用户名: 密码: 验证码:
铝合金薄壁贮箱结构焊接变形预测及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金薄壁贮箱结构是航空航天领域薄件的代表构件,广泛应用于飞行器、军工武器等方面,且作为载体,筒体本身有多种焊接,包括纵向焊缝、环向焊缝、法兰焊缝等。这些焊缝的变形直接影响后续加工及整个产品的服役寿命。因此,焊接变形预测及控制便显得尤为重要。传统做法是通过诸如正交实验等方法多次实验,确定合适的焊接工艺及焊接工装,以此达到对焊接变形进行控制的目的,这种方法成本昂贵。
     本文对铝合金薄壁贮箱结构焊接变形的预测及控制进行了较深入的研究,同时本文也是上海交通大学焊接工程研究所机器人焊接智能化技术实验室与上海航天精密机械研究所联合承担的总装备部十一五预先研究项目“航天器新型铝合金结构机器人焊接技术”的重要组成部分。
     本文从有限单元法的角度分析贮箱薄壁筒体纵缝、环缝、法兰焊缝的热源形式及热源加载方法。在模拟的过程中,实现了起焊停留、平稳焊接、熄弧、焊后自然冷却;提出有限元方法工装设计的一般方法,在草案设计阶段利用位移约束代替实际工装进行计算;根据得到的最优草案,确定法兰焊接工装的主要组件并最终确认工装方案;采用Pro/E进行三维造型及CAD制图;对含工装的模型进行有限元焊后变形预测,建立了含工装约束的薄壁筒体法兰焊接的热弹塑性有限元模型,处理了建模过程中的单元离散、有间隙板壳单元的连接、模型简化等问题,从理论上支持了工装的可用性;对焊接工艺进行有限元优化:在确定工装可用的前提下对焊接工艺进行了分析。通过不同起焊点进行仿真计算并对其计算结果进行分析,得出焊后变形最小的起焊点;并对焊接路径进行了分析。
     最后采用机器人、激光位移传感器、采集卡、焊接变位机等设备自建测量系统,进行圆度测量,并对计算误差进行了分析,从而证明了本文利用有限元方法进行的工装设计及工艺优化结果适用于焊接变形的控制。
The structure of thin-walled aluminum alloy cylinder is the representative of components widely used in aircraft, military weapons, etc., and as a carrier, cylinder itself has a variety of weld, including the longitudinal weld, circumferential weld, flange weld. The welding deformation makes a direct impact on the quality of follow-up processing and service life of the product. Therefore, prediction and control of the welding deformation seems particularly important. Traditional practices such as orthogonal experiment,which determine the appropriate welding technology and welding fixture through lots of experiments to achieve the purpose of controlling welding deformation, is costly.
     This paper studies on prediction and control of welding deformation of thin-walled aluminum alloy cylinder structure in depth, while it is an important part of General Armament Department Eleventh Five-Year Department pre-research project "a new type of aluminum alloy structure spacecraft robot welding technology", which is a joint commitment to Intelligentized Robotic Welding Technology Laboratory of Shanghai Jiaotong University Welding Engineering Institute and Shanghai Spaceflight Precision Machinery Research Institute.
     This article analyzes heat source form and heat load method of longitudinal weld, circumferential weld, and flange weld on thin-walled cylinder from the perspective of finite element method. In the simulation process, starting welding with seconds of staying, smooth welding, arc out, natural cooling after welding is achieved. A general method of designing fixture with finite element method is proposed, which is firstly replacing actual fixture by displacement constraints to carry out the simulation calculation in the draft design stage; sencondly determining the best fixture program and major components of fixture according to drafts; thirdly completing fixture’s three-dimensional modeling and mapping with software Pro/E and Auto CAD;forthly establishing thermal plastic finite element model to simulate welding deformation under the upper fixture. If the prediction result is passed, the fixture design is completed, or not, modifying the fixture program till it’s ok.
     In the process of simulating, discreting units, connecting gap shell elements, simplificteing model simplification etc., is skillfully solved. The best staring welding spot is found through choosing different starting spots to carry out simulation and welding path is also analyzed.
     Finally, self-build measurement system with robots, laser displacement sensor, collector and positioner is used for roundness measurement. Calculation errors are analyzed in order to prove that the finite element method, conducting fixture design and process optimization to predicte and control welding deformation, is feasible.
引文
[1]王勖成,邵敏.有限单元法基本原理和数值方法(第2版) [M].北京:清华大学出版社,2003:1-48.
    [2]曾攀.有限元分析及应用.北京:清华大学出版社,2006:5-35.
