用户名: 密码: 验证码:
基于Mn/Ce-ZrO_2催化剂的低温NH_3-SCR脱硝性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NH3-SCR脱硝工艺因其经济性、高效性,成为脱除电站锅炉烟气中NO的主流工艺。传统商业催化剂V2O5-WO3(MoO3)/TiO2脱硝温度窗口为300-400℃,为了避免重复加热烟气,SCR反应器必须安装在脱硫、除尘装置的上游,而该烟气段高浓度的烟尘会影响催化剂脱硝性能,降低催化剂使用寿命。低温NH3-SCR脱硝工艺有希望使SCR反应器布置在静电除尘器之后,降低粉尘冲蚀对催化剂的影响,使该工艺备受关注。但是,多数烟气在通过脱硫装置后仍含有少量的S02,在低温条件下SO2对SCR催化剂有很强的毒化作用,并且在烟气中含有H20的情况下,SO2的毒化作用更强。因此,低温SCR催化剂的抗SO2、抗H20性能是研究的核心。以此为背景,本文以Mn/Ce-ZrO2催化剂为研究对象,对其进行了低温脱硝性能,特别是抗H20、抗SO2性能的研究。
     对Mn/Ce-ZrO2与传统的低温脱硝催化剂Mn/P25和Mn/Al2O3进行了低温SCR脱硝活性及抗H20、抗SO2性能的对比。结果表明,Mn/Ce-ZrO2具有更高的低温活性,这与其氧化还原性质有关。H2-TPR显示,Mn/Ce-ZrO2更容易发生氧化还原反应。Mn/Ce-ZrO2的抗H20、抗SO2性能最好,可能的原因是Mn/Ce-ZrO2具有较多的表面酸位点,且表面生成的硫铵盐不稳定。
     为了进一步揭示Mn/Ce-ZrO2脱硝性能更好的原因,对比了Mn/Ce-ZrO2, Mn/CeO2和Mn/ZrO26勺低温SCR脱硝活性及抗H20、抗SO2性能。结果发现,较高的MnO。分散度,较强的氧化还原能力,更多的表面吸附氧是Mn/Ce-ZrO2具有高低温脱硝活性的原因。抗H20、抗S02实验之后催化剂表面生成的水合物较少,且硫酸化程度低是Mn/Ce-ZrO2具有强抗H20、抗S02性能的原因。
     对Mn/Ce-ZrO2进行加Co改性发现,Co改性载体所制备的催化剂Mn/Co-Ce-ZrO2具有更高的MnOx分散度,更强的表面酸性和氧化还原能力,更多的表面吸附氧和Mn4+,因此其脱硝活性更高,在180℃脱硝效率达97.1%。同时Mn/Co-Ce-ZrO2具有更强的抗H20、抗SO2性能。通入H2O+SO2后,脱硝活性虽略有下降,但能稳定维持在91%,切断H2O+SO2后,其活性完全恢复。XPS表明,抗H2O+SO2实验中Mn/Co-Ce-ZrO2表面几乎没有硫酸盐的累积。
     对Mn/Co-Ce-ZrO2催化剂进行系统研究,发现在不同条件下Mn/Co-Ce-ZrO2均展现出较高的SCR脱硝活性及抗H20、抗SO2性能。动力学研究发现,Mn/Co-Ce-ZrO2的SCR反应活化能E=17543.3J-mol-1。较低的反应活化能是Mn/Co-Ce-ZrO2具有较高的低温SCR脱硝活性的原因。为了降低催化剂成本,采用堇青石和沸石分子筛涂覆的方式制备催化剂。两种方式制备的催化剂都具有较高的催化活性,但沸石分子筛涂覆制备的催化剂抗H2O+SO2性能更强。载体用硫酸处理后抗H2O+SO2性能进一步提高。
Selective catalytic reduction (SCR) of NO with NH3is widely used to reduce NO producing in combustion processes because of the low cost and high efficiency. V2O5-WO3(MOO3)/TiO2is the most commonly adopted commercialized catalyst system with high activity in the temperature range of300-400℃. However, the deactivation of catalysts caused by dust and SO2is serious because the unit for SCR catalysts has to be located upstream of the desulfurizer and the electrostatic precipitator when the reaction temperature is considered. In order to avoid reheating the flue gas, the unit of SCR catalysts has to be located upstream of the desulfurizer and electrostatic precipitator. However, the high concentration of dust reduces the performance and longevity of catalysts. Therefore, it's necessary to develop low-temperature SCR catalysts which can be located downstream of the desulfurizer and electrostatic precipitator. Most of the flue gas contains a few amounts of SO2even after the desulfurizer. Catalysts for low-temperature SCR are generally very sensitive to SO2and the deactivated action of SO2will be more intense when H2O is present. Therefore, the resistance to SO2and H2O is the core of low-temperature SCR study. Base on these facts, we researched the performance of NO removal and the resistance to SO2and H2O of Mn/Ce-ZrO2.
     A contrastive study was made on Mn/Ce-ZrO2, Mn/P25and Mn/Al2O3. The results showed that Mn/Ce-ZrO2had a better activity at lower temperature. This corresponded to the redox character of the catalysts. The results of H2-TPR showed that Mn/Ce-ZrO2was more easily to initiate reduction reaction. Mn/Ce-ZrO2had the best resistance to SO2and H2O which might due to more acid sites and the instability of ammonia sulfate on the surface of Mn/Ce-ZrO2.
     A contrastive study was made on Mn/Ce-ZrO2, Mn/CeO2and Mn/ZrO2to study the reason for the good performance of NO removal and the good resistance to SO2and H2O of Mn/Ce-ZrO2. Mn/Ce-ZrO2had higher dispersion of manganese oxides, better redox property and more weakly adsorbed oxygen species, which resulted in the higher activity of Mn/Ce-ZrO2. In addition, Mn/Ce-ZrO2showed a good resistance to SO2and H2O which was due to the weak water absorption and weak sulfation process on the surface of the catalyst.
