameters analysis was made on these factors. It was shown that the formulas were the same as the existing active and passive earth pressure formulas under corresponding simplified assumptions. The formulas were also proved reliable and valid by examples.
     (6) According to the active and passive earth pressure formulas under seismic condition deduced by horizontal sliced analysis method, calculation program was designed by Visual Basic 6.0.
引文
[1]袁艺,王理,白海玲.中国的地震灾害及其区域分异[J].自然灾害学报,2001,10(1):59-64.
    [2]马宗晋,赵阿兴.中国的地震灾害概况和减灾对策建议[J].中国地震,1991,7(1):89-94.
    [3]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [4]交通部公路规划设计院.JTJ004-89.公路工程抗震设计规范[S].北京:人民交通出版社,1989.
    [5]中华人民共和国铁道部.GB50111-2006.铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [6]中华人民共和国建设部.GB50011-2001.建筑抗震设计规范[S].北京:中国建筑工业出版社,2002.
    [7]中华人民共和国冶金工业部.GB50191-93.构筑物抗震设计规范[S].北京:中国计划出版社,1994.
    [8]中国水利水电科学研究院.SL203-97.水工建筑物抗震设计规范[S].北京:中国水利水电出版社,1997.
    [9]国家经济贸易委员会.DL5073-2000.水工建筑物抗震设计规范[S].北京:中国电力出版社,2001.
    [10]中华人民共和国铁道部.GBJ111-87.铁路工程抗震设计规范[S].北京:国家计划委员会,1987.
    [11]国家质量监督检验检疫总局.GB18306-2001.中国地震动参数区划图[S].北京:中国标准出版社,2001.
    [11]吴世明.土动力学[M].北京:中国建筑工业出版社,2000.
    [12]刘汉龙.土动力学与岩土地震工程[A].中国土木工程学会第九届土力学及岩土工程学术会议论文集[C].北京:清华大学出版社,2003,56-68.
    [13]Mononobe N, Takata A, Matumura M. Seismic stability of earth dam[A] //Proceeding of the 2nd Congress of Large Dams[C]. Washington D C, USA, 1936.
    [14]Gazetas G. Seismic response of earth dams:Some recent developments[J]. Soil Dynamics and Earthquake Engineering,1987,6(1):2-47.
    [15]Gazetas G, Dakoulas P. Seismic analysis and design of rockfill dams:State of the art[J]. Soil Dynamics and Earthquake Engineering,1992,11(1):27-61.
    [16]陈国兴,谢君斐,张克绪.土坝震害和抗震分析评述[J].世界地震工程,1994,10(3):849~867.
    [17]Westergaard H M. Earthquake-shock transmission in tall buildings[J]. Engineering News Record,1933,111:654-656.
    [18]Jaeobsen L S. Vibration transfer from shear buildings to ground[J]. Journal of the Engineering Mechanical Division, ASCE,1964,90(EM3):21-38.
    [19]Ambraseys N N. A note on the response of an elastic overburden of varying rigidity to an arbitrary ground motion[J]. Bull. Seism. Soe. Am.1959,49(3): 211-220.
    [20]Idriss I M, Seed H B. Seismic response of horizontal soil layers[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE,1968,94(4): 1003-1031.
    [21]Gazetas G. A new dynamic model for earth dams evaluated through case histories[J]. Soils and Foundations,1981,21(1):67-78.
    [22]Dakoulas P, Gazetas G. A class of inhomogeneous shear models for seismic response of dams and embankments [J]. Soil Dynamic and Earthquake Engineering,1985,4(4):166-182.
    [23]Oner M. Shear vibration of inhomogeneous earth dams in rectangular canyons[J]. Soil Dynamic and Earthquake Engineering,1984,3(1):19-26.
    [24]熊建国,许贻燕.分层土自振特性分析[J].地震工程与工程振动,1986,6(4):21-35.
    [25]栾茂田,林皋.场地地震反应一维非线性计算模型[J].工程力学,1992,9(1):94-103.
    [26]栾茂田,林皋.场地地震反应非线性分析的有效时域算法[J].大连理工大学学报,1994,34(2):228-234.
    [27]楼梦麟.变参数土层的动力特性和地震反应分析[J].统计大学学报,1997,25(2):155~160.
    [28]Gazetas G. Vertical oscillation of earth and rock-fill dams:analysis and field observation[J]. Soils and Foundations,1981,21(4):56-68.
    [29]Gazetas G. Longitudinal vibrations of embankment dams[J]. Journal of the Geotechnical Engineering Division, ASCE,1981,107(1):21-40.
    [30]Dkaoulas P. Gazetas G. Seismic shear vibration of embankment dams in semi-cylindrical valleys[J]. Earthquake Engineering and Structural Dynamics, 1986,14(1):19-40.
    [31]栾茂田,金崇磐,林皋.非均质堤坝振动特性简化分析[J].大连理工大学学报,1998,29(4):479-488.
    [32]栾茂田,金崇磐,林皋.非均质土石坝及地基竖向地震反应简化分析[J].水力发电学报,1990,9(1):48-62.
    [33]孔宪京,韩国城,张天明.土石坝与地基地震反应分析的波动一剪切梁法[J].大连理工大学学报,1994,34(2):173-179.
    [34]Elgmal A W M, Abdel-Ghaffar AM, Prevost J H. Elasto-Plastic earthquake shear response of one-dimensional earth dam models [J]. Earthquake Engineering and Structural Dynamics,1985,13(5):617-633.
    [35]Prevost J H, Abdel-Ghaffar A M, Elgmal A W M. Nonlinear hysteretic dynamic response of soil systems[J]. Journal of Engineering Mechanics, ASCE,1985, 111(5):696-713.
    [36]Elgmal A W M, Abdel-Ghaffar A M, Prevost J H.2D elasto-plastic seismic shear response of earth dams:theory[J]. Journal of Engineering Mechanics, ASCE, 1987,113(5):689-701.
    [37]Yiagos A N, Pervost J H. Two-phase elasto-plastic seismic response of earth dams:theory[J]. Soil Dynamics and Earthquake Engineering,1991,10(7): 357-370.
    [38]周克森.一维土层非线性地震反应分析的δ—θ法[J].地震工程与工程振动,1996,16(4):1-13.
    [39]Gazetas G, Debchaudhury A, Gasparini D A. Random vibration analysis for the seismic response of earth dams[J]. Geotechnique,1981,31(2):261-277.
    [40]徐志英.估计土坝地震反应的有效应力简化方法[J].地震工程与工程振动,1983,3(4):93-101.
    [41]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,2006.
    [42]Seed H B, Idriss I M. Influence of soils conditions on ground motion during earthquakes [J]. Journal of Soil Mechanics and Foundations Division, ASCE, 1969,95(SM1):99-173.
    [43]Martin P P, Seed H B. Simplified procedure for the dynamic effective stress analysis of ground response [J]. Journal of Soil Mechanics and Foundations Division, ASCE,1979,105(GT5):423-438.
    [44]Finn W D L, Lee K W, Martin G R. Seismic response and liquefaction of sands[J]. Journal of the Geotechnical Engineering Division, ASCE,1976, 102(GTS):841-856.
    [45]Finn W D L, Lee K W, Martin G R. An effective stress model for liquefaction[J]. Journal of the Geotechnical Engineering Division, ASCE,1977,103(GT6): 517-533.
    [46]刘曾武,等.场地土层的周期特性.中科院工程力学研究所地震工程研究报告集(4),北京:科学出版社,1981.
    [47]邓亚虹.层状自由场地固有频率的求解方法、特性及应用研究[D].杭州:浙江大学博士学位论文,2007,4-13.
    [48]邓亚虹,夏唐代,彭建兵,等.水平层状场地自振频率的剪切质点系法研究[J].岩土力学,2009,30(8):2489-2494,2500.
    [49]Clough R W, Chopra A K. Earthquake stress analysis in earth dams[J]. Journal of the Engineering Mechanics Division, ASCE,1966,92(2):197-212.
    [50]李湛.土石坝地震永久变形及抗震稳定性数值分析方法研究[D].大连理工大学博士学位论文,2005:1-15.
    [51]沈珠江.一个计算砂土液化变形的等价粘弹性模式[A].中国土木工程学会第四届土力学及基础工程学术会议论文选集[C].北京:中国建筑工业出版社,1986,199-207.
    [52]侯文峻,张建民,张嘎.采用挤压式边墙结构的面板堆石坝的动力反应分析[J].水力发电学报,2008,27(2):50-54,109.
    [53]王赞,张波.下板地堆石坝深覆盖层沥青混凝土防渗心墙应力应变分析[J].大坝与安全,2008,6:44-47.
