用户名: 密码: 验证码:
沸石分子筛催化分解N_2O的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先通过活性评价实验,对系列过渡金属离子(transition metal ion, TMI)(Fe、Co、Cu)改性不同构型沸石分子筛(BEA、 FER、MOR、MCM-49) N2O催化分解活性进行评价,并研究杂质气体(SO2、NO、CO)对其N2O催化分解活性的影响,活性评价实验结果表明改性BEA分子筛(TMI-BEA)具有最优的催化分解活性;基于此,本论文进一步采用实验与量化计算相结合的研究方法对TMI(Fe, Co, Cu)-BEA上N2O催化分解过程进行深入、系统研究,包括本征动力学、反应机理、微观动力学、各反应步骤电子转移、以及TMI(Fe, Co, Cu)-BEA电场效应对N2O催化分解的影响,并探究其催化活性差异的本质原因;最后,本论文选用催化活性较优的Fe-,Co-BEA粉末分子筛为活性组分,提出一种以蜂窝状堇青石为载体的Fe-, Co-BEA分子筛整体式催化剂制备技术,为工业催化剂的开发提供技术支持,本论文主要内容及结论如下:
     1.采用液相离子交换法制备系列Fe、Co、Cu改性(BEA、FER、 MOR、MCM-49)沸石分子筛(SiO2/Al2O3=30),活性评价结果表明TMI(Fe, Co, Cu)-BEA具有较高的N2O催化活性,N2吸脱附实验表明TMI(Fe, Co, Cu)-BEA较高的比表面积及孔容与其较高的N2O催化活性有直接关系。
     2.本论文采用实验与量化计算相结合的方法,系统研究了N2O在Fe-BEA上的催化分解机理。首先,通过XRD、H2-TPR发现,当Fe%<1%时,Fe主要以Fe3+离子的形式存在于分子筛上,且为N2O催化分解的活性中心,当Fe%>1%时FeOx物种会逐渐增多。活性评价实验表明当Fe%>1%时,Fe-BEA分子筛N2O催化分解活性无明显提升,其主要原因在于随Fe含量的增加,会导致FeOx的生成,而该物种具有较低的N2O催化分解活性;其次,当Fe%>1%时N2O催化分解反应可能是由内扩散作为整个反应的速率控制步骤。
     3.本论文采用原位红外(N1O-DRIFTS).程序升温脱附(N2O/NO2-TPD-MS).以及程序升温表面反应(N2O-TPSR)多种表征手段对N20在Fe-BEA-1%上的催化分解机理进行研究,并提出反应机理模型,该模型共包括两种反应机理:O2形成机理(主反应机理)及NOx形成机理。为进一步深入研究各反应机理,本论文建立5T-Fe-BEA模型,模拟各反应机理,并计算相关反应步骤能垒,研究结果表明02脱附步骤具有最高的反应能垒(ΔE=63.20kcal mol-1),为02形成机理的速率控制步骤,而第一个过渡态反应步骤(Step B2,ΔE=26.92kcal mol-1)为NOx形成机理的速率控制步骤。
     4.本论文采用密立跟(Mulliken)电子转移分析,系统研究了Fe-BEA上02形成机理各反应步骤的电子转移情况,研究结果表明:分子筛骨架在第一个N2O催化分解过程中(Part1)发挥着重要的作用;而活性中心Fe、αO在第二个N2O催化分解过程中(Part2)发挥着重要作用;基于Part2电子转移分析,可以发现aO在Part2表现出的电化学性质,可以较好的解释其在N2O催化反应中具有的较高催化活性。与此同时,本论文进一步采用分子前线轨道(FMO)分析及N2O-DRIFTS研究了N2O催化分解过程的电子转移,发现其研究结果与Mulliken电子转移分析所得结果一致。
     5.本论文采用实验与理论计算相结合的研究手段,进一步对TMI(Fe, Co, Cu)-BEA分子筛N2O催化分解进行了系统研究,分析造成其催化活性差异的内在原因。首先,XRD、H2-TPR、XPS、UV-vis多种表征手段发现改性金属(Fe, Co, Cu)主要以离子态的形式存在于改性分子筛上,且为N2O催化分解的活性中心。其次,活性评价实验、TOF、以及本征动力学研究表明TMI(Fe, Co, Cu)-BEA N2O催化分解活性顺序为:Co-BEA> Fe-BEA> Cu-BEA。进而本论文基于量化计算(DFT),对Co-, Cu-BEA N2O催化分解机理进行模拟,并计算各反应步骤能垒,研究发现O2脱附步骤为Co-, Cu-BEA上N2O催化分解的速率控制步骤,且该步骤中Co-BEA具有最低的反应能垒,因此,其具有最优的N2O催化分解活性。与此同时,研究还发现,Co-BEA在第一个N2O催化分解过程中会产生一个中间物种(IM),通过微观动力学分析表明,该中间物种的产生会降低Co-BEA的N2O催化分解速率,该结果与活性评价谱图及N2O-TPD谱图上Co-BEA表现出较缓的数据曲线一致。
     6.改性分子筛可以通过活性组分与分子筛骨架的电场效应,共同对反应物分子旧键断裂、新键形成产生影响,因此,本论文基于密立跟电子转移、分子前线轨道分析及N2O-DRIFTS,研究了TMI(Fe,Co, Cu)-BEA电场效应对N2O催化分解的影响,进而深入分析TMI(Fe, Co, Cu)-BEA活性差异的原因。研究结果表明TMI(Fe, Co, Cu)-BEA电场效应对N2O催化分解的影响可分两点:首先,在N2O分子吸附过程中,TMI(Fe, Co, Cu)-BEA分子筛作为得电体,接收大量来自N2O的电子,使得N2O分子能级发生变化,进而促进N2O预活化;其次,在N2O催化分解过程中,TMI(Fe, Co, Cu)-BEA分子筛通过活性中心、分子筛骨架以及产生αO的强供电效应促进O-N2键的极化,进而有利于O-N2键的断裂。其中,通过电子转移分析发现Cu-BEA及其αO在第二个N2O催化分解过程中(Part2),其电场效应未对吸附态N2O的O-N2键产生极化影响,因此,Cu-BEA在Part2催化活性最低。本论文进一步采用FMO定量分析了TMI(Fe, Co, Cu)-BEA分子筛与N2O间的电子转移能力,并与其催化活性相关联,研究结果表明TMI(Fe, Co, Cu)-BEA与N2O的分子轨道能级差(LUMO-HOMO)决定其电子转移能力大小,进而决定其N2O催化分解活性。N2O-DRTIFTS通过比较不同温度吸附于TMI(Fe, Co, Cu)-BEA上N2O的v(N-N)最大蓝移波数,证明了FMO电子转移定量计算的正确性。
     7.本论文以活性较优的Fe-, Co-BEA粉末分子筛为活性组分,硅溶胶、铝溶胶、为粘结剂,蜂窝状陶瓷堇青石为载体,采用一步涂覆法制备了系列Fe-, Co-BEA分子筛整体式催化剂,通过活性评价及多种表征手段,确定了最佳制备工艺路线,表明5%铝溶胶制备的Fe-BEA整体式催化剂,及5%硅溶胶制备的Co-BEA整体式催化剂具有最优的催化活性。此外,本论文进一步采用计算流体力学(CFD)对N2O在整体式催化剂上的催化分解过程进行流体模拟及催化反应计算,N2O转化率模拟结果与实验结果较好的吻合。
Present work firstly investigated the catalytic activities of a series of transition metal ions (TMI)(Fe, Co, Cu) modified zeolite catalysts with different structures (BEA, FER, MOR, MCM-49) during N2O direct decomposition, in which the influences of SO2(100ppm)/NO (1vol%)/CO (1vol%) were also evaluated. It was found that the TMI(Fe, Co, Cu)-BEA exhibited the superior activity for N2O dissociation, with respect to other zeolite samples. Therefore, the N2O direct decomposition over TMI(Fe, Co, Cu)-BEA zeolites were thereafter systematically investigated by employing