     Co was used as a modifier for Mn/Ce-ZrO2and Mn/Co-Ce-ZrO2with Co as a modifier for the support had a higher dispersion of manganese oxides, a better redox property and more surface adsorbed oxygen species and Mn4+. These facts caused a better low-temperature activity for Mn/Co-Ce-ZrO2. In addition, Mn/Co-Ce-ZrO2showed an excellent resistance to SO2and H2O and presented91%NO conversion under SO2and H2O and the activity of Mn/Co-Ce-Zr02totally recovered after cutting off the injection of SO2and H2O. XPS results indicated that the introduction of cobalt as a modifier for the support of catalysts decreased the formation of sulfate salts and hydroxyls on the surface of Mn/Co-Ce-ZrO2.
     A systematic study was made on Mn/Co-Ce-ZrO2and it showed an excellent performance of NO removal and the resistance to SO2and H2O at different conditions. The results of kinetic study showed that the active energy of Mn/Co-Ce-ZrO2was17543.3J·mol-1and the lower active energy is the reason for the good performance of NO removal for Mn/Co-Ce-ZrO2. To reduce costs, Mn/Co-Ce-ZrO2was coated on cordierite and zeolites. Both catalysts coated on cordierite and zeolites had good performance of NO removal. And the catalyst coated on zeolites had better resistance to SO2and H2O. The treatment with H2SO4for zeolites improved the resistance to SO2and H2O of the catalyst.
引文
[1]胡和兵,王牧野,吴勇民等.氮氧化物的污染与治理方法[J].环境保护科学,2006,32(4):5-9.
    [2]胡怀生,郑旭东,胡浩斌.氮氧化物对环境污染的分析与防治措施[J].甘肃高师学报,2003,8(5):38-39.
    [3]赵由才.环境工程化学[M].北京:化学工业出版社,2003.529-530.
    [4]王广盛,赵显坤,桂永亮.工业锅炉NOx污染及防治[J].石油化工环境保护,2003,26(2):52-54.
    [5]国家发展和改革委员会能源研究所课题组.中国2050年低碳发展之路能源需求暨碳排放情景分析[M].北京:科学出版社,2009.
    [6]Kaspar J, Fornasiero P, Hickey N. Automotive catalytic converters:current status and some perspectives[J]. Catalysis Today,2003,77(4):419-449.
    [7]Koebel M, Madia G, Raimondi F, et al. Enhanced reoxidation of Vanadia by NO2 in the fast SCR reaction[J]. Journal of Catalysis,2002,209(1):159-165.
    [8]柳清华.简述选择性催化还原法(SCR)烟气脱硝技术[J].锅炉制造,2008,3:42-43.
    [9]郑晓峰,包正强,冯耀勋等.选择性催化还原烟气脱硝技术(SCR)的实践与探讨[J].节能,2006,2:51-53.
    [10]马东祝,张玲,李树山等.燃煤电厂SCR烟气脱硝技术的应用及发展[J].煤炭技术,2011,30(3):5-7.
    [11]Kijlstra W S, Biervliet M, Poels E K, et al. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B:Environmental,1998,16(4):327-337.
    [12]Casapu M, Krocher O, Elsener M. Screening of doped MnOx-Ce02 catalysts for low-templerature NO-SCR[J]. Applied Catalysis B:Environmental,2009,88(3-4):413-419.
    [13]Zhu Z P, Liu Z Y, Liu S J, et al. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures [J]. Applied Catalysis B:Environmental,2000,26(1): 25-35.
    [14]Inomata M, Miyamoto A, Murakami Y. Mechanism of thereaction of NO and NH3 on vanadiumoxide catalyst in thepresence of oxygen under the dilute gas condition[J]. Journal of Catalysis,1980,62(1):140-148.
    [15]Topsoe N Y, Topsoe H, Dumesic J A. Vanadia/Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric-Oxide by Ammonia:Ⅰ. Combined Temperature-Programmed in-Situ FTIR and On-line Mass-Spectroscopy Studies[J]. Journal of Catalysis,1995,151(1):226-240.
    [16]Topsoe N Y, Dumesic J A, Topsoe H. Vanadia-Titania Catalysts for Selective Catalytic Reduction of Nitric-Oxide by Ammonia:Ⅱ. Studies of Active Sites and Formulation of Catalytic Cycles[J]. Journal of Catalysis,1995,151(1):241-252.
    [17]Tronconi E, Forzatti P, Gomez Martin J P, et al. Selective catalytic removal of NOx:a mathematical model for design of catalyst and reactor[J]. Chemical Engineering Science,1992, 47(9-11):2401-2406.
    [18]Takagi M, Kawai T, Soma M, et al. The mechanism of the reaction between NOx and NH3 on V2O5 in the presence of oxygen[J]. Journal of Catalysis,1977,50(3):441-446.
    [19]Takagi M, Kawai T, Soma M, et al. Mechanism of catalytic reaction between nitric oxide and ammonia on vanadium pentoxide in the presence of oxygen[J]. The Journal of Physical Chemistry, 1976,80(4):430-431.
    [20]Went G T, Oyama S T, Bell A T. Laser Raman spectroscopy of supported vanadium oxide catalysts[J]. The Journal of Physical Chemistry,1990,94(10):4240-4246.
    [21]Went G T, Leu L-j, Bell A T. Quantitative structural analysis of dispersed vanadia species in TiO2(anatase)-supported V2O5[J]. Journal of Catalysis,1992,134(2):479-491.
    [22]Willi R, Roduit B, Koeppel R A, et al. Selective reduction of NO by NH3 over vanadia-based commercial catalyst:Parametric sensitivity and kinetic modelling[J]. Chemical Engineering Science,1996,51(11):2897-2902.
    [23]Kijlstra W S, Brands D S, Poels E K, et al. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3[J]. Journal of Catalysis,1997,171(1):208-218.