    [54]刘小生,王钟宁,赵剑明,等.面板堆石坝振动模型试验及动力分析研究[J].水利学报,2002,33(2):29-35.
    [55]赵剑明,汪闻韶,常亚屏,等.高面板坝三维真非线性地震反应分析方法及模型试验验证[J].水利学报,2003,34(9):12-18.
    [56]赵剑明,常亚屏,陈宁.龙首二级面板堆石坝三维真非线性地震反应分析和评价[J].岩土力学,2004,25(增2):388-392,396.
    [57]迟世春,刘怀林.土工建筑物动力真非线性分析的量化记忆模型[J].水利学报,2003,34(10):51-59.
    [58]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [59]Iai S, Kaneoka T. Finite element analysis of earthquake induced damaged to anchored sheet pile quay walls[J]. Soils and Foundations,1993,33(1):71-91.
    [60]Waas G. Linear two-dimension analysis of soil dynamic problems in simi-infinite layered media[D]. Berkeley:University of California,1972.
    [61]李小军.非线性场地地震反应分析方法研究[D].哈尔滨:中国地震局工程力学研究所,1993.
    [62]廖振鹏.工程波动理论导引[M].北京:科学出版社,1996
    [63]Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics, ASCE,1969,95(EM4):859-877.
    [64]Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries [J]. Journal of Engineering Mechanics,1994,120(1):25-42.
    [65]刘晶波,王振宇,张克峰,等.考虑土-结构相互作用大型动力机器基础三维有限元分析[J].工程力学,2002,19(3):34-38,49.
    [66]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报,2006,28(9):1070-1075.
    [67]Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bulletin of Seismology Society of America,1977,67(6): 1529-1540.
    [68]Clayton R, Engquist B. Absorbing boundary conditions for wave-equation migration[J]. Geophysics,1980,45(5):895-904.
    [69]Smith W. A non-reflecting plane boundary for wave propagation problems [J]. Journal of Computer Physics,1973,15(4):492-503.
    [70]Higdon R L. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation[J]. Mathematics of Computations,1986, 47(176):437-459.
    [71]陈育民,徐鼎平FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [72]刘春玲,祁生文,童立强,等.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733.
    [73]张友锋,袁海平FLAC3D在地震边坡稳定性分析中的应用[J].江西理工大学学报,2008,29(5):23-26.
    [74]孔宪京,邹德高,邓学晶,等.高土石坝综合抗震措施及其效果的验算[J].水利学报,2006,37(12):1488-1495.
    [75]Piao Risheng, Rippe Arlan H, BarryMyers, et al. Earth dam liquefaction and deformation analysis using numerical modeling[A]. GeoCongress2006[C], ASCE,2006:1-6.
    [76]Vlad Perlea, David Serafini, Ethan Dawson, et al. Deformation Analysis for Seismic Retrofit of an Embankment Dam[A]. Geotechnical Earthquake Engineering and Soil Dynamics IV congress[C], ASCE,2008:1-10
    [77]Yan Li, Sy Alex, Thavaraj T. Seismic Deformation Analyses of the New Coquitlam Dam [A]. Geotechnical Earthquake and Engineering and Soil Dynamics IV Congress[C], ASCE,2008:1-10.
    [78]Christian H Girsang, Marte S Gutierrez, Kord J Wissmann. Modeling of the seismic response of the aggregate pier foundation system [A]. Geo-Support 2004, ASCE,2004:1-12.
    [79]童立元,王斌,刘义怀.地震地基液化大变形对桥梁桩基危害性三维数值分析[J].交通运输工程学报,2007,7(3):91-94.
    [80]Lindquist D D. Seismic modeling of a 135-Foot-Tall MSE Wall[A]. Geotechnical Earthquake Engineering and Soil Dynamics IV Congress[C], ASCE,2008: 1-10.
    [81]边金,陶连金,郭军.浅埋地下结构和土层在动荷载作用下的反应分析[J].世界地震工程,2005,21(4):49-53.
    [82]江文武,徐国元,马长年.快速拉格朗日法在锚杆拉拔数值模拟试验方面的运用[J].中国铁道科学,2008,29(6):50-54.
    [83]毛彦龙,胡广韬,毛新虎,等.地震滑坡启程剧动的机理研究及离散元模拟[J].工程地质学报,2001,9(1):74-80.
    [84]Jing Lanru, Stephansson Ove. Case Studies of Discrete Element Method Applications in Geology, Geophysics and Rock Engineering [J]. Developments in Geotechnical Engineering,2007,85:447-538.
    [85]伍永田,张旭生,李晓芸.地震作用对采空区塌陷的UDEC模拟[J].矿业工程,2007,5(6):19-22.
    [86]鲍鹏,李丽,赵捷.离散元法土—地下结构动力相互作用分析[J].河南大学学报:自然科学版,2008,38(4):429-433.
    [87]刘红岩,王明.节理岩质边坡稳定性的离散元分析[J].金属矿山,2009,9:15-18.
    [88]裴海侠,刘志伟.地震波方程频率域边界元法[J].西华大学学报:自然科学版,2006,25(6):61-63.
    [89]Hatzor Y H, Arzi A A, Zaslavsky Y, et al. Dynamic stability analysis of jointed rock slopes using the DDA method:King Herod's Palace, Masada, Israel[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5): 813-832.
    [90]陈光齐.地震引起的边坡灾害风险分析实用技术[J].岩石力学与工程学报, 2008,27(12):2395-2402.
    [91]陈光齐,ZEN Kouki, KASUYA Yuki地震引起的边坡灾害风险评估[J].岩石力学与工程学报,2008,27(12):2488-2493
    [92]邬爱清,林绍忠,马贵生,等.唐家山堰塞坝形成机制DDA模拟研究[J].人民长江,2008,39(22):91-95.
    [93]Zuo Jianping, Peng Suping, Li Yongjun, et al. Investigation of karst collapse based on 3-D seismic technique and DDA method at Xieqiao coal mine, China[J]. International Journal of Coal Geology,2009,78(4):276-287.
    [94]张国新,金峰,王光纶.用基于流行元的子域奇异边界元法模拟重力坝的地震破坏[J].工程力学,2001,18(4):18-27.
    [95]金峰,贾伟伟,王光纶.离散元—边界元动力耦合模型[J].水利学报,2001,32(1):23-27.
    [96]金峰,王光纶,贾伟伟.离散元—边界元动力耦合模型在地下结构动力分析中的应用[J].水利学报,2001,32(2):24-28.
    [97]刘君,陈健云,孔宪京,等.基于DDA和FEM耦合方法的碾压混凝土坝抗震安全性分析[J].大连理工大学学报,2003,43(6):793-798.
    [98]张瑞青,魏富胜,乔成斌.用(DDA+FEM)方法数值模拟1975年海城、1999年岫岩地震发生的过程[J].地震学报,2005,27(3):163-170.
    [99]尹华伟,易伟建,刘艳.有限元—界面元混合模型及其应用[J].湖南科技大学学报:自然科学版,2006,121(4):41-46.
    [100]邱流潮.基于联合有限—离散元法的混凝土重力坝地震破坏过程仿真[J].水力发电,2009,35(5):36-38.
    [101]Seed H B, Makdisi F I, Alba P D. Performance of earth dams during earthquakes[J]. Journal of the Geotechnical Engineering Division,1978,104(7): 967-994.
    [102]Idriss I M, Mathour J M, Seed H B. Earth dam-foundation interaction during earthquakes [J]. Earthquake Engineering and Structural Dynamics,1974,2(4): 313-323.
    [103]Seed H B, Silver M L. Settlement of dry sands during earthquake [J]. Journal of Soil Mechanics and Foundations, ASCE,1972,98(4):381-397.
    [104]Newmark N M. Effects of earthquakes on dams and embankments[J]. Geotechnique,1965,15(2):139-159.
    [105]Frankin A G, Chang F K. Earthquake resistance of earth and rockfill dams. Report 5, Miscellaneous Paper S-71-17, Soil and Pavement Laboratory, U S Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, U S A, 1977.
    [106]Makdisi F I, Seed H B. Simplified procedure for estimating dam and embankment earthquake-induced deformation[J] Journal of Geotechnical Engineering Division, ASCE,1978,104(GT7):423-438.
    [107]Seed H B. Consideration in the earthquake resistant design of earth and rockfill dams[J]. Geotechnique,1979,29(3):215-263.
    [108]Lin J S. Risk assessments of the earthquake-included permanent displacements in earth dams[A]. Proceeding of the 8th WCEE,1984, IV:309-316.