both experimental and theoretical approaches (density functional theory, DFT), which includes the intrinsic kinetic analysis, reaction mechanism investigation, microkinetic analysis, charge transfer (CT) analysis, and electric filed effect (EFE) of TMI(Fe, Co, Cu)-BEA. Finally, based on the powder Fe-, Co-BEA with excellent N2O decomposition activity, a detailed monolithic zeolite catalyst preparation method was proposed using honeycomb cordierite as the support, which contributes to the development of industrial catalyst for N2O abatement. The main contents and conclusions of present work were detailedly described as follows.
     1. A series of Fe, Co, Cu ions modified zeolite catalysts (BEA, FER, MOR, MCM-49)(SiO2/Al2O3=30) was prepared by the wet ion exchange (WIE) method with the theoretical metal loading of1wt%. The activity evaluation revealed that TMI(Fe, Co, Cu)-BEA exhibited the better activity than other zeolite samples. The N2adsorption/desorption suggested that the better activities of TMI(Fe, Co, Cu)-BEA for N2O dissociation were correlated with its highest specific surface area and pore volume.
     2. Based on above study, the N2O direct decomposition over Fe-BEA was systematically investigated by means of both experimental and theoretical (DFT) approaches. Firstly, the characterizations of XRD and H2-TPR revealed that as Fe%<1%the atomic Fe mainly existed as the Fe+ions on the Fe-BEA zeolites, which was also believed to be the active center for N2O dissociation. However, as Fe%>1%the FeOx could be formed, which exhibited low N2O decomposition activity. The activity performance evaluations were thereafter conducted, suggesting that as Fe%>1%no promotion effect was found during N2O direct decomposition. It was probably attributed to that as Fe%>1%the FeOx could be formed having low N2O dissociation activity and that the reaction was probably controlled by the internal mass transfer rather than the kinetic as Fe%>1%.
     3. The experiments of N2O-DRIFTS, N2O/NO2-TPD-MS, and N2O-TPSR were further performed to investigate the N2O direct decomposition mechanism over Fe-BEA-1%zeolite. On the basis of that, two kinds of reaction mechanisms were proposed named O2formation mechanism (the main reaction mechanism) and NOx formation mechanism, respectively. Moreover, the quantum chemistry based on the DFT was employed to simulate above two kinds of reaction mechanisms using5T-Fe-BEA model and aiming at giving deeper insight. The energy barriers ΔE of the main reaction steps were thereafter calculated, revealing that the O2desorption step with the energy barrier of63.20kcal mol-1was the rate determining step (RDS) for O2formation mechanism, and the reaction step B2with the ΔE of26.92kcal mol-1was the RDS for NOx formation mechanism.
     4. Present work also investigated the CT of each reaction step of O2formation mechanism (Fe-BEA-1%) based on Mulliken population analysis and with purpose of better understanding the reaction mechanism. It was found that the zeolite framework played important role in decomposition of the first N2O (Part1). However, during the second N2O dissociation (Part2), the active center Fe and the formed aO played major roles. The CT behavior of the aO in Part2can well explain the high activity of αO in the electric point of view. Additionally, the frontier molecular orbital (FMO) analysis and N2O-DRIFTS were also applied to investigate the CT during N2O direct decomposition over Fe-BEA-1%, with the results being in good agreement with those revealed by Mulliken CT analyses.