    [3](美)J.N.Reddy著,邹仲康,吴瑞林等译.有限元法概论.湖南:湖南科学技术出版社,1988:25-125.
    [4] (美) R.L.Taylor,(英)O.C.Zienkiewica著,曾攀等译.有限元方法(第5版)基本原理.北京:清华大学出版社,2008:1-50.
    [5]何放龙,何益斌,陆新征等.有限元法及其应用.北京:机械工业出版社,2006:3-25.
    [6]王泳嘉,郭爱民.离散单元法及其在岩土力学中的应用.辽宁:东北大学出版社,1991:55-85.
    [7]赵霞,接触问题的有限元法分析及其工程应用[硕士论文].上海:上海交通大学,2007.
    [8]何江达,范景伟,张建海.刚体弹簧元理论及应用.成都:成都科技大学出版社,1997:45-110.
    [9]刘涛,杨凤鹏.精通ANSYS.北京:清华大学出版社,2002:1-112.
    [10]美国ANSYS公司. ANSYS非线性分析指南[Z].北京:美国ANSYS公司北京办事处,2000:56-73.
    [11]博弈创作室. APDL参数化有限元分析技术及其应用实例.北京:中国水利水电出版社,2005:1-158.
    [12]陈火红,祁鹏. MSC.Patran/Marc培训教程和实例.北京:科学出版社,2004:1-60.
    [13] MSC公司. Nastran 2001 Release Guide.美国:MSC公司,2001:5-68.
    [14]刘兵山,黄聪. Patran从入门到精通.北京:中国水利水电出版社,2003:2-78.
    [15] (美)SolidWorks公司.杭州新迪数字工程系统有限公司编译. COSMOS基础教程.北京:机械工业,2007:2-79.
    [16]刘展,祖景平,钱英莉等. ABAQUS 6.6在机械工程中的应用.北京:中国水利水电出版社,2008:1-124.
    [17]魏祖健,傅志一,张希伟等.薄壁构件焊接接头应变分析.北京农业工程大学学报,1990,10(2):91-96.
    [18]单平.薄壁球形结构焊接变形控制的有限元分析.压力容器,1992,9(6):38-42.
    [19]郑长良,黄若煜,姚伟岸等.基于平面弹性-板弯曲模拟关系的薄板有限元列式——从膜单元到薄板单元.计算力学学报,2001, 18(3):253-258.
    [20]方洪渊,王霄腾,范成磊等. LF6铝合金薄板平面内环焊缝焊接应力与变形的数值模拟.焊接学报,2004,25(4):73-76.
    [21]熊永华,陈思作.薄壁钢管残余应力有限元分析.建筑技术开发,2004,31(11):18-20.
    [22]岳红杰,赵海燕,蔡志鹏等.薄壁铝合金结构焊接应力变形数值模拟.工程机械学报,2005(41-2):223-227.
    [23]林莉莉,侯志刚,张俊华等.薄壁箱形梁的焊接变形预测.中国制造业信息化,2005,35(3):76-78.
    [24]张瑛莉,汪苏,蔡玲玲.利用SYSWeld进行薄壁圆筒纵缝焊接的模拟与分析.现代焊接,2006(8):20-22.
    [25]卢振洋,刘建,黄鹏飞等.基于ANSYS薄板GTAW焊接温度场数值模拟.软件天地,2007,23(2-1),291-292.
    [26]周雪平,王俊恒,张广军等.小截面薄壁方管并行焊接温度场及变形的数值模拟.焊接,2007(7):39-42.
    [27]周广涛,刘雪松,杨建国等.铝合金薄壁圆筒纵直缝焊接残余应力数值模拟.焊接学报,2008,29(6):89-92.
    [28]徐涛.基于FEA的五通连接器变形预测和焊接工装设计[硕士论文].上海:上海交通大学,2007.
    [39]杨世铭.传热学.北京:高等教育出版社,1980:2-16.
    [30] [美]杰姆斯.苏赛克著.俞佐平等译.传热学.北京:人民教育出版社,1981:231-336.
    [31]吴、赵海燕,王煜等.高能束焊接数值模拟中的新型热源模型.焊接学报,2004,25(1):91-94.
    [32] A Goldak, Chakravarti A and Bibby M,A Double Ellipsoid Finite Element Model for Welding Heat Sources, IIW Doc, 1985, No. 212-603-85.
    [33] A Goldak, Chakravarti A and Bibby M, A new finite element model for welding heat sources, Met Trans13(15B)(June1984): 299-305.
    [34]苏冲岗.焊接机器人双目立体视觉手眼系统的标定[硕士论文].上海:上海交通大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700