    [109]Lin J S, Whitman R V. Earthquake induced displacements of sliding blocks[J]. Journal of Geotechnical Engineering, ASCE,1986,112(1):44-593.
    [110]吴再光,韩国城,林皋.土石坝地展永久变形的危险性分析[J].岩土工程学报,1991,13(2):13-20.
    [111]Yegian M K, Marciano E A, Ghahraman V G. Earthquake-induced permanent deformations:probabilistic approach[J]. Journal of Geotechnical Engineering, ASCE,1991,117(1):1158-1167.
    [112]Pal S K, Rahman M S, Tung C C.A probabilistic analysis of seismically induced permanent movements in earth dams[J]. Soils and Foundations,1991, 31(1):47-59.
    [113]Lee K L, Albaisa A. Earthquake-induced settlement in saturated sands[J]. Journal of the Geotechnical Engineering Division, ASCE,1974,100(GT4): 387-406.
    [114]Serff N, Seed H B, Makdisi F I, et al. Earthquake induced deformations of earth dams[R]. Report No. EERC76-4, University California, Berkeley, USA,1976.
    [115]张克绪.饱和非粘性土坝地震稳定性分析[J].岩土工程学报,1980,2(3):1-9.
    [116]谢君斐,石兆吉,郁松寿,等.液化危害性分析[J].地震工程与工程振动,1988,8(1):61-77.
    [117]张克绪,陈国兴,王忆.桩承建筑物地基的残余变形分析[A].地震工程研究文集[C].北京:地震出版社,1992,8:162-178.
    [118]张克绪.饱和砂土的液化应力条件[J].地震工程与工程振动,1984,4(1):99-109.
    [119]Taniguchi E, Whitman R V, Mar W A. Prediction of earthquake induced deformation of earth dams[J]. Soils and Foundations,1983,23(4):126-132
    [120]张克绪,李明宰,常向前.地震引起的土坝永久变形分析[J].地震工程与工程振动,1989,9(1):91-100.
    [121]钱家欢,曾力真.小浪底土坝地震后永久变形预估[J].河海科技进展,1993,13(4):70-72
    [122]刘汉龙,陆兆溱,钱家欢.土石坝地震永久变形分析[J].河海大学学报,1996,24(1):91-961.
    [123]Iai S, Kaneoka T. Finite element analysis of earthquake induced damaged to anchored sheet pile quay walls[J]. Soils and Foundations,1993,33(1):71-91.
    [124]Stamatopoulos C A, Bouckovalsa G, Whitman R V. Analytical prediction of earthquake-induced permanent deformations [J]. Journal of Geotechnical Engineering, ASCE,1991,117(10):1471-1491.
    [125]Finn W D L. Yogendrakumar M, Ledbetter R H, et al. Analysis of liquefaction induced displacements [A]. Proceeding of the 7th International of Computer Methods and Advances in Geomechanics,1991,2:913-922.
    [126]Byme P M. Liquefaction induced displacement. NCEER Workshop on Post-liquefaction ground deformation, Presentation notes,1997.
    [127]Towhata I, Islam M S. Prediction of lateral displacement of anchored bulkheads induced by seismic liquefaction[J]. soils and foundations,1987,27(4): 137-147.
    [128]Hamada M H, Sato H, Kawakami T. A consideration for the mechanism for liquefaction related large ground displacement[A]. Proceeding of the 5th U.S. Japan Workshop on earthquake Resistant Design of Lifeline Facilities and Countermeasures for Soil Liquefaction, NCEER Report 94-0026,1994: 217-232.
    [129]Yashima A, Oka F, Konrad J M, el al. Analysis of progressive flow failure in an embankment of compacted fill [A]. Proceeding of IS-Nagoya,1997:599-604.
    [130]Pastor M, Zienkiweicz O C, Leung K H. Simple model for transient soil loading in earthquake analysis[J]. International Journal of Analytical Numerical Methods in Geomechancis,1985(9):453-498.
    [131]Bardet J P. A scaled memory model for the cyclic behavior of sands[J]. Journal of Geotechnical Engineering, ASCE,1995,121(11):766-755.
    [132]王娴明.建筑结构实验[M].北京:清华大学出版社,1988.
    [133]林宇亮,杨果林,李昀.岩土模型试验相似设计及土体相似材料[A].2009全国土木工程博士生学术论坛优秀论文集[C].长沙:中南大学出版社, 2009:232-241.
    [134]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8.
    [135]吕西林,陈跃庆.结构—地基相互作用体系的动力相似关系研究[J].地震工程与工程振动,2001,21(3):85-92.
    [136]陈国兴,庄海洋,程绍革,等.土—地铁隧道动力相互作用的大型振动台试验:试验方案设计[J].地震工程与工程振动,2006,26(6):178-183.
    [137]刘晶波,刘祥庆,王宗纲.地基—地下结构系统动力离心模型试验相似设计方法研究[J].后勤工程学院学报,2008,24(3):1-6.
    [138]武思宇,宋二祥,刘华北.刚性桩复合地基抗震性能的振动台试验研究[J].岩土力学,2007,28(1):77-82.
    [139]宋二祥,武思宇,王宗纲.地基—结构系统振动台模型试验中相似比的实现问题探讨[J].土木工程学报,2008,41(10):87-92.
    [140]王东坡,钱德玲.支盘桩—土—上部结构动力相互作用体系的振动台模型试验设计[J].合肥工业大学学报(自然科学版),2008,31(5):776-781.
    [141]凌贤长,王臣,王成.液化场地桩—土—桥梁结构动力相互作用振动台试验模型相似设计方法[J].岩石力学与工程学报,2004,24(3):450-456.
    [142]刘小生,王钟宁.强震区面板坝大型振动台模型试验与动力分析[J].水力发电,2001,8:41-42,56.
    [143]刘小生,王钟宁,汪小刚,等.面板坝大型振动台模型试验与动力分析[M].北京:中国水利水电出版社,2005.
    [144]徐光兴,姚令侃,高召宁,等.边坡动力特性与动力响应的大型振动台模型试验研究[J].岩石力学与工程学报,2008,27(3):624-632.
    [145]邵生俊,邓国华,吕立强.直壁加筋高路堤振动台模型试验研究[A].中国土木工程学会第九届土力学及岩土工程学术会议论文集[C].北京:清华大学出版社,2003:933-938.
    [146]李昀,杨果林,林宇亮.土工格栅加筋土挡墙地震响应分析[J].铁道科学与工程学报,2009,6(3):22-27.
    [147]李昀,杨果林,林宇亮.水平地震作用下加筋格宾挡土墙动力特性试验研究[J].岩土工程学报,2009,31(12):1930-1935.
    [148]李昀,杨果林,林宇亮.加筋格宾挡墙地震反应与动土压力分析[J].四川大学学报(工程科学版),2009,41(4):63-69.
    [149]李昀,杨果林,林宇亮.水平地震作用下绿色加筋格宾挡土墙动力特性试验研究[J].中南大学学报:自然科学版,2010,41(1):347-352.
    [150]陈兴华.脆性材料结构模型试验[M].北京:水利电力出版社,1984.
    [151]陈霞龄,韩伯鲤,梁克读.地下洞群围岩稳定的试验研究[J].武汉水利电力大学学报,1994,27(1):17-23.
    [152]韩伯鲤,陈霞龄,宋一乐,等.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):6-9
    [153]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004,23(1):48-51
    [154]张强勇,李术才,郭小红,等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [155]王汉鹏,李术才,张强勇,等.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报,2006,25(9):1842-1847.
    [156]罗定伦,高波,申玉生.关于隧道抗减震模型试验围岩相似材料的研究[J].石家庄铁道学院学报:自然科学版,2008,21(9):70-73.
    [157]潘一山,章梦涛,王来贵,等.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报,1997,19(4):49-56.
    [158]徐文胜,许迎年,王元汉,等.岩爆模拟材料的筛选试验研究[J].岩石力学与工程学报,2000,19(增刊):873-877.
    [159]李连贵,徐文胜,许迎年,等.岩爆模拟材料研制及模拟试验分析[J].华中科技大学学报,2001,29(6):80-82.
    [160]范鹤,刘斌,王成,等.高填土涵洞相似材料的试验研究[J].东北大学学报:自然科学版,2007,28(8):1194-1197.
    [161]吴玉庚.工程地质力学模型材料试验研究[M].北京:地质出版社,1985.
    [162]谷兆祺,彭守拙,李仲奎.地下洞室工程[M].北京:清华大学出版社,1994.
    [163]杨林德,季倩倩,郑永来,等.地铁车站结构振动台试验中模型箱设计的研究[J].岩土工程学报,2004,26(1):75-78.