     5. Based on above studies, present work further systematically investigated the active differences of TMI(Fe, Co, Cu)-BEA (with the TMI loading of1wt%) during N2O direct decomposition, wherein both the experimental and theoretical approaches were employed. Firstly, the characterizations of XRD, H2-TPR, XPS, and UV-vis were conducted to investigate the chemical states of Fe, Co, and Cu on TMI(Fe, Co, Cu)-BEA. It is revealed that the Fe, Co, and Cu were mainly in the form of metal ions on the zeolite, which also formed the active center for N2O dissociation. The experiments of activity evaluation, turn over frequency (TOF), and intrinsic kinetic analysis suggested that the N2O active sequence was in the order of Co-BEA> Fe-BEA> Cu-BEA. Thereafter, the theoretical approach (DFT) was employed to investigate the reaction mechanism of Co-and Cu-BEA during N2O direct decomposition, in which the energy barriers of main reaction steps were calculated. Through the DFT energy calculation, it was found that the O2desorption step (Part3) was the RDS for both Co-and Cu-BEA. Thus, comparing the energy barriers of RDS among TMI(Fe, Co, Cu)-BEA it can be clearly found that Co-BEA having the lowest energy barrier exists the best N2O activity. Additionally, an intermediate (IM) was found in Part1during the reaction mechanism study for Co-BEA. The generation of IM can reduce the N2O decomposition rate resulting in the curve shape being different from those of Fe-and Cu-BEA during the activity evaluation and N2O-TPD experimental studies. The microkinetic analysis based on DFT was further conducted with the result well confirming above finding.
     6. The modified zeolite catalysts can affect the reactant molecule through their electric field effect (EFE). Therefore, present work investigated the EFE of TMI(Fe, Co, Cu)-BEA during N2O direct decomposition, with aim to give deeper insight into the activity differences of TMI(Fe, Co, Cu)-BEA for N2O dissociation based on the EFE point of view. The approaches of Mulliken CT analysis, FMO analysis, and N2O-DRIFTS were employed. It can be concluded that the EFE of TMI(Fe, Co, Cu)-BEA influences the N2O direct decomposition in two ways:firstly the EFE of TMI(Fe, Co, Cu)-BEA facilitates the adsorption of N2O through accepting large amounts of chares from N2O; then in the following step the EFE of TMI(Fe, Co, Cu)-BEA favors the bond polarization of O-N2by donating the chares to the N2O. In Part2it was interestingly found that Cu-BEA and its αO exhibited no EFE on O-N2bond polarization, which is correlated with the lowest N2O dissociation activity of Cu-BEA in Part2. For the purpose of quantitatively calculating the CT abilities of TMI(Fe, Co, Cu)-BEA during N2O direct decomposition, the FMO analysis was conducted. It was found that the LUMO-HOMO orbital gaps between TMI(Fe, Co, Cu)-BEA and N2O molecule decided the related CT abilities, which further decided the activity of TMI(Fe, Co, Cu)-BEA for N2O dissociation. The N2O-DRIFTS was used to experimentally evaluate the CT ability of TMI(Fe, Co, Cu)-BEA during N2O dissociation by comparing the maximum v(N-N) band shift values. It was found that the N2O-DRIFTS results agreed well with that of FMO quantitative analysis, verifying that the applied FMO analysis in present work was correct.
     7. On the basis of above studies, present work investigated the preparation methods of Fe-and Co-BEA monolithic zeolite catalysts, using silica or alumina sols as the binders and honeycomb cordierite as the support. The activity evaluations and characterizations of SEM and ultrasonic test revealed that the5%alumina sol prepared Fe-BEA and5%silica sol prepared Co-BEA exhibited the best catalytic activities. Additionally, the computational fluid dynamics (CFD) was also employed to simulate the N2O dissociation process over Fe-, Co-BEA monolith catalyst. The simulated N2O conversion results were in good agreement with those of experimental activity evaluations.
引文
[1]Inventory of US green house gases and sinks 1991-1997[R]. EPA. Washington
    [2]Kavanaugh M. Estimates of future CO, N2O and NOx emissions from energy combustion[J] Atmos. Environ.,1967,21(3):463-468
    [3]Machida T, Nakazawa T, Tanaka M. et al. Proceedings of the international symposium on global cycles of atmospheric greenhouse gases[M]. Sendai, Japan:1994:113-116
    [4]Houghton J T. Ipcc 3rd assessment report[R].2001
    [5]Dickinson R E, Cicerone R J. Future global warming from atmospheric trace gases[J]. Nature,1986,319:109-115
    [6]Perez-Ramirez J, Kapteijn F, Schoffel K, et al. Formation and control of N2O in nitric acid production:Where do we stand today?[J]. Appl. Catal. B,2003,44(2):117-151
