用户名: 密码: 验证码:
深部岩体分区破裂形成机制的模型试验与分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
这些年来,深部地下洞室工程在地下工程中所占的比重越来越大,对于深部洞室中的各种岩石破裂现象的研究也有了新的发现。在高地应力,高温,大扰动等复杂情况下,深部岩体破坏出现了与浅部岩体截然不同的破坏现象,其中,分区破裂现象十分引人关注。本文结合国家自然科学基金项目,以淮南矿区丁集煤矿深部巷道为工程背景,基于模型试验相似理论,依托自主研制的大型真三维地质力学模型试验系统,通过多个不同工况的地质力学模型试验研究不同洞室形态、不同地应力加载方向和含有夹层等因素对分区破裂破坏模式的影响,对研究分区破裂的影响因素及形成机制有十分重要的意义。本文的研究工作和相关结果如下:
     (1)自主研制了高地应力真三维加载模型试验系统,最大压力加载值为31.5Mpa,可用于同步、独立地向模型施加三轴高地应力。
     (2)开展了预留洞室轴向压缩破坏的模型试验,发现轴向高地应力下的洞室围岩出现了多条间隔破坏线,验证了轴向高地应力是导致产生分区破裂的重要因素。
     (3)在圆形、城门洞形、矩形等不同洞形条件下进行模型试验,均再现了分区破裂现象。得出:在动力开挖下,初始最大主应力平行于洞轴方向且其量值超过1.5倍围岩的抗压强度是深部洞室围岩产生分区破裂的重要条件;分区破裂纵向裂纹与巷道轴线基本平行;分区破裂的范围与洞形和洞室尺寸密切有关,洞室尺寸越大,分区破裂范围就越大;分区破裂形状与洞形无关,在不同洞型条件下,围岩分区破裂最外边界的形状均为近似的圆形;相邻两破坏区的平均半径之比在1.3-1.4之间,基本符合(?)的模数关系,即ri=(?)(i=1,2,3,4),其中i为破裂区的编号,r0为巷道的半径或宽度。
     (4)试验得到含有夹层的模型在动力开挖且平行于洞轴方向的初始最大主应力超过1.5倍围岩的抗压强度时会出现分区破裂。
     (5)通过初始最大主应力平行和垂直洞轴方向条件下的模型试验,发现初始最大主应力垂直于洞轴向时,模型出现塑性松动圈破坏区,不会出现分区破裂现象。
     (6)基于应变能密度理论进行数值模拟,成功再现了分区破裂现象。数值模拟中的分区破裂破裂区范围、破裂区层数、最大破坏范围与洞径比值与模型试验结果基本相同;数值模拟中洞周位移变化规律与模型试验测得规律基本相同,呈现波浪形变化。
Over the years, the proportion of deep underground cavern project in underground engineering is growing, there are some new discoveries of rock fracture phenomena in the deep tunnel. In the complex case of the high stress, high temperature, large disturbance conditions, the deep rock mass destruction appeared distinct from the shallow rock breakage, which zonal disintegration phenomenon is very interesting. This paper supported by the National Natural Science Foundation of China, taking the Huainan mining area Dingji deep mine roadway as background, based on similar principles of model test, relying on independently developed large-scale three-dimensional geomechanical model test system,taking geomechanical model tests in the different cavern shapes, stress loading directions and geological conditions that is very important to influencing factors and formation mechanism of zonal disintegration. In this paper, the research work and related results are as follows:
     (1) The self-developed high geo-stress true3D loading model test system can be used to apply triaxial high stress synchronization and independently, the maximum pressure is31.5Mpa.
     (2) Through the model test of the axial compression on the cavern obligated, it is found that the axial high geo-stress is the important factor which lead to the zonal disintegration.
     (3) Through the model tests in citygate-shaped, rectangular-shaped reproduce the phenomenon of zonal disintegration.Draw that in the of power excavation and the magnitude of initial maximum principal stress parallel to the hole axis direction more than1.5times of the compressive strength of the surrounding rock is the important condition to the zonal disintegration appearing; the longitudinal cracks of zonal disintegration substantially parallel to axis; the range of the zonal disintegration relates to the hole shapes,caverns size,the longer of the cavern diameter or width, the greater ranger of the zonal disintegration; The zonal disintegration independent of the carven shapes, the outermost boundary are approximated circular shapes in zonal disintegration;the average radius ratio of the two adjacent destruction between1.3~1.4, in line with (?)2modulus relationship,that ri=(?)2ri-1(i=1,2,3,4),i is the number of the rupture zone, r0is the radius or width of the cavern.