    [164]景立平,崔杰,李立云,等.粉土液化的小型振动台试验研究[J].地震工程与工程振动,2004,24(3):145-151
    [165]陈跃庆,吕西林,李培振.分层土—基础—高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动,2001,21(3):104-112.
    [166]陈国兴,王志华,宰金珉.考虑土与结构相互作用效应的结构减震大型振动台模型试验研究[J].地震工程与工程振动,2001,21(4):117-127.
    [167]王志华,陈国兴,宰金珉.考虑SSI效应的TMD减震特性振动台模型试验研究[J].南京工业大学学报,2005,5:34-39.
    [168]张之颖,吕西林,陈跃庆,等.粘性土覆盖层下土中孔隙水压力的动力试验研究[J].岩石力学与工程学报,2003,22(1):131-136.
    [169]伍小平,孙利民,胡世德,等.振动台试验用层状剪切变形土箱的研制[J].同济大学学报,2002,30(7):781-785.
    [170]凌贤长,王臣,王志强,等.自由场地基液化大型振动台模型试验研究[J].地震工程与工程振动,2003,23(6):138-143.
    [171]苏栋,李相菘.可液化土中单桩地震响应的离心机试验研究[J].岩土工程学报,2006,28(4):423-427.
    [172]Che A L, Takahiro I, Ge X R. Study on dynamic response of embedded long span corrugated steel culverts using model shaking table tests and numerical analyses[J]. Zhejiang University Science A,2006,3:430-435.
    [173]刘晶波,刘祥庆,王宗纲.离心机振动台试验叠环式模型箱边界效应[J].北京工业大学学报,2008,34(9):931-937.
    [174]Dimitris Pitilakis, Matt Dietz, David Muir Wood. Numerical simulation of dynamic soil-structure interaction in shaking table testing[J]. Soil Dynamics and Earthquake Engineering,2008,28(6):453-467.
    [175]Chau K T, Shen C Y, Guo X. Nonlinear seismic soil-pile-structure interactions: Shaking table tests and FEM analyses[J]. Soil Dynamics and Earthquake Engineering,2009,29(2):300-310.
    [176]梁栋,蒋关鲁,刘先锋,等.大型堆叠式剪切模型箱的研制[J].铁道建筑,2009,10:63-66
    [177]Hiroshi Huzawa. Subsidence of Embankment on Weak Ground due to Earthquake and its Countermeasure[J]. Quarterly Report of RTRI,1975,16(3): 103-106.
    [178]刘小生,刘启旺,王钟宁,等.黑泉水库面板坝大型振动台模型试验[J].水利规划与设计,2007,5:30-33,56.
    [179]刘启旺,刘小生,陈宁,等.高心墙堆石坝地震残余变形和破坏模式的试验研究[J].水力发电,2009,35(5):60-62,89.
    [180]孔宪京,刘君,韩国城.面板堆石坝模型动力破坏试验与数值仿真分析[J].岩土工程学报,2003,25(1):26-30.
    [181]陈建斌,周立运.粉煤灰坝模型试验研究[J].岩石力学与工程学报,2004,23(增1):4351-4355.
    []82]陈建斌,周立运.粉煤灰坝动力特性试验研究[J].岩土力学,2005,26(3):437-440.
    [183]陈建斌,周立运.大型粉煤灰坝模型抗震试验研究[J].岩土力学,2006,27(7):1109-1113.
    [184]Lin Meei Ling, Wang Kuo Lung. Seismic slope behavior in a large-scale shaking table model test[J]. Engineering Geology,2006,86(2/3):118-133.
    [185]吴伟,姚令侃,陈强.坡形和加筋措施对地震响应影响的振动台模型实验研究[J].重庆交通大学学报(自然科学版),2008,27(5):689-694.
    [186]陈跃庆,吕西林,侯建国,等.不同土性地基中地震波传递的振动台模型试验研究[J].武汉大学学报(工学版),2005,38(2):49-53.
    [187]王惠昌,于吉求.振动台上饱和砂土大型液化试验研究[J].四川建筑科学研究,1985,2:39-45.
    [188]苏栋,李相崧.地震历史对砂土抗液化性能影响的试验研究[J].岩土力学,2006,27(10):1815-1818.
    [189]苏栋,李相崧.饱和砂土场地在小震下的响应[J].深圳大学学报(理工版),2007,24(4):339-344.
    [190]李培振,任红梅,吕西林,等.液化地基自由场振动台模型试验研究[J].地震工程与工程振动,2008,28(2):171-178.
    [191]孟上九,刘汉龙,袁晓铭,等.可液化地基上建筑物不均匀震陷机制的振动台试验研究[J].岩石力学与工程学报,2005,24(11):1978-1985.
    [192]凌贤长,王东升,王志强,等.液化场地桩—土—桥梁结构动力相互作用大型振动台模型试验研究[J].土木工程学报,2004,37(11):67-72.
    [193]凌贤长,郭明珠,王东升,等.液化场地桩基桥梁震害响应大型振动台模型试验研究[J].岩土力学,2006,27(1):7-10,22.
    [194]李雨润,袁晓铭,曹振中.液化土中桩基础动力反应试验研究[J].地震工程与工程振动,2006,26(3):257-260.
    [195]李雨润,袁晓铭,梁艳,等.桩—液化土相互作用p-y关系分析[J].地震工程与工程振动,2008,28(3):165-171.
    [196]Dungca J R, Kuwano J, Takahashi A. Shaking table tests on the lateral response of a pile buried in liquefied sand[J]. Soil Dynamics and Earthquake Engineering, 2006,26(2/4):287-295.
    [197]Funahara Hideki. Components of dynamic subgrade reaction on pile in saturated sand[A]. Geotechnical Earthquake and Engineering and Soil Dynamics IV, ASCE,2008,1-10.
    [198]Tang Liang, Ling Xianzhang, Xu Pengju, et al. Case studies for shaking table tests on seismic soil-pile group-bridge structure interaction in liquefiable ground [A]. ICCTP 2009:Critical Issues in Transportation Systems Planning, Development, and Management, ASCE,2009,934-941.
    [199]Motamed Ramin, Towhata Ikuo. Shaking table model tests on pile groups behind quay walls subjected to lateral spreading[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2010,136(3):477-489.
    [200]李立军,牛琪瑛,梁仁旺,等.砂桩加固可液化地基的振动台试验研究[J].西安建筑科技大学学报:自然科学版,2010,42(4):557-560.
    [201]Adalier Korhan, Sharp Michael K. Embankment dam on liquefiable foundation: dynamic behavior and densifi cation remediation [J]. J. Geotech. and Geoenvir. Engrg.2004,130(11):1214-1224.
    [202]Towhata I, Vargas-Monge W, Orense R P, et al. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil[J]. Soil Dynamics and Earthquake Engineering,1999,18(5):347-361.
    [203]Koji Ichii, Nobuyasu Seto, Hiroshi Kidera. Characteristics of uplifting velocity of a buried pipe in liquefied ground[A]. Geotechnical Earthquake Engineering and Soil Dynamics IV, ASCE,2008,1-10.
    [204]杨林德,杨超,季倩倩,等.地铁车站的振动台试验与地震响应的计算方法[J].同济大学学报,2003,31(10):1135-1140.
    [205]陈国兴,庄海洋,杜修力,等.土—地铁隧道动力相互作用的大型振动台试验—试验结果分析[J].地震工程与工程振动,2007,27(1):164-170.
    [206]陈国兴,庄海洋,杜修力,等.土—地铁车站结构动力相互作用大型振动台模型试验研究[J].地震工程与工程振动,2007,27(2):171-176.
    [207]陈国兴,左熹,庄海洋,等.地铁隧道地震反应数值模拟与试验的对比分析[J].自然灾害学报,2007,16(6):81-87.
    [208]陈国兴,庄海洋,杜修力,等.液化场地土—地铁车站结构大型振动台模型试验研究[J].地震工程与工程振动,2007,27(3):163-170.
    [209]陈国兴,左熹,庄海洋,等.地铁车站结构大型振动台试验与数值模拟的比较研究[J].地震工程与工程振动,2008,28(1):157-164.
    [210]吕西林,陈跃庆,陈波,等.结构—地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29.
    [211]陈跃庆,吕西林,李培振,等.分层土—基础—高层框架结构相互作用体系振动台模型试验研究[J].地震工程与工程振动,2001,21(3):104-112.
    [212]李培振,吕西林,陈波,等.均匀土—箱基—结构相互作用体系的计算分析[J].地震工程与工程振动,2002,22(5):115-121.