    [7]Reimer R A, Slaten C S, Seapan M, et al. Abatement of N2O emissions produced in the adipic acid industry[J]. Environ. Prog.,1994,13(2):134-137
    [8]Kapteijn F, Rodriguez-Mirasol J. Heterogeneous catalytic decomposition of nitrous oxide[J]. Appl. Catal. B,1996,9(1-4):25-64
    [9]徐天祝,张元礼,闫成旺,等.己二酸装置实施CDM项目的时间与技术分析[J].石油化工与经济,2010,26(1):5-7
    [10]李宁.N20分解催化剂的制备[J].化工进展,2007,26(11):1659-1661
    [11]Armor J N, Braymer T A, Farris T S, et al. Calined hydrotalcites for the catalytic decomposition of N2O in simulated process streams[J]. Appl. Catal. B,1996,7(3-4): 397-406
    [12]陈火生.辽阳石化己二酸生产中N20减排技术应用研究[D].北京:清华大学,2010
    [13]Perez-Ramirez J, Kapteijn F. Effect of NO on the SCR of N2O with propane over Fe-zeolites[J]. Appl. Catal. B,2004,47(3):177-187
    [14]Mauvezin M, Delahay G, Kiβich F, et al. Catalytic reduction of N2O by NH3 in presence of oxygen using Fe- exchanged zeolites[J]. Catal. Lett.,1999,62:41-44
    [15]Perez-Ramirez J, Kondratenko E V, Debbagh M N. Reduction of N2O with CO over FeMFI zeolites:Influence of preparation method on the iron species and catalytic behavior[J]. J. Catal.,2004,223(1):13-27
    [16]Carmpa M C, Indovina V, Pietrogiacomi D. The selective catalytic reduction of N2O with CH4 on Na-MOR and Na-MFI exchanged with copper, cobalt or manganese[J]. Appl. Catal. B,2012,111-112(12):90-95
    [17]Konsolakis M, Drosou C, Yentekakis I V. Support mediated promotional effects of rare earth oxides (CeO2 and La2O3) on N2O decomposition and N2O reduction by CO or C3H6 over Pt/Al2O3 structured catalysts[J]. Appl. Catal. B,2012,123-124:405-413
    [18]Iwamato M, Hirata J, Matsukami K, et al. Catalytic oxidation by oxide radical ions.1 One-step hydroxylation of benzene to phenol over group 5 and 6 oxides supported on silica gel[J]. J. Phys. Chem.,1983,87:903-913
    [19]Leanza R, Rossetti I, Mazzola I, et al. Study of Fe-silicalite catalyst for N2O oxidation of benzene to phenol[J]. Appl. Catal. A,2001,205(1-2):93-99
    [20]Koekkoek A J J, Kim W, Degirmenci V, et al. Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide[J]. J. Catal. 2013,299,81-89
    [21]张雄福.苯直接一步氧化合成苯酚[J].化工进展,2008,20:386-395
    [22]· Kalback W M, Sliepcevich C M. Kinetics of decomposition of nitrous oxide[J]. Ind. Eng. Chem. Fundam.,1978,17(3):165-169
    [23]Centi G, Galli A, Montanari B, et al. Catalytic decomposition of N2O over noble and transition metal containing oxides and zeolites[J]. Catal. Today,1997,35,113-120
    [24]Winter E R S. The decomposition of nitrous oxide on metallic oxides Part II[J]. J. Catal., 1970,19(1):32-40
    [25]Ohnishi C, Asano K, Iwamoto S, et al. Alki-doped CO3O4 catalysts for direct decomposition of N2O in the presence of oxygen[J]. Catal. Today,2007,120(2): 145-150
    [26]孙萌萌.钙钛矿型催化剂光化学活性与其稳定性及与Si02质材料的复合[D].长春:吉林大学,2011
    [27]Wang J, Yauda H, Inumaru K, et al. Catalytic decomposition of dinitrogen oxide over perovskite-related mixed oxides[J]. Bull. Chem. Soc. Jpan.,1995,68:1226-1231
    [28]Wu Y, Ni X, Beaurain A, et al. Stoichiometric and non-stoichiometric perovskite-based catalysts:Consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants[J]. Appl. Catal. B,2012,125(21):149-157
    [29]Santiago M, Hevia M A G, Perez-Ramirez J. Evaluation of catalysts for N2O abatement in fluidized-bed combustion[J]. Appl. Catal. B,2009,90(1-2):83-88
    [30]Suresh K, Teraokab Y, Amish G, et al. Ag promoted Lao.8Bao.2Mn03 type perovskite catalyst for N2O decomposition in the presence of O2, NO and H2O[J]. J. Mol. Catal. A: Chem.,2011,348(1-2):42-54
    [31]邹鲁.尖晶石型符合金属氧化物功能材料的制备、表征及其性能研究[D].北京:北京化工大学,2008
    [32]Yan L, Ren T, Wang X, et al. Excellent catalytic performance of ZnxCo1-xCo2O4 spinel catalysts for the decomposition of nitrous oxide[J]. Catal. Commun.,2003,4(10): 505-509
    [33]Xue L, Zhang C B, He H. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst [J]. Appl. Catal. B,2007,75(3-4):167-174
    [34]Xue L, Zhang C B, He H. Promotion effect of residual K on the decomposition of N2O over cobalt-cerium mixed oxide catalyst [J]. Catal. Today,2007,126(3-4):449-455
    [35]Russo N, Fino D, Saracco G, et al. N2O catalytic decomposition over various spinel-type oxides[J]. Catal. Today,2007,119(1-4):228-232
    [36]Kannan S and Swamy C S. Catalytic decomposition of nitrous oxide on "in situ" generated thermally calcined hydrotalcites[J]. Appl. Catal. B,1994,3(2-1):109-116
    [37]Obalova L, Jiratova K, Kovanda F, et al. Structure-activity relationship in the N2O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors[J]. J. Mol. Catal. A:Chem.,2006,248(1-2):210-219