    [24]Kijlstra W S, Brands D S, Smit H I, et al. Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 Ⅱ. Reactivity of adsorbed NH3 and NO complexes[J]. Journal of Catalysis,1997,171(1):219-230.
    [25]马忠云,陈慧雁,刘振强等.烟气SCR法脱硝工艺流程的设计与应用[J].电力建设,2008,29(6):53-56.
    [26]钟秦.燃煤脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002.
    [27]沈伯雄,施建伟,杨婷婷等.选择性催化还原脱氮催化剂的再生及其应用评述[J].化工进展,2008,27(1):64-67.
    [28]Amiridis M D, Duevel R V, Wachs I E. The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia[J]. Applied Catalysis B:Environmental,1999,20(2):111-122.
    [29]Finocchio E, Baldi M, Busca G, et al. A study of the abatement of VOC over V2O5-WO3-T1O2 and alternative SCR catalysts[J]. Catalysis Today,2000,59(3-4):261-268.
    [30]Smirniotis P G, Pena D A, Uphade B S. Low-Temperature Selective Catalytic Reduction (SCR) of NO with NH3 by Using Mn, Cr, and Cu Oxides Supported on Hombikat TiO2[J]. Angewandte Chemie International Edition,2001,40(13):2479-2482.
    [31]Pena D A, Uphade B S, Smirniotis P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3:I. Evaluation and characterization of first row transition metals[J]. Journal of Catalysis,2004,221(2):421-431.
    [32]苏杭.SCR系统中板式和蜂窝式催化剂的选取[J].电力环境保护,2005,21(2):27-29.
    [33]朱林,吴碧君,段玖祥等.SCR烟气脱硝催化剂生产与应用现状[J].中国电力,2009,42(8):61-64.
    [34]于千.国内外SCR催化剂应用概述[J].应用化工,2010,39(6):921-928.
    [35]Broer S, Hammer T. Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2O5-WO3/TiO2 catalyst[J]. Applied Catalysis B:Environmental,2000, 28(2):101-111.
    [36]Gao X, Jiang Y, Zhong Y, et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials,2010,174(1-3):734-739.
    [37]Zheng Y, Jensen A D, Johnsson J E, et al. Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants:Elucidation of mechanisms by lab-and pilot-scale experiments[J]. Applied Catalysis B:Environmental,2008,83(3-4):186-194.
    [38]Larsson A-C, Einvall J, Andersson A, et al. Targeting by comparison with laboratory experiments the SCR catalyst deactivation process by potassium and Zinc salts in a large-scale biomass combustion boiler[J]. Energy & Fuels,2006,20(4):1398-1405.
    [39]Kamata H, Takahashi K, Odenbrand C U I. The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst[J]. Journal of Molecular Catalysis A:Chemical,1999,139(2-3):189-198.
    [40]Benson S A, Laumb J D, Crocker C R, et al. SCR catalyst performance in flue gases derived from subbituminous and lignite coals[J]. Fuel Processing Technology,2005,86(5):577-613.
    [41]Nicosia D, Czekaj I, Krocher O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution:Part Ⅱ. Characterization study of the effect of alkali and alkaline earth metals[J]. Applied Catalysis B:Environmental, 2008,77(3-4):228-236.
    [42]Klimczak M, Kern P, Heinzelmann T, et al. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts-Part Ⅰ:V2O5-WO3/TiO2 catalysts[J]. Applied Catalysis B:Environmental,2010,95(1-2):39-47.
    [43]Tang F, Xu B, Shi H, et al. The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3[J]. Applied Catalysis B: Environmental,2010,94(1-2):71-76.
    [44]Chen L, Li J, Ge M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chemical Engineering Journal,2011, 170(2-3):531-537.
    [45]Jensen-Holm H, TopsΦ e N-Y,崔建华.选择催化还原(SCR)脱硝技术在中国燃煤锅炉上的应用[J].热力发电,2007,36(8):13-18.
    [46]Qi G S, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental,2004,51(2):93-106.
    [47]Fedeyko J M, Chen B, Chen H-Y. Mechanistic study of the low temperature activity of transition metal exchanged zeolite SCR catalysts[J]. Catalysis Today,2010,151(3-4):231-236.
    [48]Kang M, Park E D, Kim J M, et al. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catalysis Today,2006,111(3-4):236-241.
    [49]Lu P, Li C, Zeng G, et al. Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria[J]. Applied Catalysis B:Environmental,2010, 96(1-2):157-161.
    [50]Huang Z, Zhu Z, Liu Z. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures[J]. Applied Catalysis B:Environmental,2002, 39(4):361-368.
    [51]Yang S, Li J, Wang C, et al. Fe-Ti spinel for the selective catalytic reduction of NO with NH3: Mechanism and structure-activity relationship[J]. Applied Catalysis B:Environmental,2012, 117-118:73-80.
    [52]Matralis H, Theret S, Bastians P, et al. Selective catalytic reduction of nitric oxide with ammonia using MoO3/TiO2:Catalyst structure and activity[J]. Applied Catalysis B: Environmental,1995,5(4):271-281.
    [53]Putluru S S R, Mossin S, Riisager A, et al. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia[J], Catalysis Today,2011,176(1):292-297.
    [54]Li Y, Cheng H, Li D, et al. WO3/CeO2-ZrO2, a promising catalyst for selective catalytic reduction (SCR) of NOx with NH3 in diesel exhaust[J]. Chemical Communications,2008,12: 1470-1472.
    [55]Wallin M, Forser S, Thormahlen P, et al. Screening of TiO2-supported catalysts for selective NOx reduction with ammonia[J]. Industrial & Engineering Chemistry Research,2004,43(24): 7723-7731.
    [56]Smirniotis P G, Pena D A, Uphade B S. Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2[J]. Angewandte Chemie-International Edition,2001,40(13):2479-2481.
    [57]Qi G S, Yang R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Applied Catalysis B:Environmental,2003,44(3): 217-225.