    [213]陈波,吕西林,李培振.均匀土—桩基—结构相互作用体系的计算分析[J].地震工程与工程振动,2002,22(3):91-99.
    [214]吕西林,张之颖,曹文清.土—结构相互作用体系合成模态阻尼比的振动台模型试验研究[J].力学季刊,2003,24(1):75-80.
    [215]李培振,陈跃庆,吕西林,等.较硬分层土—桩基—结构相互作用体系振动台试验[J].同济大学学报(自然科学版),2006,34(3):307-313.
    [216]陈跃庆,吕西林,李培振,等.不同土性的地基—结构动力相互作用振动台模型试验对比研究[J].土木工程学报,2006,39(5):57-64.
    [217]陈国兴,王志华,宰金珉.土与结构动力相互作用体系振动台模型试验研究[J].世界地震工程,2002,18(4):47-54.
    [218]陈国兴,王志华,宰金珉.土—结构相互作用体系振动台试验数值模拟[J].自然灾害学报,2003,12(3):111-117.
    [219]陈国兴,王志华,宰金珉.土与结构相互作用体系振动台模型试验数值模拟研究[J].防灾减灾工程学报,2003,23(3):21-28.
    [220]孟上九,袁晓铭,孙锐.建筑物不均匀震陷机理的振动台实验研究[J].岩土工程学报,2002,24(6):747-751.
    [221]邓学晶,孔宪京,刘君.城市垃圾填埋场的地震响应及稳定性分析[J].岩土力学,2007,28(10):2095-2100.
    [222]孔宪京,邓学晶.城市垃圾填埋场地震变形机理的振动台模型试验研究[J].土木工程学报,2008,41(5):65-74.
    [223]Tamura Shuji, Tokimatsu Kohji. Seismic earth pressure acting on embedded footing based on large-scale shaking table tests[A]. Seismic Performance and Simulation of Pile Foundations, ASCE,2006,83-96.
    [224]濮家骝.土工离心模型试验及其应用的发展趋势[J].岩土工程学报,1996,18(5):92-94
    [225]汪明武,Tobita Tetsuo, Iai Susumu强震动条件下的桩土相互作用动态土工离心试验研究[J].岩石力学与工程学报,2005,24(增2):5555-5560.
    [226]汪明武,Susumu Iai, Testuo Tobita液化场地堤坝地震响应动态土工离心试验及模拟[J].水利学报,2008,39(12):1346-1352.
    [227]翁效林.强夯黄土地基震陷性离心试验研究[J].岩土工程学报,2007,29(7):1094-1097.
    [228]杨庆华,姚令侃,任自铭,等.震作用下松散体斜坡崩塌动力学特性离心模型试验研究[J].岩石力学与工程学报,2008,27(2):368-374.
    [229]杨明,姚令侃,王建,等.斜坡堆积体抗震加固措施离心模型试验[J].西南 交通大学学报,2008,43(3):335-340.
    [230]王丽萍,张嘎,张建民,等.土钉加固黏性土坡动力离心模型试验研究[J].岩石力学与工程学报,2009,28(6):1226-1230.
    [231]李海光.新型支挡结构设计与工程实例[M].人民交通出版社,2004.
    [232]中华人民共和国水利部.GB50290-98.土工合成材料应用技术规范[S].北京:中国计划出版社,1998.
    [233]程火焰,周亦唐,钟国强.加筋土挡土墙地震动力特性研究[J].公路交通科技,2004,21(9):16-20
    [234]规范汇编.公路加筋土工程设计及施工规范汇编[M].北京:人民交通出版社,1993.
    [235]Ling H I, Leshchinsky D, Perry E. Seismic design and performance of geosynthetic reinforced soil structures[J]. Geotechnique,1997,47(5):933-952.
    [236]Ling H I, Leshchinsky D. Effects of vertical acceleration on seismic design of geosynthetic reinforced soil structures [J]. Geotechnique,1998,48(3):347-373.
    [237]Michalowski R L. Soil reinforcement for seismic design of geotechnical Structures[J]. Computers and Geotechnics,1998,23(1):1-17.
    [238]杨有海.地震作用下加筋土挡墙稳定性分析[J].兰州铁道学院学报(自然科学版),2002,21(4):9-11,21.
    [239]蒋建清,邹银生.复杂动力作用下加筋土挡墙内部稳定性分析[J].中南公路工程,2007,23(1):51-54.
    [240]Nouri H, Fakher A, Jones C J F P. Development of Horizontal Slice Method for seismic stability analysis of reinforced slopes and walls[J]. Geotextiles and Geomembranes,2006,24(2):175-187.
    [241]Nouri H, Fakher A, Jones C J F P. Evaluating the effects of the magnitude and amplification of pseudo-static acceleration on reinforced soil slopes and walls using the limit equilibrium Horizontal Slices Method[J]. Geotextiles and Geomembranes,2008,26(3):263-278.
    [242]Shekarian S, Ghanbari A, Farhadi A. New seismic parameters in the analysis of retaining walls with reinforced backfill [J]. Geotextiles and Geomembranes, 2008,26(4):350-356.
    [243]蒋建清,杨果林.加筋土挡墙地震稳定性分析的水平条分方法[J].中国铁道科学,2009,30(1):36-40.
    [244]Reddy G V Narasimha, Madhava M R, Reddy E Saibaba. Pseudo-static seismic analysis of reinforced soil wall—Effect of oblique displacement[J]. Geotextiles and Geomembranes,2008,26(5):393-403.
    [245]David G Elms, Rowland Richards. Seismic design of retaining wall, design and performance of earth retaining structures [J]. Geotechnical Special Publication, ASCE,1990,25:854-871.
    [246]Juran I. Numerical analysis of the response of reinforced soil to direct shear: Part 2[J]. Int. J. Num. Anal. Mech. Geomech,1988,12:157-171.
    [247]Jewell R A. Strength and deformation in reinforced soil design[A]. In:Den Hoedt ed. Geotextiles, Geomembranes and Related Products[M]. Rotterdam: Balkema,1992,913-946.
    [248]杨明,吴德伦,言志信.加筋土挡墙抗震分析中的屈服加速度[J].岩石力学与工程学报,2002,21(5):728-731.
    [249]Ausilio E, Conte E, Dente G. Seismic stability analysis of reinforced slopes[J]. Soil Dynamics and Earthquake Engineering,2000,19(3):159-172.
    [250]王金圳.地震对加筋土挡墙安全性能的影响[J].黎明职业大学学报,2008,(4):23-26.
    [251]Basha B Munwar, Babu G L Sivakumar. Reliability assessment of internal stability of reinforced soil structures:A pseudo-dynamic approach[J]. Soil Dynamics and Earthquake Engineering,2010,30(5):336-353.
    [252]林永亮,李新星.地震作用下加筋土坡临界高度研究[J].岩土力学,2008,29(增刊):394-398.
    [253]赵炼恒,李亮,杨峰,等.加筋土坡动态稳定性拟静力分析[J].岩石力学与工程学报,2009,28(9):1904-1917.
    [254]Jahanandish M, Keshavarz A. Seismic bearing capacity of foundations on reinforced soil slopes[J]. Geotextiles and Geomembranes,2005,23(1):1-25.
    [255]Ahmad Syed Mohd, Choudhury Deepankar. Pseudo-dynamic approach of seismic design for waterfront reinforced soil-wall[J]. Geotextiles and Geomembranes,2008,26(4):291-301.
    [256]袁捷,曾四平,祝云琪,等.地震作用下加筋土路基力学行为的弹塑性分析[J].同济大学学报(自然科学版),2008,36(4):483-487
    [257]Yogendrakumar M, Richard J B, Finn W D L. Dynamic response analysis of reinforced-soil retaining wall[J]. Journal of Geotechnical Engineering, ASCE, 1992,118(8):1158-1167.
    [258]Cai Zheng, Richard J Bathurst. Seismic response analysis of geosynthetic reinforced soil segmental retaining walls by finite element method[J]. Computers and Geotechnics,1995,17(4):523-546.
    [259]尹玉先,杨新华.动力作用下加筋土挡墙的数值模拟[J].平顶山工学院学报,2007,16(1):56-66.
    [260]刘剑旗,王宁,韩志型,等.地震动荷载下土工格栅加筋挡土墙变形特性研究[J].矿业研究与开发,2009,29(3):30-32
    [261]Cai Zhenqi, Richard J Bathrust. Seismic response analysis of geosynthetic reinforced soil segmental retaining walls by finite element method[J]. Computers and Geotechnics,1995,17:523-546.