    [38]Chang K S, Lee H, Park Y, et al. Enhanced performances of N2O destruction in the presence of CO over the mixed metal oxide catalysts derived from hydrotalcite-type precursors[J]. Appl. Catal. A,2006,309(1):129-138
    [39]Centi G, Dall'Olio L, Perathoner S. Oscillating Behavior in N2O decomposition over Rh supported on zirconia-based catalysis:The role of the reaction conditions[J]. J. Catal., 2000,192(1):224-235
    [40]Dacquin J P, Dujardin C, Granger P. Catalytic decomposition of N2O on supported Pd catalysts:Support and thermal ageing effects on the catalytic performances[J]. Catal. Today,2008,137(2-4),390-396
    [41]Hussain M, Fino D, Russo N. N2O decomposition by mesoporous silica supported Rh catalysts[J]. J. Hazard. Mater.,2012,211-212:255-265
    [42]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004:
    [43]http://www.iza-online.org/
    [44]Liu N, Chen B H, Zhang R D, et al. Comparative study on the direct decomposition of nitrous oxide over M (Fe, Co, Cu)-BEA zeolites[J]. J. Catal.,2012,294:99-112
    [45]Liu N, Chen B H, Li Y P, et al. Charge transfer analysis on the direct decomposition of nitrous oxide over Fe-BEA zeolite:An experimental and density functional study[J]. J. Phys. Chem. C,2011,115(26):12883-12890
    [46]Rivallan M, Ricchiardi G, Bordiga S, et al. Adsorption and reactivity of nitrogen oxides (NO2, NO, N2O) on Fe-zeolites[J]. J. Catal.,2009,264(2):104-116
    [47]Smeets P J, Groothaert M H, van Teeffelen R M, et al. Direct NO and N2O decomposition and NO-assisted N2O decomposition over Cu-zeolites:Elucidating the influence of the Cu_Cu distance on oxygen migration[J]. J. Catal.,2007,245(2): 358-368
    [48]Malpartida I, Marie O, Bazin P, et al. The NO/NOx ratio effect on the NH3-SCR efficiency of a commercial automotive Fe-zeolite catalyst studied by operand IR-MS[J]. Appl. Catal. B,2012,113-114:52-60
    [49]徐如人,庞文琴.沸石分子筛的结构与合成[M].吉林大学出版社,1987:38-40
    [50]Kokotailo G T, Lawton S L, Olson D H, et al. Structure of synthetic zeolite ZSM-5[J]. Nature,1978,227(5652):437-438
    [51]Xia H, Sun K, Feng Z, et al. Effect of water on active iron sites for N2O decomposition over Fe/ZSM-5. J. Phys. Chem. C,2011,115(2):542-548
    [52]Nechita M T, Berlier G, Ricchiardi G, et al. New precursor for the post-synthesis preparation of Fe-ZSM-5 zeolites with low iron content[J]. Catal. Lett.,2005,106(1-2): 33-41
    [53]Lobree L J, Hwang I-C, Reimer J A, et al. Investigation of the state of Fe in H-ZSM-5[J]. J. Catal.,1999,186(2):242-253
    [54]Chen H -Y and Sachtler W M H. Activity and durability of Fe/ZSM-5 catalysts for learn burn NOx reduction in the presence of water vapor[J]. Catal. Today,1998,42(1-2): 73-83
    [55]Pirngruber G D, Luechinger M, Roy P K, et al. N2O decomposition over iron-containing zeolites prepared by different methods:A comparison of the reaction mechanism [J]. J. Catal.,2004,224(2):429-440
    [56]Park J, Choung J, Nam I, et al. N2O decomposition over wet- and solid-exchanged Fe-ZSM-5 catalysts[J]. Appl. Catal. B,2008,78(3-4):342-354
    [57]Yoshizawa K, Shiota Y, Ymura T, et al. Direct methane-methanol and benzene-phenol conversions on Fe-ZSM-5 zeolite:Theoretical predictions on the reaction pathways and energetics[J]. J. Phys. Chem. B,2000,104(4):734-741
    [58]Berrier E, Ovsitser O, Kondratenko E V, et al. Temperature-dependent N2O decomposition over Fe-ZSM-5:Identification of sits wiht different activity[J]. J. Catal., 2007,249(1):67-78
    [59]Pirngruber G D, Roy P K, Prins R. The role of autoreduction and of oxygen mobility in N2O decomposition over Fe-ZSM-5[J]. J. Catal.,2007,246(1):147-157
    [60]Yuranov I, Bulushev D A, Renken A, et al. Benzene hydroxylation over FeZSM-5 catalysts:which Fe sites are active? J. Catal.,2004,227(1):138-147
    [61]Kondratenko E V and Perez-Ramirez J. Mechanism and kinetics of direct N2O decomposition over Fe-MFI zeolites with different iron speciation from temporal analysis of products[J]. J. Phys. Chem. B,2006,110(45):22586-22595
    [62]Sun K, Xia H, Hensen E, et al. Chemistry of N2O decomposition on active sites with different nature:Effect of high-temperature treatment of Fe/ZSM-5[J]. J. Catal.,2006, 238(1):186-195
    [63]Rakic V, Rac V, Dondur V, et al. Competitive adsorption of N2O and CO on CuZSM-5, FeZSM-5, CoZSM-5 and bimetallic forms of ZSM-5 zeolite[J]. Catal. Today,2005, 110(3-4):272-280
    [64]da Cruz R S, Mascarenhas A J S, Andrade H M C. Co-ZSM-5 catalysts for N2O decomposition[J]. Appl. Catal. B,1998,18(3-4):223-231
    [65]Smeets P J, Meng Q, Corthals S, et al. Co-ZSM-5 catalysis in the decomposition of N2O and the SCR of NO with CH4:Influence of preparation method and cobalt loading[J]. Appl. Catal. B,2008,84(3-4):505-513