    [58]Zhang Q L, Qiu C T, Xu H D, et al. Low-temperature selective catalytic reduction of NO with NH3 over monolith catalyst of MnOx/CeO2-ZrO2-Al2O3[J]. Catalysis Today,2011,175(1): 171-176.
    [59]Liu H, Wei L, Yue R, et al. CrOx-Ce02 binary oxide as a superior catalyst for NO reduction with NH3 at low temperature in presence of CO[J]. Catalysis Communications,2010,11(9): 829-833.
    [60]Thirupathi B, Smirniotis P G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures[J]. Applied Catalysis B:Environmental,2011,110:195-206.
    [61]Huang J H, Tong Z Q, Huang Y, et al. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J]. Applied Catalysis B:Environmental,2008,78(3-4):309-314.
    [62]Xu W Q, Yu Y B, Zhang C B, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J]. Catalysis Communications,2008,9(6):1453-1457.
    [63]Liu Y, Gu T, Wang Y, et al. Influence of Ca doping on MnOx/TiO2 catalysts for low-temperature selective catalytic reduction of NOx by NH3[J]. Catalysis Communications,2012, 18:106-109.
    [64]Xie G Y, Liu Z Y, Zhu Z P, et al. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent I. Deactivation of SCR activity by SO2 at low temperatures[J]. Journal of Catalysis,2004,224(1):36-41.
    [65]Caraba R M, Masters S G, Eriksen K M, et al. Selective catalytic reduction of NO by NH3 over high surface area vanadia-silica catalysts[J]. Applied Catalysis B:Environmental,2001, 34(3):191-200.
    [66]Lee S M, Park K H, Hong S C. MnOx/CeO2-TiO2 mixed oxide catalysts for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chemical Engineering Journal,2012, 195-196(23):323-331.
    [67]Chary K V R, Kumar C P, Naresh D, et al. Characterization and reactivity of Al2O3-ZrO2 supported vanadium oxide catalysts[J]. Journal of Molecular Catalysis A:Chemical,2006,243(2): 149-157.
    [68]Jin R B, Liu Y, Wu Z B, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and A12O3:A comparative study[J]. Chemosphere,2010, 78(9):1160-1166.
    [69]Smirniotis P G, Sreekanth P M, Pena D A, et al. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2:A comparison for low-temperature SCR of NO with NH3[J]. Industrial & Engineering Chemistry Research,2006,45(19):6436-6443.
    [70]Sultana A, Sasaki M, Hamada H. Influence of support on the activity of Mn supported catalysts for SCR of NO with ammonia[J]. Catalysis Today,2012,185(1):284-289.
    [71]Tang X F, Li J H, Sun L, et al. Origination of N2O from NO reduction by NH3 over β-MnO2 and a-Mn2O3[J]. Applied Catalysis B:Environmental,2010,99(1-2):156-162.
    [72]Tang X L, Hao J M, Yi H H, et al. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts[J]. Catalysis Today,2007,126(3-4):406-411.
    [73]Santillan-Jimenez E, Miljkovic-Kocic V, Crocker M, et al. Carbon nanotube-supported metal catalysts for NOx reduction using hydrocarbon reductants. Part 1:Catalyst preparation, characterization and NOx reduction characteristics[J]. Applied Catalysis B:Environmental,2011, 102(1-2):1-8.
    [74]Sultana A, Nanba T, Haneda M, et al. Influence of co-cations on the formation of Cu+species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B:Environmental,2010,101(1-2):61-67.
    [75]Parvulescu V I, Centeno M A, Dupont O, et al. Effect of the support upon the behavior of Cu in NO decomposition exemplified on Cu-ZSM-5 containing Zr[J]. Catalysis Today,1999,54(4): 507-519.
    [76]Gao X, Du X-s, Cui L-w, et al. A Ce-Cu-Ti oxide catalyst for the selective catalytic reduction of NO with NH3[J]. Catalysis Communications,2010,12(4):255-258.
    [77]Chen Z, Yang Q, Li H, et al. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOX with NH3 at low temperature[J]. Journal of Catalysis,2010,276(1):56-65.
    [78]Karami A, Salehi V. The influence of chromium substitution on an iron-titanium catalyst used in the selective catalytic reduction of NO[J]. Journal of Catalysis,2012,292:32-43.
    [79]Schuricht F, Reschetilowski W. Simultaneous selective catalytic reduction (SCR) of NOx and N2O over Ag/ZSM-5-Catalytic studies and mechanistic implications[J]. Microporous and Mesoporous Materials,2012,164:135-144.
    [80]Ayari F, Mhamdi M, Alvarez-Rodriguez J, et al. Selective catalytic reduction of NO with NH3 over Cr-ZSM-5 catalysts:General characterization and catalysts screening[J]. Applied Catalysis B:Environmental,2013,134-135:367-380.
    [81]Stevenson S A, Vartuli J C, Brooks C F. Kinetics of the selective catalytic reduction of NO over HZSM-5[J]. Journal of Catalysis,2000,190(2):228-239.
    [82]Huang H Y, Long R Q, Yang R T. Kinetics of selective catalytic reduction of NO with NH3 on Fe-ZSM-5 catalyst[J]. Applied Catalysis A:General,2002,235(1-2):241-251.
    [83]Li H, Wu C-Y, Li Y, et al. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Applied Catalysis B: Environmental,2012,111-112:381-388.
    [84]Lei Z G, Long A B, Wen C P, et al. Experimental and kinetic study of low temperature selective catalytic reduction of NO with NH3 over the V2O5/AC catalyst[J]. Industrial & Engineering Chemistry Research,2011,50(9):5360-5368.
    [85]Marban G, Valdes-Solis T, Fuertes A B. Mechanism of low-temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4:Role of surface NH3 species:SCR mechanism[J]. Journal of Catalysis,2004,226(1):138-155.
    [86]Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. Journal of Catalysis,2003,217(2):434-441.
    [87]Shen B X, Liu T, Yang X Y, et al. MnOx/Ce0.6Zr0.4O2 catalysts for low-temperature selective catalytic reduction of NOx with NH3[J]. Environmental Engineering Science,2011,28(4): 291-298.