     (4) When the test model containing interlayers in the of power excavation and the magnitude of initial maximum principal stress parallel to the hole axis direction more than1.5times of the compressive strength of the surrounding rock,the phenomenon of zonal disintegration appears.
     (5) Through initial maximum principal stress parallel and perpendicular to the hole axis direction model test and found that when the initial maximum principal stress vertical axial hole, the model plastic loose circle of damage zone appears, which does not appear the phenomenon of zonal disintegration.
     (6) Based on the strain energy density theory successfully reproduced the phenomenon of zonal disintegration with numerical simulation. In the numerical simulation of zonal disintegration, the rupture area, rupture zone layers, ratio of the maximum extent of damage with the hole diameter are basically same with the model test results; the displacement variation in numerical simulation with model test measured law is basically the same, showing changes in the wavy.
引文
[1]钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定[J].东华理工学院学报,2004,27(1):1-5.
    [2]Nikolaevshij V N. Mechanics of porous and fractured media[M].New York:USA,1990.
    [3]李化敏,李华奇,周宛.煤矿深井的基本概念与判别准则[J].煤矿设计,.1999(10):5-7
    [4]李海燕,刘玉萍,秦佳之,薛翊国.煤矿深井开采的合理经济深度研究[J].地下空间与工程学报,2008,4(4):645-648
    [5]崔希民,刘艳华.地下资源安全开采深度的研究[J].矿业研究与开发2000,20(6):1-2.
    [6]梁政国.煤矿山深浅部开采界线划分问题[J].辽宁工程技术大学学报(自然科学版).2001,20(4):54-56
    [7]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报.2005,24(6):2854-2858
    [8]孙晓明,何满潮,杨晓杰.深部软岩巷道锚网索耦合支护非线性设计方法研究[J].岩土力学,2006,27(7):1061-1065.
    [9]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.
    [10]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩体力学与工程学报,2005,24(16):2803-2813.
    [11]李全生.我国井工煤矿开采技术现状和发展展望[J].煤矿开采,2002,7(3):1-5
    [12]钱七虎.非线性岩土力学的新进展—深部岩体力学的若干问题[C]//中国岩石力学与工程学会主编.第八届全国岩石力学与工程技术大会论文集.北京:科学出版社,2004:10-17
    [13]ADAMS G.D, JAGER A.[J]. Etroscopic observations of rock fracturing ahead of faces in deep-level gold mines[J]. Journal of the South Afric Institute of Mining and Metallurgy, 1980,(2):115-127.
    [14]SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workings, part Ⅰ:data of in-situ observations[J]. Journal of Mining Science,1986,22(3):157-168.
    [15]SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workings, part Ⅱ:rock fracture simulated in equivalent materials[J]. Journal of Mining Science,1986,22(4):223-232.
    [16]SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workings, part Ⅲ:theoretical concepts[J]. Journal of Mining Science, 1987,23(1):1-6.
    [17]SHEMYAKIN E I, KURLENYA M V, OPARIN V N, et al. Zonal disintegration of rocks around underground workings, part Ⅳ:practical applications[J]. Journal of Mining Science, 1989,25(4):297-302.
    [18]李术才,王汉鹏,钱七虎等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报,2008,27(8):1545-1553.
    [19]许宏发,钱七虎,王发军等.电阻率法在深部巷道分区破裂探测中的应用[J].岩石力学与工程学报,2009,28(1):111-119.
    [20]朱杰,汪仁和,林斌深埋巷道围岩多次破裂现象与裂隙张开度研究[J].煤炭学报,2010,887-890.
    [21]第21期新观点、新学说学术沙龙:围岩分区破裂现象以及相关的理论问题报告[R].北京:中国科协,中国岩石力学与工程学会,2008.
    [22]M.V.Kurlenya and V.N.Oparin. Scale factor of phenomen-on of zonal disintegration of rock, and canonical series of atomic and ionic radii. Journal of Mining Science, [J].1996,32(2): 81-90.
    [23]V. N. Oparin and M. V. Kurlenya, Gutenberg velocity section of the Earth and a possible geomechanical explanation, Part I:Zonal geo-disintegration and hierarchic series of geoblocks, " Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No.2(1994).
    [24]Reva V N. Stability criteria of underground workings under zonal disintegration of rocks[J]. Fiz.Tekh. Probl. Razrab. Polezn. Iskop.,2002,(1):35-38.
    [25]Guzev M A and Paroshin A A. Non-euclidean model of the zonal disintegration of rocks around an underground working[J]. Journal of Applied Mechanics and Technical Pysics.2001,42(1):131-139.