    [66]Groothaert M H, Lievens K, Leeman H. et al. An operand optical fiber UV-vis spectroscopic study of the catalytic decomposition of NO and N2O over Cu-ZSM-5[J]. J. Catal.,2003,220(2):500-512
    [67]Yashnika S A, Salnikova A V, Vasenin N T. Regulation of the copper-oxide cluster structure and DeNOx activity of Cu-ZSM-5 catalysts by variation of OH/Cu2+[J]. Catal. Today,2012,197(1):214-227
    [68]Fanning P E and Vannice A. A DRIFTS study of Cu-ZSM-5 prior to and during its use for N2O decomposition[J]. J. Catal.,2002,207(2):166-182
    [69]Wadlinger R L, Kerr G T, Rosinski E J. Catalytic composition of a crystalline zeolite[P]. US Patent, US 3308069.1967-07-26
    [70]Newsam J M, Treacy M M J, Koetsier W T. Structural characterization of zeolite Btea[J]. Zeolites,1988,13(3-4):375-380
    [71]Higgins J B, LaPierre R B, Schlenker J L, et al. The framework topology of zeolite Beta[J]. Zeolites,1988,8(6):446-452
    [72]陈艳丽.沸石beta分子筛膜的合成与表征及其性质研究[D].长春:吉林大学,2009
    [73]孙秀良.固相合成p分子筛及其合成机理的理论计算研究[D].北京:北京化工大学,2009
    [74]Martens M T J and Jacobs P A. Estimation of the volid structure and pore dimensions of molecular sieve zeolites using the hydroconversion of n-decane[J]. Zeolites,1984,4(2): 98-107
    [75]Perez-Ramirez J, Groen J C, Bruckner A. Evolution isomorphously substituted iron zeolites during activation:comparison of Fe-beta and Fe-ZSM-5[J]. J. Catal.,2005, 232(2):318-334
    [76]Melian-Cabre I, Mentruit C, Pieterse J A Z, et al. Highly active and stable ion-exchanged Fe-Ferrierite catalyst for N2O decomposition under nitric acid tail gas conditions[J]. Catal. Commun.,2005,6(4):301-305
    [77]Mauvezin M, Delahay G, Coq B, et al. Identification of iron species in Fe-BEA: Influence of the exchange level[J]. J. Phys. Chem. B,2001,105(5):928-935
    [78]Pieterse J A Z, Pirngruber G D, van Bokhoven J A, et al. Hydrothermal stability of Fe-ZSM-5 and Fe-BEA prepared by wet ion-exchange for N2O decomposition[J]. Appl. Catal. B,2007,71(1-2):16-22
    [79]0ygarden A H and Pere-Ramirez J. Activity of commercial zeolites with iron impurities in direct N2O decomposition [J]. Appl. Catal. B,2006,65(1-2):163-167
    [80]Kameoka S, Suzuki T, Yuzaki K, et al. Selective catalytic reduction of N2O with methane in the presence of excess oxygen over Fe-BEA zeolite [J]. Chem. Commun., 2000,745-746
    [81]Kokotailo G T, Schlenker J L, Dwyer F G, et al. The framework topology of ZSM-22 a high silica zeolite [J]. Zeolites,1985,5(6):349-351
    [82].刘勇,张维萍,谢素娟,等.用固体核磁共振研究hzsm-35分子筛的酸性[J].催化学报,2009,30(2):119-123
    [83]Baerlocher C, Meier W M, Loson D H. Atals of zeolite framework type[M].5th Ed. Amsterdram:Elsevier science 2001:134
    [84]Guzman-Vargas A, Delahay G, Coq B. Catalytic decomposition of N2O and catalytic reduct on of N2O and N2O + NO by NH3 in the presence of O2 over Fe-zeolite[J]. Appl. Catal. B,2003,42(4):369-379
    [85]Jisa K, Novakova J, Schwarze M, et al. Role of the Fe-zeolite structure and iron state in N2O decomposition:Comparison of Fe-FER, Fe-BEA, and Fe-MFI catalysts[J]. J. Catal., 2009,262(1):27-34
    [86]Tabor E, Jisa K, Novakova J, et al. Role of Pt(0) in bimetallic (Pt,Fe)-FER catalysts in the N2O decomposition[J]. Microporous Mesoporous Mater.,2013,165(1):40-47
    [87]Barrer R M. Synthesis and reactions of mordenite[J]. J. Chem. Soc.,1948,127: 2158-2163
    [88]魏贤.杂原子丝光沸石中氮氧化物选择性崔哈还原的理论研究[D].天津:河北工业大学,2009
    [89]Campa M C, Indovina V, Pietrogiacomi D. The dependence of catalytic activity for N2O decomposition on the exchange wxtentof cobalt or copper in Na-MOR, H-MOR and a Na-MFI[J]. Appl. Catal. B,2009,91(1-2):347-354
    [90]Pietrogiacomi D, Campa M C, Indovina V. FTIR of adsorbed species on Co-H-MOR and Co-Na-MOR under CH4+NO+O2 stream:Catalytic activity and selectivity[J]. Catal. Today,2010,155(3-4):192-198
    [91]Zhang X, Shen Q, He C, et al. N2O catalytic reduction by NH3 over Fe-zeolite:Effective removal and active site[J]. Catal. Commun.,2012,18(10):151-155
    [92]张祚望.MCM-22族分子筛的合成及其在苯与异丙醇烷基化反映中的催化性能研究[D].长春:吉林大学,2009
    [93]Kondratenko E V, Kondratenko V A, Santiago M, et al. Mechanistic origin of the different activity of Rh-ZSM-5 and Fe-ZSM-5 in N2O decomposition[J]. J. Catal.,2008, 256(2):248-258
    [94]Kondratenko E V, Perez-Ramirez J. Micro-kinetic analysis of direct N2O decomposition over steam-activated Fe-silicalite from transient experiments in the TAP reactor[J]. Catal. Today,2007,121(3-4):197-203
    [95]Xian H, Sun K, Liu Z. et al. The promotional effect of NO on N2O decomposition over the bi-nuclear Fe sites in Fe/ZSM-5[J]. J. Catal.,2010,270(1):103-109
    [96]Smeets P J, Sels B F, Van Teeffelen R M, et al. The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO, and H2O on recombination of oxygen[J]. J. Catal.,2008,256(2):183-191