    [262]刘华北.水平与竖向地震作用下土工格栅加筋土挡墙动力分析[J].岩土工程学报,2006,28(5):594-599.
    [263]刘华北.考虑蠕变、地震效应的土工格栅砂性土加筋挡墙弹塑性有限元分析[J].岩土工程学报,2007,29(6):917-921.
    [264]刘华北.地震作用下模块式面板土工合成材料加筋土挡墙的内部稳定分析[J].岩土工程学报,2008,30(2):278-283.
    [265]Lee K Z Z, Chang N Y, Ko H Y. Numerical simulation of geosynthetic-reinforced soil walls under seismic shaking[J]. Geotextiles and Geomembranes,2010,28:317-334.
    [266]Perez A, Holtz R D. Seismic response of reinforced steep slopes:results of a shaking table study[J]. Geotechnical Engineering for Transportation Projects, 2004,126:1664-1672
    [267]Shinoda M, Uchimura T, Tatsuoka F, et al. A new simple method to substantially increase the seismic stability of reinforced soil structures [J]. Soil Dynamics and Earthquake Engineering,2002,22(9/12):1115-1123.
    [268]周亦唐,钟国强,俞进,等.塑料土工格栅加筋土结构的振动台试验研究[J].四川建筑科学研究,2004,30(2):47-47.
    [269]Ling H I, Liu H, Yoshiyuki M. Parametric studies on the behavior of reinforced soil retaining walls under earthquake loading[J]. Journal of Engineering Mechanics, ASCE,2005,131(10):1056-1065.
    [270]Ling H I, Mohri Yoshiyuki, Leshchinsky Dov. Large-scale shaking table tests on modular-block reinforced soil retaining walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2005,131(4):465-476.
    [271]Magdi M El-Emam, Richard J Bathurst. Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls[J]. Geotextiles and Geomembranes,2007,25(1):33-49.
    [272]Latha G Madhavi, Krishna A Murali. Seismic response of reinforced soil retaining wall models:Influence of backfill relative density[J]. Geotextiles and Geomembranes,2008,26(4):335-349.
    [273]Sabermahani M, Ghalandarzadeh A, Fakher A. Experimental study on seismic deformation modes of reinforced-soil walls[J]. Geotextiles and Geomembranes, 2009,27(3):121-136.
    [274]孙钧等.新型土工合成材料与工程整治[M].北京:中国建筑工业出版社,1998.
    [275]Nova-Roessig L, Sitar N. Centrifuge model studies of the seismic response of reinforced soil slopes [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2006,132(3):388-400.
    [276]Muthucumarasamy Y, Richard J B, Liam D F. Dynamic Response Analysis of Reinforced-Soil Retaining Wall[J]. Journal of Geotechnical Engineering,1992, 118(8):1158-1167.
    [277]Tatsuoka F, Tateyama M, Koseki J. Behavior of Geogrid-reinforced soil retaining walls during the Great Habshin-Awaji Earthquake[C]//Proceedings of 1st International Symposium on Geotechnical Earthquake Engineering.1995: 55-60.
    [278]Kobayashi K, Tabata H. The performance of reinforced earth structures during the Great Hanshin Earthquake[C]//Earth Reinforcement, Technical papers prepared by Groupe TAI for The International Symposium on Earth Reinforcement, Fukuoka, Kyshu, Japan,1996:41-46.
    [279]Frankenberger P C, Bloomfield R A, Anderson P L. Reinforced earth walls withstand Northridge Earthquake [C]//Earth Reinforcement, Technical papers prepared by Groupe TAI for The International Symposium on Earth Reinforcement, Fukuoka, Kyshu, Japan,1996:47-52.
    [280]Hoe I Ling, Dov Leshchinsky, Nelson N S Chou. Post-earthquake investigation on several geosynthetic-reinforced soil retaining walls and slopes during the Ji-Ji earthquake of Taiwan[J]. Soil Dynamics and Earthquake Engineering,2001, 21(4):297-313.
    [281]Mononobe N. Considerations into earthquake vibrations and vibration theories[J]. Journal of the Japan Society of Civil Engineers,1924,10(5): 1063-1094.
    [282]Okabe S. General theory on earth pressure and seismic stability of retaining wall and dam[J]. Journal of the Japan Society of Civil Engineers,1924,10(5): 1277-1323.
    [283]王云球.粘性土地震土压力的计算方法[J].水运工程,1980,(8):7-13.
    [284]冯震,王娜,林玮,等.在考虑惯性力情况下挡土墙后黏性填土主动土压力的计算[J].地震工程与工程振动,2008,28(1):152-156.
    [285]陈国祝.粘性土地震土压力的一般性计算方法[J].河海大学学报(自然科学版),1982,(2):49-62.
    [286]Matsuzawa H, Ishibashi I, Kawamura M. Dynamic soil and water pressure of submerged soils[J]. Journal of Geotechnical Engineering, ASCE,1985,111(10): 1161-1176.
    [287]刘忠玉,闫富有.有地下水时刚性挡土墙的动主动土压力[J].岩土力学,2006,27(4):566-570.
    [288]Seed H B, Whitman R V. Design of earth retaining structures for dynamic loads [C]//Specialty Conference on Lateral Stresses in the Ground and Design of Earth Retaining Structures, Ithaca, N Y:ASCE,1970:103-147.
    [289]李涛.地震主动简化计算公式[J].铁道工程学报,1996,(1):103-105.
    [290]梁波.地震条件下桥台台背主动土压力简化计算方法[J].铁道工程学报,1999,(2):36-38.
    [291]Ichibara M, Matsuzawa H. Earth pressure during earthquake[J]. Soils and Foundations,1973,13(1):75-86.
    [292]Sherif M A, Ishibashi I, Lee C D. Earth pressures against rigid retaining walls[J]. Journal of Geotechnical Engineering,1982,108(5):679-695.
    [293]Sherif M A, Fang Y S. Dynamic earth pressure on walls rotating about the top[J]. Soils and Foundations,1984,24(4):109-117.
    [294]Matsuzawa H, Ishibashi I, Kawamura M. Dynamic soil and water pressure of submerged soils[J]. Journal of Geotechnical Engineering,1985,111(10): 1161-1176.
    [295]王渭漳,吴亚中.墙背土压力分布计算的新理论及其工程应用[M].北京:人民交通出版社,1996.
    [296]Wang Y Z. Distribution of earth pressure on a retaining wall[J]. Geotechnique, 2000,50(1):83-88.
    [297]Shahgholi M, Fakher A, Jones C J F P. Horizontal slice method of analysis [J]. Geotechnique,2001,51(10):881-885.
    [298]Azad Ali, Yasrobi S Shahab, Pak Ali. Seismic active pressure distribution history behind rigid retaining walls[J]. Soil Dynamics and Earthquake Engineering,2008,28(5):365-375.
    [299]杨剑,高玉峰,程永锋,等.地震作用下倾斜挡土墙被动土压力的研究[J].岩土工程学报,2009,31(9):1391-1397.
    [300]卢坤林,杨扬,朱大勇,等.考虑土拱效应的挡土墙地震土压力及其分布[J].水电能源科学,2010,29(5):65-68.
    [301]顾慰慈.挡土墙土压力计算手册[M].北京:中国建材工业出版社,2005.
    [302]Richards R, Elms D G. Seismic behavior of gravity retaining walls[J]. Journal of Geotechnical Engineering Division,1979,105(4):449-464
    [303]Zarrabi-Kashani K. Sliding of gravity retaining walls during earthquake considering vertical acceleration and changing inclination of failure surface[S. M. Thesis]. Cambridge, Massachusetts:Department of Civil Engineering, M.I.T.,1979.
    [304]Nadim F. Tilting and sliding of gravity retaining walls during earthquake[S. M. Thesis]. Cambridge, Massachusetts:Department of Civil Engineering, M.I.T., 1980.
    [305]Wong C P. Seismic analysis and an improved seismic design procedure for gravity retaining walls[S. M. Thesis]. Cambridge, Massachusetts:Department of Civil Engineering, M.I.T.,1982.
    [306]Deepankar Choudhury, Sanjay S Nimbalkar. Pseudo-dynamic approach of seismic active earth pressure behind retaining wall[J]. Geotechnical and Geological Engineering,2006,24(5):1103-1113.
    [307]Sreevalsa Kolathayar, Priyanka Ghosh. Seismic active earth pressure on walls with bilinear backface using pseudo-dynamic approach[J]. Computers and Geotechnics,2009,36(7):1229-1236.
    [308]Velestsos A S, Younan A H. Dynamic soil pressures on rigid vertical walls[J]. earthquake engineering and structural dynamics,1994,23(2):275-301.