    [26]L.S. Metolov and A.F. Morozov. Physical foundations of mechanism of zonal rock failure in the vincity of mine working[J]. Journal of Mining Science.2002,38(2):150-155
    [27]王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报,2006,25(3):448-455.
    [28]陈士林,钱七虎,王明洋.深部坑道围岩的变形与承载能力问题[J].岩石力学与工程学报,2005,24(13):2203-2212.
    [29]王明洋,戚承志,钱七虎.深部岩体块系介质变形与运动特性研究[J].岩石力学与工程学报,2005,24(16):2825-2831.
    [30]王明洋,宋华,郑大亮等.深部巷道围岩的分区破裂机制及深部界定探讨[J].岩石力学与工程学报,2006,25(9):1771-1776.
    [31]陈建功,朱成华,张永兴,等.深部巷道围岩分区破裂化弹塑脆性分析[J].煤炭学报2010,35(4)541-545.
    [32]周小平,钱七虎.深埋巷道分区破裂化机制[J].岩石力学与工程学报,2007,26(5):877-885.
    [33]潘一山,李英杰,唐鑫,等.岩石分区破裂化现象研究[J].岩石力学与工程学报,2007,26(增1):3335-3341.
    [34]李英杰,潘一山,李忠华.岩体产生分区碎裂化现象机制分析[J].岩土工程学报,2006,28(9):1124-1128.
    [35]唐鑫,潘一山,章梦涛.深部巷道区域化交替破碎现象的机制分析[J].地质灾害与环境保护,2006,17(4):80-84.
    [36]李树忱,钱七虎,张敦福等.深埋隧道开挖过程动态及破裂形态分析[J].岩石力学与工程学报,2009,28(10):2104-2112.
    [37]李春睿,康立军,齐庆新等.深部巷道围岩分区破裂与冲击地压关系初探[J].煤炭学报2010,35(2):185-189.
    [38]贺永年,韩立军,邵鹏,蒋斌松.深部巷道稳定的若干岩石力学问题[J].中国矿业大学学报,2006,35(3):288-296.
    [39]贺永年,蒋斌松,韩立军等.深部巷道围岩间隔性区域断裂研究[J].中国矿业大学学报,2008,37(3):300-304.
    [40]周小平,钱七虎,张伯虎.深埋球形洞室围岩分区破裂化机理[J].工程力学,2010,27(1):69-75.
    [41]陈伟,王明洋,顾雷雨.深埋洞室围岩分层断裂现象模型试验解析[J].岩石力学与工程 学报,2009,28(s 1):2680-2686.
    [42]陈坤福.深部巷道围岩破裂演化过程及其控制机理研究与应用[D]徐州:中国矿业大学博士学位论文,2009.
    [43]Wu H, Guo ZK, FQ, et al. Mechanism of zonal disintegration phenomenon in enclosing mass around deep tunnels. Journal of Central South University:Science and Technology, 2009; 16:0303-0311.
    [44]WU H, FANG Q, GUO ZK. Zonal disintegration phenomenon in rock mass surrounding deep tunnels. Journal of China University of Mining and Technology,2008; 18: 0187-0193.
    [45]WU H, FANG Q, ZHANG YD, Zonal disintegration phenomenon in enclosing rock mass surrounding deep tunnels— Elasto-plastic analysis of stress field of enclosing rock mass. Mining Science and Technology,2009; 19:0084-0090.
    [46]X.P. Zhou, F.H. Wang, Q.H. Qian Zonal fracturing mechanism in deep crack-weakened rock masses[J].Theoretical and Applied Fracture Mechanics2008:57-65.
    [47]X.P. Zhou, Q.H. Qian B.H. Zhang, Zonal disintegrationmechanism of deep crack-weakened rockmasses under dynamic unloading[J]. Acta Mechanica Solida Sinica,2009,22 (3):240-250.
    [48]贺永年,张后全.深部围岩分区破裂化理论和实践的讨论[J].岩石力学与工程学报,2008,27(11):2369-2375.
    [49]顾金才,顾雷雨,陈安敏,等.深部开挖洞室围岩分层断裂破坏机制模型试验与分析[J].岩石力学与工程学报,2008,27(3):433-438.
    [50]Q.H. QIAN, X P ZHOU, H.Q. Yang. Zonal disintegration of surrounding rock mass around the diversion tunnels in Jinping II Hydropower Station, Southwestern China. J Theoretical and Applied Fracture Mechanics.2009:129-138
    [51]唐春安,张永彬.岩体间隔破裂机制及演化规律初探[J].岩石力学与工程学报,2008,27(7):1362-1369.