    [97]Kapteijn F, Marban G, Rodriguez-Mirasol J, et al. Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts[J]. J. Catal.,1997,167(1):256-265
    [98]Lund C R F. Effects of zeolite channel walls and cation migration on N2O decomposition energies in Fe/ZSM-5[J]. J. Catal.,2006,243(2):438-441
    [99]Yakovlev A L, Zhidonirov G M, van Santen R A. N2O decomposition catalysed by transition metal ions[J]. Catal. Lett.,2001,75(1-2):45-48
    [100]Fellah M F and Onal I. N2O decomposition on Fe-and Co-ZSM-5:A density functional study[J]. Catal. Today,2008,137(2-4):410-417
    [101]Heyden A, Peters B, Bell A T, et al. Comprehensive DFT study of nitrous oxide decomposition over Fe-ZSM-5[J]. J. Phys. Chem. B,2005,109(5):1857-1873
    [102]Heyden A, Hansen N, Bell A T, et al. Nitrous oxide decomposition over Fe-ZSM-5 in the presence of nitric oxide:A comprehensive DFT study[J]. J. Phys. Chem. B,2006, 110(34):17096-17114
    [103]Sklenak S, Andrikopoulos P C, Boekfa B, et al. N2O decomposition over Fe-zeolites: structure of the active sites and the origin of the distinct reactivity of Fe-ferrierite, Fe-ZSM-5, and Fe-beta. A combined periodic DFT and multispectral study[J]. J. Catal., 2010,272(2):262-274
    [104]Zicovich-Wilson C M, Corma A, Viruela P. Electronic confinement of molecules in microscopic pores. A new concept which contributes to explain the catalytic activity of zeolites[J]. J. Phys. Chem.,1994,98(42):10863-10870
    [105]Lesthaeghe D, Sterck B D, van Speybroeck V, et al. Zeolite shape-selectivity in the gem-methylation of aromatic hydrocarbons[J]. Angew. Chem. Int. Ed.,2007,46: 1311-1314
    [106]He N, Ding Y. Violating the general acidity-activity correlation:Computational evidence in a CpNa-modified HMCM-22 zeolite for ethene protonation[J]. Microporous Mesoporous Mater.2011,144(1-3):67-73
    [107]Stirling A. Oxygen-transfer reactions between 3d transition metals and N2O and NO2[J]. J. Am. Chem. Soc.,2002,124(15):4058-4067
    [108]Xu J, Mojet B L, Lefferts L. Effect of zeolite geometry for propane selective oxidation on cation electrostatic field of Ca2+exchanged zeolites[J]. Microporous Mesoporous Mater.2006,91(1-3):187-195
    [109]Maihom T, Wannakao S, Boekfa B, et al. Density functional study of the activity of gold-supported ZSM-5 zeolites for nitrous oxide decomposition[J]. Chem. Phys. Lett. 2013,556:217-224.
    [110]Suarez S, Yates M, Petre A L, et al. Development of a new Rh/TiO2-spiolite monolithic catalyst for N2O decomposition[J]. Appl. Catal. B,2006,64(3-4):302-311
    [111]Boissel V, Tahir S, Koh C A. Catalytic decomposition of N2O over monolithic supported noble metal-transition metal oxides[J]. Appl. Catal. B,2006,64(3-4):234-242
    [112]郭泉辉.分子筛上N2O催化分解及其一步氧化苯制苯酚的研究[D].北京:北京化工大学,2007
    [113]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, revision B.04, Gaussian, Inc., Pittsburgh, PA,2003
    [114]van den Brink R W, Booneveld S, Pels J R, et al. Catalytic removal of N2O in model flue gases of a nitric acid plant using a promoted Fe zeolite[J]. Appl. Catal. B,2001,32(1-2): 73-81
    [115]Prieto-Centurion D, Boston A M, Notestein J M. Structural and electronic promotion with alkali cations of silica-supported Fe(III) sites for alkane oxidation[J]. J. Catal., 2012,296:77-85
    [116]Perez-Ramirez J. Active iron sites associated with the reaction mechanism of N2O conversions over steam-actived FeMFI zeolites[J]. J. Catal.,2004,227(2):512-522
    [117]Debeila M A, Coville N J, Surrell M S. et al. DRIFTS studies of the interaction of nitric oxide and carbon monoxide on Au-TiO2[J]. Catal. Today,2002,72(1-2):79-87
    [118]Wang J, Xia H, Ju X, et al. Influence of extra-framework Al on the structure of the active iron sites in Fe/ZSM-35[J]. J. Catal.,2013,300:251-259
    [119]Azanbre B, Zenboury L, Delacroix F, et al. Adsorption of NO and NO2 on ceria-zirconia of composition Ce0.6Zr0.31O2:A DRIFTS study[J]. Catal. Today,2008,137(2-4):278-282
    [120]Chang X, Lu G, Guo Y, et al. A high effective adsorbent of NOx:Preparation, characterization and performance of Ca-beta zeolites[J]. Microporous Mesoporous Mater,2013,165:113-120
    [121]Zhu H, Kwak J H, Charles H F, et al. In situ DRIFTS-MS studies on the oxidation of adsorbed NH3 by NOx over a Cu-SSZ-13 zeolite[J]. Catal. Today,2013,205:16-23
    [122]Wood B R, Reimer J A, Bell A T, et al. Nitrous oxide decomposition and surface oxygen formation on Fe-ZSM-5[J]. J. Catal.,2004,224(1):148-155
    [123]Ryder J A, Chakraborty A K, Bell A T. Density functional theory study of nitrous oxide decomposition over Fe- and Co-ZSM-5[J]. J. Phys. Chem. B,2002,106(28):7059-7064