    [88]Wu Z B, Jin R B, Wang H Q, et al. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J]. Catalysis Communications, 2009,10(6):935-939.
    [89]Marcotte N, Coq B, Savill-Jovitt C, et al. Multi-component zirconia-titania mixed oxides: Catalytic materials with unprecedented performance in the selective catalytic reduction of NOx with NH3 after harsh hydrothermal ageing[J]. Applied Catalysis B:Environmental,2011,105(3-4): 373-376.
    [90]Kijlstra W S, Daamen J C M L, van de Graaf J M, et al. Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3[J]. Applied Catalysis B:Environmental,1996,7(3-4):337-357.
    [91]Hu P, Huang Z, Hua W, et al. Effect of H2O on catalytic performance of manganese oxides in NO reduction by NH3[J]. Applied Catalysis A:General,2012,437-438:139-148.
    [92]Yang T T, Bi H T, Cheng X. Effects of O2, CO2 and H2O on NOx adsorption and selective catalytic reduction over Fe/ZSM-5[J]. Applied Catalysis B:Environmental,2011,102(1-2): 163-171.
    [93]Huang Z, Liu Z, Zhang X, et al. Inhibition effect of H2O on V2O5/AC catalyst for catalytic reduction of NO with NH3 at low temperature[J]. Applied Catalysis B:Environmental,2006, 63(3-4):260-265.
    [94]Goo J H, Irfan M F, Kim S D, et al. Effects of NO2 and SO2 on selective catalytic reduction of nitrogen oxides by ammonia[J]. Chemosphere,2007,67(4):718-723.
    [95]Long R Q, Yang R T, Chang R. Low temperature selective catalytic reduction (SCR) of NO with NH3 over Fe-Mn based catalysts[J]. Chemical Communications,2002, (5):452-453.
    [96]Yu J, Guo F, Wang Y L, et al. Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J]. Applied Catalysis B:Environmental,2010,95(1-2): 160-168.
    [97]Liu F D, He H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst:Reaction mechanism and H2O/SO2 inhibition mechanism study[J]. Catalysis Today,2010,153(3-4):70-76.
    [98]Li Y T, Zhong Q. The characterization and activity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Journal of Hazardous Materials,2009,172(2-3):635-640.
    [99]Zhang Q L, Qiu C T, Xu H D, et al. Novel promoting effects of tungsten on the selective catalytic reduction of NO by NH3 over MnOx-CeO2 monolith catalyst[J]. Catalysis Communications,2011,16(1):20-24.
    [100]Shen B, Ma H, Yao Y. Mn-CeOx/Ti-PILCs for selective catalytic reduction of NO with NH3 at low temperature[J]. Journal of Environmental Sciences,2012,24(3):499-506.
    [101]Zhao W W, Li C T, Lu P, et al. Iron, lanthanum and manganese oxides loaded on gamma-Al2O3 for selective catalytic reduction of NO with NH3 at low temperature[J]. Environmental Technology,2013,34(1):81-89.
    [102]Shen B X, Liu T, Zhao N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences,2010,22(9): 1447-1454.
    [103]Jiang B Q, Liu Y, Wu Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. Journal of Hazardous Materials,2009,162(2-3): 1249-1254.
    [104]Gao X, Jiang Y, Fu Y, et al. Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3[J]. Catalysis Communications,2010,11(5): 465-469.
    [105]Zhang Y, Zhao X, Xu H, et al. Novel ultrasonic-modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of NO with ammonia[J], Journal of Colloid and Interface Science,2011,361(1):212-218.
    [106]Lei Z G, Long A B, Jia M R, et al. Experimental and kinetic study of selective catalytic reduction of NO with NH3 over CuO/Al2O3/Cordierite catalyst[J]. Chinese Journal of Chemical Engineering,2010,18(5):721-729.
    [107]Beeckman J W, Hegedus L L. Design of monolith catalysts for power plant NOX emission control[J]. Industrial and Engineering Chemistry Research,1991,30(5):969-978.
    [108]Hsu L Y, Teng H S. Catalytic NO reduction with NH3 over carbons modified by acid oxidation and by metal impregnation and its kinetic studies[J]. Applied Catalysis B: Environmental,2001,35(1):21-30.
    [109]Pinoy L J, Hosten L H. Experimental and kinetic modelling study of DeNOx on an industrial V2O5-WO3/TiO2 catalyst[J]. Catalysis Today,1993,17(1-2):151-158.
    [110]Willi R, Maciejewski M, Gobel U, et al. Selective reduction of NO by NH3 over chromia on titania catalyst:Investigation and modeling of the kinetic behavior[J]. Journal of Catalysis,1997, 166(2):356-367.
    [111]Amiridis M D, Puglisi F, Dumesic J A, et al. Kinetic and infrared spectroscopic studies of Fe-Y Zeolites for the selective catalytic reduction of nitric oxide by ammonia[J]. Journal of Catalysis,1993,142(2):572-584.
    [112]Long R Q, Yang R T. FTIR and kinetic studies of the mechanism of Fe3+-Exchanged TiO2-Pillared clay catalyst for selective catalytic reduction of NO with ammonia[J]. Journal of Catalysis,2000,190(1):22-31.
    [113]Teng H, Hsu Y-F, Tu Y-T. Reduction of NO with NH3 over carbon catalysts-the influence of carbon surface structures and the global kinetics[J]. Applied Catalysis B:Environmental,1999, 20(2):145-154.
    [114]Fornasiero P, Dimonte R, Rao G R, et al. Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers:Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural-Properties[J]. Journal of Catalysis,1995,151(1):168-177.
    [115]Martinez-Arias A, Fernandez-Garcia M, Hungria A B, et al. Effect of thermal sintering on light-off performance of Pd/(Ce,Zr)Ox/Al2O3 three-way catalysts:Model gas and engine tests[J]. Journal of Catalysis,2001,204(1):238-248.