    [309]Zhang J M, Shamoto Y, Tokimatsu K. Seismic earth pressure theory for retaining wall under any lateral displacement[J]. Journal of Soils and Foundations,1998,38(2):143-163.
    [310]Zhang G, Zhang J M. Simplified evaluation for dynamic layered soils-structure interaction[A]. Proceedings of 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C]. San Diego, California, USA,2001.
    [311]张嘎,张建民.地基中结构物动力响应的一维解析方法[J].清华大学学报(自然科学版),2001,41(11):106-109.
    [312]张嘎,张建民.成层地基与浅埋结构物动力相互作用的简化分析[J].工程力学,2002,19(6):93-97,104.
    [313]Choudhury D, Chatterjee S. Dynamic active earth pressure on retaining structures[J]. Sadhana,2006,31(6):721-730.
    [314]Zhou Jian, Yasuhara, Hirai K. A model for predicting the cyclic-induced behavior of clay with initial static shear stress[A]. Proceeding of 47th annual meeting of Japanese society of Civil Engineering[C], Japan,1992,320-326.
    [315]周健.尾矿坝在地震作用下的三维两相有效应力动力分析[J].工程抗震,1995,78(1):39-43.
    [316]周健,董鹏,池永.软土地下建筑物抗震分析[J].工程抗震(增刊),2000,83(5):90-96.
    [317]周健,董鹏,池永.软土地下结构的地震土压力分析研究[J].岩土力学,2004,25(4):554-559.
    [318]Navarro C, Samartin A. Dynamic earth pressures against a retaining wall caused by Rayleigh waves[J]. Engineering Structures,1989,11(1):31-36
    [319]杨小礼.线性与非线性破坏准则下岩土极限分析方法及应用[D].长沙:中南大学,2002.
    [320]杨小礼,李亮,刘宝琛.非线性破坏准则对被动土压力的影响[J].工程力学,2004,21(1):31-36.
    [321]Yang X L. Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion[J]. Theoretical and Applied Fracture Mechanics,2007,47(1):46-56.
    [322]范文,沈珠江,俞茂宏.基于统一强度理论的土压力极限上限分析[J].岩土工程学报,2005,16(2):1147-1153.
    [323]赵炼恒.边坡稳定性与加固技术的能量分析方法研究[D].长沙:中南大学,2009.
    [324]赵健,冷伍明.基于能量理论的地震主动土压力计算方法研究[J].路基工程,2005,(5):39-41.
    [325]Yang X L, Yin J H. Estimation of seismic passive earth pressures with nonlinear failure criterion[J]. Engineering Structures,2006,28(3):342-348.
    [326]Soubra A H. Static and seismic passive earth pressure coefficients on rigid retaining structures [J]. Canadian Geotechnical Journal,2000,37(2):463-478.
    [327]Cheng Y M. Seismic lateral earth pressure coefficients for c-cp soils by slip line method[J]. Computers and Geotechnics,2003,30(8):661-670.
    [328]Panos Kloukinas, George Mylonakis, Costas Papantonopoulos. Distribution of Seismic Earth Pressures on Gravity Walls by Wave-based Stress Limit Analysis[A]. Proceedings of the Conference of Geotechnical Earthquake Engineering and Soil Dynamics IV[C], Sacramento, California, ASCE,2008.
    [329]Nadim F, Whitman R V. Seismically induced movement of retaining walls[J]. Journal of the Geotechnical Engineering Division, ASCE,1983,109(7): 915-931.
    [330]Nadim F, Whitman R V. Coupled sliding and tilting of gravity retaining walls during earthquakes [A]. Proceedings of 8th WCEE[C]. San Francisco, CA, 1984.
    [331]Jung Chulmin, Bobet Antonio. Seismic earth pressures behind retaining walls: effects of rigid-body motions[A]. Proceedings of the Conference of Geotechnical Earthquake Engineering and Soil Dynamics IV[C], Sacramento, California, ASCE,2008.
    [332]Psarropoulos P N, Klonaris G, Gazetas G. Seismic earth pressures on rigid and flexible retaining walls[J]. Soil Dynamics and Earthquake Engineering,2005, 25(7/10):795-809.
    [333]Zeng X. Earthquake induced displacement of gravity retaining walls [A]. The 3rd International Conference on Recent Advances in Geotechnical EESD[C]. 1995,3:339-342.
    [334]Zeng X. Seismic response of gravity quay walls I:Centrifuge modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(5): 406-417.
    [335]Madabhushi S P G, Zeng X. Seismic response of gravity quay walls II: Numerical modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(5):418-427.
    [336]Zeng X, Steedman R S. Rotating block method for seismic displacement of gravitywalls[J]. Journal of geotechnical and geoenvironmental engineering, ASCE,2001,126(8):709-717.
    [337]陈学良.挡土墙地震反应的波动模拟分析[D].哈尔滨:中国地震局工程力学研究所,2001.
    [338]陈学良,袁一凡.求解振动方程的一种显式积分格式及其精度与稳定性[J]. 地震工程与工程振动,2002,22(3):9-14.
    [339]陈学良,袁一凡.挡土墙地震反应的波动模拟[A].现代地震工程进展[M].南京:东南大学出版社,2002:266-271.
    [340]袁一凡,陈学良.挡土墙地震反应的波动模拟分析[A].新世纪地震工程与防震减灾[C].北京:地震出版社,2002:585-579.
    [341]陈学良,袁一凡.挡土墙地震反应非线性波动模拟[J].地震工程与工程振动,2003,23(4):9-16.
    [342]陈学良,陶夏新,陈宪麦,等.重力挡土墙地震反应研究评述[J].自然灾害学报,2006,15(3):139-146.
    [343]Koseki J, Munaf Y, Tat suoka F, et al. Shaking and tilt table tests of geosynthetic-reinforced soil and conventional-type retaining walls[J]. Geosynthetics International,1998,5(1/2):73-96.
    [344]Watanbe K, Munaf Y, Koseki J, et al. Behaviors of several types of model retaining walls subjected to irregular excitation [J]. Soils and foundations,2003, 143(5):13-27.
    [345]Woodward P K, Griffitas D V. Comparison of the pseudo-Static and dynamic behavior of gravity retaining walls [J]. Journal of Geotechnical and Geological Engineering,1996,14(2):269-290.
    [346]Linda A1 Atik, Nicholas Sitar. Seismic earth pressures on cantilever retaining structures [J]. Journal of Geotechnical and Geoenvironmental Engineering, in Press.
    [347]Dewoolkar M M, Stadler A T, Batiste S N, et al. Dynamic centrifuge experiment on a cantilever retaining wall[A]. The 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C]. 1995:1117-1121.
    [348]Dewoolkar M M, Ko H Y, Pak R Y S. Experimental developments for studying static and seismic behavior of retaining walls with liquefiable backfills[J]. Soil Dynamics and Earthquake Engineering,2000,19(8):583-593.
    [349]周应英.桥用刚性挡土墙的土压力模型试验研究[J].中外公路,1987,7(3):14-18
    [350]周应英.刚性挡土墙土压力研究[J].长沙交通学院学报,1988,4(1):48-56.
    [351]周应英,任美龙.刚性挡土墙主动土压力试验研究[J].岩土工程学报,1990,12(2):19-26.
    [352]徐日庆,陈页开,杨仲轩.刚性挡墙被动土压力模型试验研究[J].岩土工 程学报,2002,24(5):569-575.
    [353]徐日庆,龚慈,魏纲.考虑平动位移效应的刚性挡土墙土压力理论[J].浙江大学学报(工学版),2005,39(1):119-122.
    [354]龚慈,魏纲,徐日庆.RT模式下刚性挡墙土压力计算方法研究[J].岩土力学,2006,27(9):1588-1592.
    [355]章瑞文,徐日庆.平移模式下挡土墙墙背土侧压力系数的计算[J].中国公路学报,2007,20(1):14-18.
    [356]章瑞文,徐日庆,郭印.考虑挡土墙墙体平移的墙后分层填土主动土压力分布[J].水利学报,2008,39(2):250-255.
    [357]章瑞文,徐日庆,郭印.挡土墙墙后土体应力状态及土压力分布研究[J].浙江大学学报(工学版),2008,42(1):111-115.
    [358]姚令侃,冯俊德,杨明.汶川地震路基震害分析及对抗震规范改进的启示[J].西南交通大学学报,2009,44(3):301~311
    [359]徐挺.相似方法及其应用[M].北京:机械工业出版社,1995.
    [360]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006.