    [52]高富强,康红普,林健,等.深部巷道围岩分区破裂化数值模拟[J].煤炭学报,2010,35(1):21-25.
    [53]李树忱,冯现大,等.深部岩体围岩分区破裂化数值模拟[J].岩土力学与工程学报,2011,30(7):1337-1377.
    [54]李仲奎,徐千军,罗光福.大型地下水电站厂房洞群三维地质力学模型试验[J].水利学报,2002,5(5):31-36.
    [55]袁大祥,朱子龙,朱乔生.高边坡节理岩体地质力学模型试验[J].三峡大学学报,2001,23(3):193-212.
    [56]武汉水利电力大学科研报告:《李家峡水电站地下厂房围岩应力及稳定试验研究》[“七.五”国家科技攻关项目,编号:13-3-3(16)],1991.
    [57]朱维申,李勇,等.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩土力学与工程学报,2008,27(7):1308-1314.
    [58]顾金才,陈安敏,等.在爆炸荷载条件下锚固洞室破坏形态对比试验研究[J].岩土力学与工程学报,2008,27(7):1315-1320.
    [59]关玉顺,于福元.松裂爆破法维护软岩巷道的模型试验研究[J].阜新矿业学院学报,1995,14(2):48-52.
    [60]杨建平,陈卫忠,郑希红.含软弱夹层深部软岩巷道稳定性研究[J].岩土力学,2008,29(10):2864-2870.
    [61]张涛,高明中.巷道锚杆支护模型试验研究[J].煤炭科学技术,1999,27(10):43-45.
    [62]李仲奎,卢达溶,等.大型地下洞室群三维地质力学模型试验中隐蔽开挖模拟系统的研究和设计[J].岩石力学与工程学报,2004,23(2):181-186.
    [63]姜小兰,陈进,等.锦屏一级水电站地下厂房洞室群地质力学模型试验分析[J].长江科学院院报,2005,22(1):50-53.
    [64]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004,23(1):48-51.
    [65]杨法玉.小浪底地下厂房洞室群多裂隙介质力学模型试验[J].人民黄河,1995,17(2):45-48.
    [66]赖小彬,张伯虎,等.某矿山巷道围岩的三维非线性稳定分析[J].地下空间与工程学报,2008,4(5):870-873.
    [67]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验[M].北京:中国水利水电出版社,2005.
    [68]张杰,侯忠杰.固-液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157-3161.
    [69]徐文胜,许迎年,王元汉等.岩爆模拟材料的筛选研究[J].岩石力学与工程学报,2000,19(增):873-877.
    [70]潘一山,章梦涛,王来贵等.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报,1997,19(4):49-56.
    [71]张强勇,李术才,郭小红.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [72]姜耀东,刘文岗,赵毅鑫.一种新型真三轴巷道模型试验台的研制[J].岩石力学与工程学报,2004,23(21):3727-3731.
    [73]沈俊,顾金才,等.岩土工程抗爆结构模型试验装置研究及应用[J].地下空间与工程学报,2007,3(6):1077-1080.
    [74]郭舜年,李先榕.三维地质力学模型试验装置加载及其系统控制技术[J].水电工程研究,1997,3(6):33-37.
    [75]张强勇,李术才,郭小红.组合式地质力学模型试验系统及其在分岔隧道工程中的应用[J].岩土工程学报,2007,29(9):1337-1343.
    [76]张强勇,李术才,尤春安.新型岩土地质力学模型试验系统的研制及应用[J].土木工程学报,2006,39(12):100-107.
    [77]陈旭光,张强勇等.数控真三维梯度加载模型试验系统的研制及应用[J].煤炭学报,2011,36(2):272-277.
    [78]张强勇,陈旭光,林波等.高地应力真三维加载模型试验系统的研制及其应用[J].岩土工程学报2010,32(10):1588-1593.
    [79]陈旭光,张强勇,李术才等.深部巷道围岩分区破裂现象的试验与现场监测对比研究[J].岩土工程学报,33(1),2011:70-76.
    [80]赖勇,张永兴.岩石宏、细观损伤复合模型及裂纹扩展规律研究[J].岩石力学与工程学报,2008,27(3):534-542.(LAI Yong, ZHANG Yongxing. Study on macro- and meso-damage compositemodel of rock and crack propagation rule[J]. Chinese Journal of RockMechanics and Engineering,2008,27(3):534-542.(in Chinese)).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700