    [116]Yue B, Zhou R, Wang Y, et al. Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce-Zr/Al2O3 catalysts[J]. Applied Catalysis A:General,2005,295(1):31-39.
    [117]Yue B, Zhou R, Zheng X, et al. Promotional effect of Ca on the Pd/Ce-Zr/Al2O3 catalyst for low-temperature catalytic combustion of methane[J]. Fuel Processing Technology,2008,89(8): 728-735.
    [118]Wang G, You R, Meng M. An optimized highly active and thermo-stable oxidation catalyst Pd/Ce-Zr-Y/Al2O3 calcined at superhigh temperature and used for C3Hg total oxidation[J]. Fuel, 2013,103:799-804.
    [119]Yue B, Zhou R, Zheng X, et al. Remarkable improvement of yttrium on the activity and thermal stability of methane combustion over Pd/Ce-Zr/Al2O3 catalyst[J]. Materials Chemistry and Physics,2009,114(2-3):722-727.
    [120]Yue B, Zhou R, Wang Y, et al. Study of the methane combustion and TPR/TPO properties of Pd/Ce-Zr-M/Al2O3 catalysts with M=Mg, Ca, Sr, Ba[J]. Journal of Molecular Catalysis A: Chemical,2005,238(1-2):241-249.
    [121]Morterra C, Magnacca G, Bolis V, et al. Structural, morphological and surface chemical features of A12O3 catalyst supports stabilized with CeO2[M]. Elsevier,1995, pp.361-373.
    [122]Reddy B M, Khan A, Yamada Y, et al. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques[J]. Journal of Physical Chemistry B, 2003,107(22):5162-5167.
    [123]Baidya T, Gupta A, Deshpandey P A, et al. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Cej.xSnxO2 and Ceo.78Sno.2Pdo.o202-s[J]. Journal of Physical Chemistry C,2009,113(10):4059-4068.
    [124]Xu H, Fang Z, Cao Y, et al. Influence of Mn/(Mn+Ce) ratio of MnOx-CeO2/WO3-ZrO2 monolith catalyst on selective catalytic reduction of NOx with ammonia[J]. Chinese Journal of Catalysis,2012,33(11-12):1927-1937.
    [125]Shan W, Liu F, He H, et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOX with NH3[J]. Applied Catalysis B:Environmental,2012,115-116: 100-106.
    [126]Fan X, Qiu F, Yang H, et al. Selective catalytic reduction of NOx with ammonia over Mn-Ce-Ox/Ti02-carbon nanotube composites[J]. Catalysis Communications,2011,12(14): 1298-1301.
    [127]Liu Z M, Wang K C, Zhang X Y, et al. Study on methane selective catalytic reduction of NO on Pt/Ce0.67Zr0.33O2 and its application[J]. Journal of Natural Gas Chemistry,2009,18(1):66-70.
    [128]Putluru S, Riisager A, Fehrmann R. The Effect of Acidic and Redox Properties of V2O5/CeO2-ZrO2 Catalysts in Selective Catalytic Reduction of NO by NH3[J]. Catalysis Letters, 2009,133(3-4):370-375.
    [129]Ko J H, Park S H, Jeon J-K, et al. Low temperature selective catalytic reduction of NO with NHj over Mn supported on Ce0.65Zr0.35O2 prepared by supercritical method:Effect of Mn precursors on NO reduction[J]. Catalysis Today,2012,185(1):290-295.
    [130]Liu F D, He H, Zhang C B, et al. Selective catalytic reduction of NO with NH3 over iron titanate catalyst:Catalytic performance and characterization[J]. Applied Catalysis B: Environmental,2010,96(3-4):408-420.
    [131]Zhang Y P, Zhao X Y, Xu H T, et al. Novel ultrasonic-modified MnOx/TiO2 for low-temperature selective catalytic reduction (SCR) of NO with ammonia[J]. Journal of Colloid and Interface Science,2011,361(1):212-218.
    [132]Pena D A, Uphade B S, Smirniotis P G TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3 I. Evaluation and characterization of first row transition metals[J]. Journal of Catalysis,2004,221(2):421-431.
    [133]Singoredjo L, Korver R, Kapteijn F, et al. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental,1992,1(4):297-316.
    [134]Huang Z G, Zhu Z P, Liu Z Y. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures[J]. Applied Catalysis B:Environmental,2002, 39(4):361-368.
    [135]Anderson J A, Daley R A, Christou S Y, et al. Regeneration of thermally aged Pt-Rh/CexZr1-xO2-Al2O3 model three-way catalysts by oxychlorination treatments [J]. Applied Catalysis B:Environmental,2006,64(3-4):189-200.
    [136]Daley R A, Christou S Y, Efstathiou A M, et al. Influence of oxychlorination treatments on the redox and oxygen storage and release properties of thermally aged Pd-Rh/CexZr1-x02/Al2O3 model three-way catalysts[J]. Applied Catalysis B:Environmental,2005,60(1-2):117-127.
    [137]Xie J L, Fang D, He F, et al. Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature[J]. Catalysis Communications,2012,28:77-81.
    [138]吴碧君,刘晓勤,王述刚,et al. MnOx/TiO2低温NH3选择性催化还原NOx的研究与表征[J].燃料科学与技术,2008,14(3):221-226.
    [139]Sager S M, Kondarides D I, Verykios X E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on y-A12O3[J]. Applied Catalysis B: Environmental,2011,103(3-4):275-286.
    [140]Picasso G, Gutierrez M, Pina M P, et al. Preparation and characterization of Ce-Zr and Ce-Mn based oxides for n-hexane combustion:Application to catalytic membrane reactors[J]. Chemical Engineering Journal,2007,126(2-3):119-130.
    [141]Aguilera D A, Perez A, Molina R, et al. Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs[J]. Applied Catalysis B:Environmental,2011, 104(1-2):144-150.