    [361]中华人民共和国铁道部.TB10001-2005.铁路路基设计规范[S].北京:中国铁道出版社,2009.
    [362]刘萌成,高玉峰,刘汉龙,等.堆石料变形与强度特性的大型三轴试验研究[J].岩石力学与工程学报,2003,22(7):1104-1111.
    [363]姜燕玲,宋修广.粉砂土及其加筋土大三轴剪切试验及结果分析[J].山东大学学报:工学版,2004,34(2):76-79.
    [364]中华人民共和国铁道部.TB10621-2009.高速铁路设计规范(试行)[S].北京:中国铁道出版社,2010.
    [365]李育枢,李天斌,王栋,等.黄草坪2#隧道洞口段减震措施的大型振动台模型试验研究[J].岩石力学与工程学报,2009,28(6):1128-1136.
    [366]Kuhlemeyer R L, Lysmer J. Finite element method accuracy for wave propagation problems[J]. Journal of Soil Mechanics & Foundation Division, ASCE,1973,99(SM5),421-427.
    [367]Leshchinsky D, Hu Y, Han J. Limited reinforced space in segmental retaining walls[J]. Geotextiles and Geomembranes,2004,22(6):543-553
    [368]Zhang Ling, Zhao Ming Hua, He Wei. Working mechanism of two-direction reinforced composite foundation[J]. Journal of Central South University of Technology,2007,14(4):589-594.
    [369]Zhang Ling, Zhao Ming Hua, Zou Xiao Wei, et al. Deformation analysis of geocell reinforcement using Winkler model[J]. Computers and Geotechnics. 2009,36(6):977-983.
    [370]Bilgin O. Failure mechanisms governing reinforcement length of geogrid reinforced soil retaining walls[J]. Engineering Structures,2009,31(9): 1967-1975.
    [371]Quang T S, Ghazi H, Patrick B. A multiphase approach to the stability analysis of reinforced earth structures accounting for a soil-strip failure condition[J]. Computers and Geotechnics,2009,36(3):454-462.
    [372]Porbaha A, Zhao A, Kobayashi M, et al. Upper bound estimate of scaled reinforced soil retaining walls[J]. Geotextiles and Geomembranes,2000,18(6): 403-413.
    [373]He S, Li J. Modeling nonlinear elastic behavior of reinforced soil using artificial neural networks[J]. Applied Soft Computing,2009,9(3):954-961
    [374]Cai Z, Rrchard J B. Seismic response analysis of geosynthetic reinforced soil segmental retaining walls by finite element method [J]. Computers and Geotechnics,1995,17(4):523-546
    [375]Hattamleh O A, Muhunthan B. Numerical procedures for deformation calculations in the reinforced soil walls[J]. Geotextiles and Geomembranes, 2006,24(1):52-57.
    [376]杨果林,王永和.土工合成材料在加卸循环荷载作用下的应力应变特性研究[J].铁道学报,2002,24(3):74-77.
    [377]Masahiro S, Rrchard J B. Lateral and axial deformation of PP, HDPE and PET geogrids under tensile load[J]. Geotextiles and Geomembranes,2004,22: 205-222.
    [378]Boisse P, Gasser A, Hivet G. Analyses of fabric tensile behaviour: determination of the biaxial tension-strain surfaces and their use in forming simulations[J]. Composites Part A,2001,32(10):1395-1414.
    [379]Buet-gautier K, Boisse P. Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements [J]. Experimental Mechanics,2001,41(3):260-269.
    [380]Wesseloo J, Visser A.T, Rust E. A mathematical model for the strain-rate dependent stress-strain response of HDPE geomembranes [J]. Geotextiles and Geomembranes,2004,22:273-295.
    [381]Subaida E A, Chandrakaran S, Sankar N. Experimental investigations on tensile and pullout behaviour of woven coir geotextiles[J]. Geotextiles and Geomembranes,2008,26:384-392.
    [382]李俊伟,黄宏伟.土工格室HDPE片材拉伸应变率相关特性[J].建筑材料学报,2008,11(2):47-51.
    [383]Perkins S W, Constitutive modeling of geosynthetics[J]. Geotextiles and Geomembranes,2000,18:273-292.
    [384]李作攀,储才元.非织造布力学性能的模拟及其应用探讨[J].中国纺织大学学报,1998,24(2):1-4.
    [385]周蓉,刘逸新.土工合成材料拉伸性能模拟及模型分析[J].青岛大学学报:工程技术版,2004,19(2):47-50.
    [386]Taibi E H,等.织物的拉伸应力应变模型[J].夏涛译.国外纺织技术,2002,205(4):36-38
    [387]杨果林,彭立,黄向京.加筋土结构分析理论与工程应用新技术[M].北京:中国铁道出版社,2007.
    [388]欧阳仲春.现代土工加筋技术[M].北京:人民交通出版社,1990.
    [389]土工合成材料工程应用手册编写委员会.土工合成材料工程应用手册[M].北京:中国建筑工业出版社,1994.
    [390]Teerawattanasuk C. Interaction and deformation behavior of hexagonal wire mesh reinforcement at the vicinity of shear surface on sand and volcanic ash (lahar) backfill[D]. Bangkok, Thailand:Asian Institute of Technology,1997.
    [391]Kabiling M B. Pullout capacity of different hexagonal link wire sizes and configurations on sandy and volcanic ash (lahar) backfills [D]. Bangkok, Thailand:Asian Institute of Technology,1997.
    [392]Mir E N. Pullout and direct shear test of hexagonal wire mesh reinforcement in various fill materials including lahar from Mt. Pinatubo, Philipines[D]. Bangkok, Thailand:Asian Institute of Technology,1999.
    [393]Bergado D T, Voottipruex P, Srikongsri A, et al. Interaction between hexagonal wire mesh reinforcement and silty sand backfill[J]. Canadian Geotechnical Journal,2001, Vol.24:26-41.
    [394]Bergado D T, Youwai S, Teerawattanasuk C, et al. The interaction mechanism and behavior of hexagonal wire mesh reinforced embankment with silty sand backfill on soft clay[J]. Computers and Geotechnics,2003,30:517-534.
    [395]杨广庆,吕鹏,庞巍,等.返包式土工格栅加筋土高挡墙现场试验研究[J].岩土力学,2008,29(2):517-522.
    [396]何昌荣,陈群,富海鹰.两种支挡结构的实测和计算土压力[J].岩土工程学报,2000,22(1):55-60
    [397]王祥,周顺华,顾湘生,等.路堤式加筋土挡墙的试验研究[J].土木工程学报,2005,38(10):119-124
    [398]周世良,何光春,汪承志,等.台阶式加筋土挡墙模型试验研究[J].岩土工程学报,2007,29(1):152-156.
    [399]张孟喜,孙遇祺,李国祥.加筋土挡墙工作机理的室内试验研究[J].铁道学报,1999,21(5):79-82.
    [400]中华人民共和国铁道部.TB10025-2006铁路路基支挡结构物设计规范[S].北京:中国铁道出版社,2006.
    [401]王常晶,陈云敏.交通荷载引起的静偏应力对饱和软黏土不排水循环性状影响的试验研究[J].岩石力学与工程学报,2007,29(11):1742-1747.
    [402]查文华,洪宝宁,徐毅.交通荷载下路面振动响应信号的时频特征分析[J].工程抗震与加固改造,2007,29(4):105-109.
    [403]王卫强,刘维正,赵燕.交通荷载作用下低路堤结构应力响应试验分析[J].公路交通科技:应用技术版,2007,2:30-41.
    [404]杨灿文等.铁路路基土动力性质[C].第五届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1990:304-307.
    [405]曹新文,蔡英.铁路路基动态特性的模型试验研究[J].西南交通大学学报,1996,31(1):36-41.
    [406]杨果林,肖宏彬,王永和.加筋土挡墙动变形特性试验与疲劳损伤分析[J].振动工程学报,2002,15(2):173-177.
    [407]王立强,王元战,迟丽华.挡土墙地震土压力及其分布[J].中国港湾建设,2007,151(5):1-5.
    [408]顾慰慈.粘性土主动土压力计算[J].水利学报,1991,1:55-64.
    [409]卢廷浩.考虑粘聚力及墙背粘着力的主动土压力公式[J].岩土力学,2002,23(4):470-473.
    [410]陈昌富,曾玉莹,肖淑君,等.基于CSA和薄层单元法主动土压力计算方法[J].岩石力学与工程学报,2005,24(增2):5292-5296.
    [411]刘金龙,陈陆望,栾茂田.挡土墙土压力非线性分布的计算方法研究[J].重庆建筑大学学报,2008,30(4):87-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700