    [142]Gandia L M, Vicente M A, Gil A. Preparation and characterization of manganese oxide catalysts supported on alumina and zirconia-pillared clays[J]. Applied Catalysis A:General,2000, 196(2):281-292.
    [143]Ettireddy P R, Ettireddy N, Mamedov S, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Applied Catalysis B:Environmental,2007,76(1-2):123-134.
    [144]Amiridis M D, Wachs I E, Deo G, et al. Reactivity of V2O5 catalysts for the selective catalytic reduction of NO by NH3:Influence of vanadia loading, H2O, and S02[J]. Journal of Catalysis,1996,161(1):247-253.
    [145]Crocoll M, Kureti S, Weisweiler W. Mean field modeling of NO oxidation over Pt/Al2O3 catalyst under oxygen-rich conditions[J]. Journal of Catalysis,2005,229(2):480-489.
    [146]Liu Z M, Wang R L, Zhong J B, et al. Catalytic combustion of toluene over platinum supported on Ce-Zr-O solid solution modified by Y and Mn[J]. Journal of Hazardous Materials, 2007,149(3):742-746.
    [147]Tang X, Hao J, Xu W, et al. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods[J]. Catalysis Communications,2007, 8(3):329-334.
    [148]Li K, Tang X, Yi H, et al. Low-temperature catalytic oxidation of NO over Mn-Co-Ce-Ox catalyst[J]. Chemical Engineering Journal,2012,192(1):99-104.
    [149]Stanciulescu M, Caravaggio G, Dobri A, et al. Low-temperature selective catalytic reduction of NOx with NH3 over Mn-containing catalysts[J]. Applied Catalysis B:Environmental,2012, 123-124(23):229-240.
    [150]Zhou C, Zhang Y, Wang X, et al. Influence of the addition of transition metals (Cr, Zr, Mo) on the properties of MnOx-CeOx catalysts for low-temperature selective catalytic reduction of NOx by Ammonia[J]. Journal of Colloid and Interface Science,2013,392(15):319-324.
    [151]Wu Q Y, Chen J X, Zhang J Y. Effect of yttrium and praseodymium on properties of Ce0.75Zr0.25O2 solid solution for CH4-O2 reforming[J]. Fuel Processing Technology,2008,89(11): 993-999.
    [152]Ko J H, Park S H, Jeon J-K, et al. Low temperature selective catalytic reduction of NO with NH3 over Mn supported on Ceo.65Zro.35O2 prepared by supercritical method:Effect of Mn precursors on NO reduction[J]. Catalysis Today,2011,185(1):290-295.
    [153]Azalim S, Franco M, Brahmi R, et al. Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr-Ce-Mn catalysts[J]. Journal of Hazardous Materials,2011,188(1-3): 422-427.
    [154]Carno J, Ferrandon M, Bjornbom E, et al. Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers[J]. Applied Catalysis A:General,1997,155(2): 265-281.
    [155]Stobbe E R, de Boer B A, Geus J W. The reduction and oxidation behaviour of manganese oxides[J]. Catalysis Today,1999,47(1-4):161-167.
    [156]Mhamdi M, Khaddar-Zine S, Ghorbel A. Influence of the cobalt salt precursors on the cobalt speciation and catalytic properties of H-ZSM-5 modified with cobalt by solid-state ion exchange reaction[J]. Applied Catalysis A:General,2009,357(1):42-50.
    [157]Shen Y S, Zhu S M, Qiu T, et al. A novel catalyst of CeO2/Al2O3 for selective catalytic reduction of NO by NH3[J]. Catalysis Communications,2009,11(1):20-23.
    [158]Qi G S, Yang R T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. Journal of Physical Chemistry B, 2004,108(40):15738-15747.
    [159]Larachi F, Pierre J, Adnot A, et al. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts[J]. Applied Surface Science,2002,195(1-4):236-250.
    [160]Carja G, Kameshima Y, Okada K, et al. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3[J]. Applied Catalysis B:Environmental,2007,73(1-2):60-64.
    [161]Tejuca L G, Fierro J L G. XPS and TPD probe techniques for the study of LaNiO3 perovskite oxide[J].Thermochimica Acta,1989,147(2):361-375.
    [162]Qin C L, Oak J J, Ohtsu N, et al. XPS study on the surface films of a newly designed Ni-free Ti-based bulk metallic glass[J]. Acta Materialia,2007,55(6):2057-2063.
    [163]Wu Z B, Jin R B, Liu Y, et al. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catalysis Communications,2008,9(13):2217-2220.
    [164]Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B: Environmental,1994,3(2-3):173-189.
    [165]Huang H Y, Yang R T. Removal of NO by reversible adsorption on Fe-Mn based transition metal oxides[J]. Langmuir,2001,17(16):4997-5003.
    [166]Tufano V, Turco M. Kinetic modelling of nitric oxide reduction over a high-surface area V2O5-TiO2 catalyst[J]. Applied Catalysis B:Environmental,1993,2(1):9-26.
    [167]Madia G, Koebel M, Elsener M, et al. Side reactions in the selective catalytic reduction of NOX with various NO2 fractions[J]. Industrial & Engineering Chemistry Research,2002,41(16): 4008-4015.
    [168]Mao L Q, T-Raissi A, Huang C P, et al. Thermal decomposition of (NH4)2SO4 in presence of Mn3O4[J]. International Journal of Hydrogen Energy,2011,36(10):5822-5827.
    [169]Strydom C A, Pretorius G. The thermal decomposition of zirconium sulphate hydrate[J]. Thermochimica Acta,1993,223(28):223-232.
    [170]Poston J A, Siriwardane R V, Fisher E, et al. Thermal decomposition of the rare earth sulfates of cerium(Ⅲ), cerium(Ⅳ), lanthanum(Ⅲ) and samarium(Ⅲ)[J]. Applied Surface Science, 2003,214(1-4):83-102.
    [171]Zhu Z P, Liu Z Y, Liu S J, et al. Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts:effect of metal oxides addition and SO2[J]. Applied Catalysis B: Environmental,2001,30(3-4):267-276.
    [172]Reiche M A, Maciejewski M, Baiker A. Characterization by temperature programmed reduction[J]. Catalysis Today,2000,56(4):347-355.
    [173]Hassan N E, Davidson A, Costa P D, et al. Methane activation by NO2 on Co loaded SBA-15 catalysts:The effect of mesopores (length, diameter) on the catalytic activity[J]. Catalysis Today,2008,137(2-4):191-196.
    [174]Quincoces C, Rubert A, Araya P, et al. Characterization of Co/sulfated zirconia catalysts for selective reduction of NO by methane[J]. Catalysis Communications,2008,10(1):74-78.
    [175]Mirkelamoglu B, Ozkan U S. Effect of water vapor on the activity and stability of Pd/SZ and Co/ZrO2 in dual-catalyst treatment of simulated exhaust from lean-burn natural gas engines[J]. Applied Catalysis B:Environmental,2010,96(3-4):421-433.
    [176]Chen S W, Yan X L, Wang Y, et al. Effect of SO2 on Co sites for NO-SCR by CH4 over Co-Beta[J]. Catalysis Today,2011,175(1):12-17.
    [177]Todorova S, Kolev H, Holgado J P, et al. Complete n-hexane oxidation over supported Mn-Co catalysts[J]. Applied Catalysis B:Environmental,2010,94(1-2):46-54.
    [178]Casanovas A, de Leitenburg C, Trovarelli A, et al. Catalytic monoliths for ethanol steam reforming[J]. Catalysis Today,2008,138(3-4):187-192.
    [179]Li F, Zhang L H, Evans D Q et al. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004,244(1-3):169-177.
    [180]Reddy A S, Gopinath C S, Chilukuri S. Selective ortho-methylation of phenol with methanol over copper manganese mixed-oxide spinel catalysts[J]. Journal of Catalysis,2006, 243(2):278-291.
    [181]Ponce S, Pena M A, Fierro J L G. Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites[J]. Applied Catalysis B:Environmental,2000, 24(3-4):193-205.
    [182]Ciardelli C, Nova I, Tronconi E, et al. SCR of for diesel exhausts aftertreatment:role of in catalytic mechanism, unsteady kinetics and monolith converter modelling[J]. Chemical Engineering Science,2007,62(18-20):5001-5006.
    [183]Reddy B M, Sreekanth P M, Yamada Y, et al. Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques[J]. Applied Catalysis A:General,2002,228(1-2):269-278.
    [184]Venezia A M, Di Carlo Q Pantaleo G, et al. Oxidation of CH4 over Pd supported on TiO2-doped SiO2:Effect of Ti(IV) loading and influence of SO2[J]. Applied Catalysis B: Environmental,2009,88(3-4):430-437.
    [185]Garcia-Bordeje E, Pinilla J L, Lazaro M J, et al. NH3-SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths:Effect of H2O and SO2 traces in the gas feed[J]. Applied Catalysis B:Environmental,2006,66(3-4):281-287.
    [186]Lin Q C, Li J H, Ma L, et al. Selective catalytic reduction of NO with NH3 over Mn-Fe/USY under lean burn conditions[J]. Catalysis Today,2010,151(3-4):251-256.
    [187]Kapteijn F, Singoredjo L, Vandriel M, et al. Alumina-supported manganese oxide catalysts: II. Surface characterization and adsorption of ammonia and nitric oxide[J]. Journal of Catalysis, 1994,150(1):105-116.
    [188]Bosch H, Janssen F J J G. Formation and control of nitrogen oxides[J]. Catalysis Today, 1988,2(4):369-379.
    [189]Li Z, Shen L T, Huang W, et al. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst[J]. Journal of Environmental Sciences,2007,19(12):1516-1519.
    [190]Kamata H, Takahashi K, Odenbrand C U I. Kinetics of the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Journal of Catalysis,1999,185(1): 106-113.
    [191]Delahay R, Kieger S, Tanchoux N, et al. Kinetics of the selective catalytic reduction of NO by NH3 on a Cu-faujasite catalyst[J]. Applied Catalysis B:Environmental,2004,52(4):251-257.
    [192]Komatsu T, Nunokawa M, Moon I S, et al. Kinetic studies of reduction of nitric oxide with ammonia on Cu2+-Exchanged Zeolites[J]. Journal of Catalysis,1994,148(2):427-437.
    [193]Wu Z B, Jiang B Q, Liu Y, et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method[J]. Journal of Hazardous Materials,2007, 145(3):488-494.
    [194]Jung S M, Dupont O, Grange P. TiO2-SiO2 mixed oxide modified with H2SO4:Ⅰ. Characterization of the microstructure of metal oxide and sulfate[J]. Applied Catalysis A:General, 2001,208(1-2):393-401.
    [195]Jung S M, Grange P. TiO2-SiO2 mixed oxide modified with H2SO4:Ⅱ. Acid properties and their SCR reactivity[J]. Applied Catalysis A:General,2002,228(1-2):65-73.
    [196]Liu F, Asakura K, He H, et al. Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B:Environmental,2011, 103(3-4):369-377.
    [197]Wang X, Wang H, Liu Y, et al. A direct sulfation method for introducing the transition metal cation Co2'into ZrO2 with little change in the Bronsted acid sites[J]. Journal of Catalysis,2011, 279(2):301-309.
    [198]Stakheev A Y, Lee C W, Park S J, et al. Selective catalytic reduction of NO with propane over CoZSM-5 containing alkaline earth cations[J]. Applied Catalysis B:Environmental,1996, 9(1-4):65-76.
    [199]Lietti L, Forzatti P, Ramis G, et al. Potassium doping of vanadia/titania de-NOxing catalysts: Surface characterisation and reactivity study[J]. Applied Catalysis B:Environmental,1993,3(1):13-35.
    [200]Zheng Y, Jensen A D, Johnsson J E. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Applied Catalysis B:Environmental,2005, 60(3-4):253-264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700