    [124]Sojka Z and Che M. EPR investigation of the activation of N2O on Mo/SiO2 catalysts via electron transfer:From N2O as a ligand to adsorbed O- ion[J]. J. Phys. Chem.,1996, 100(35):14776-14785
    [125]Martinez A, Goursot A, Coq B, et al. Theoretical study of the dissociation of N2O in a transition metal ion-catalyzed reaction[J]. J. Phys. Chem. B,2004,108(26):8823-8829
    [126]Delabie A, Vinckier C, Flock M, et al. Evaluating the activation barriers for transition metal N2O reactions [J]. J. Phys. Chem. A,2001,105(22):5479-5485
    [127]Yang X Y, Wang Y C, Gen Z Y, et al. Theoretical study of the reaction of 4d transition metal ions with N2O[J]. Chem. Phys. Lett.,2006,430(4-6):265-270
    [128]Goursot A, Coq B, Fajula F. Toward a molecular description of heterogeneous catalysis: transition metal ions in zeolites[J]. J. Catal.,2003,216(1-2):324-332
    [129]Ajay M, Joshi W, Nicholas D. et al. Interaction of carbon monoxide with small gold clusters inside TS-1 pores[J]. J. Phys. Chem. C,2007,111(30):11424-11436
    [130]Pietrzyk P, Zasada F, Piskorz W. et al. Computational spectroscopu and DFT investigation into nitrogen and oxygen bond breakingand bond making processes in model deNOx and de N2O reactions[J]. Catal. Today,2007,119(1-4):219-227
    [131]Panov G I, Kharitonov A S, Sobolev V I. Oxidative hydroxylation using dinitrogen monoxide:A possible rote for organic synthesis over zeolites[J]. Appl. Catal. A,1993, 98(1):1-20
    [132]Panov G I, Sobolev V I, Kharitonov A S. The role of iron in N2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen[J]. J. Mol. Catal.,1990,61(1):85-97
    [133]Rodkin M A, Sobolev V I, Dubkov K A. et al. Room-temperature oxidation of hydrocarbons over FeZSM-5 zeolite[J]. Stud. Surf. Sci. Catal.,2000,130:875-880
    [134]Panov G I, Sobolev V I, Dubkov K A, et al. Iron complexes in zeolits as a new model of methane monooxygenase[J]. Catal. Lett.,1997,61(2):251-258
    [135]Panov G I, Uriarte A K, Rodkin M A, et al. Generation of active oxygen species on solid surfaces opportunity for novel oxidation technologies over zeolites[J]. Catal.Today, 1998,41(4):365-385
    [136]Zhang R D, Villanueva A, Alamdari H, et al. Catalytic reduction of NO by propene over LaCo1-xCuxO3 pervoskites synthesized by reactive grinding[J]. Appl. Catal. B,2006, 64(3-4):220-233
    [137]Datka J, Kozyra P, Kukulska-Zajac E. IR stdies and DFT calculations concerning the status of Cu+ions in CuZSM-5 and CuMCM-41[J]. Catal. Today,2004,90(1-2): 109-114
    [138]Zecchina A, Cerruti L, Borello E. An infrared study of nitrous oxide adsorption on a-chromia[J]. J. Catal.,1972,25(1):55-64
    [139]Rusu C N, Yates J T, Jr J. N2O adsorption and photochemistry on high area TiO2 powder[J]. Phys. Chem. B,2001,105(13):2596-2603
    [140]Guesmi H, Berthomieu D, Kiwi-Minsker L. Nitrous oxide decomposition on the binuclear [FeII(μ-O)(μ-OH)FeII] center in Fe-ZSM-5 zeolite[J]. J. Phys. Chem. C,2008, 112(51):20319-20328
    [141]Abu-Zied B M, Schwieger W, Unger A. Nitrous oxide decomposition over transition metal exchanged ZSM-5 zeolites prepared by the solid-state ion-exchange method[J]. Appl. Catal. B,2008,84(1-2):277-288
    [142]Li G, Pidko E A, van Santen R A, et al. Stability and reactivity of active sites for direct benzene oxidation to phenol in Fe/ZSM-5:A comprehensive periodic DFT study[J]. J. Catal.,2011,284(2):194-206
    [143]Benco L. Compensation effect. A DFT study of the activation of N2O over M-CHA (M= Fe2+, Co2+, RuO2+, RuO+)[J]. J. Catal.,2013,298:122-129
    [144]Sazama P, Sathu N K, Tabor E, et al. Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition[J]. J. Catal.,2013,299:188-203
    [145]Madon R J and Boudart M. Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions[J]. Ind. Eng. Chem. Fundam., 1982,21:438-447
    [146]Chen B H, Liu N, Liu X Y, et al. Study on the direct decomposition of nitrous oxide over Fe-beta zeolites:From experiment to thory[J]. Catal. Today,2011,175(1):245-255
    [147]Zhou J, Xia Q -H, Shen S -C, et al. Catalytic oxidation of pyridine on the supported copper catalysts in the presence of excess oxygen[J]. J. Catal.,2004,225(1):128-137
    [148]Li Y J, Slager T L, Armor J N. Selective reduction of NO by methane on Co-ferrierites: Catalyst characterization[J]. J. Catal.,1994,150(2):388-399
    [149]De Lucas A, Valverde J L, Dorado F, et al. Influence of ion exchanged metal (Cu, Co, Ni and Mn) on the selective catalytic reduction of NOx over mordenite and ZSM-5[J]. J. Mol. Catal. A:Chem.,2005,225(1):47-58
    [150]Gentry S T, Hurst N W, Jones A. Temperature programmed reduction of coper ions in zeolites[J]. J. Chem. Soc. Faraday Trans.1,1979,75:1688-1699
    [151]Zhang R D, Shi D J, Zhao Y L, et al. The reaction of NO+C3H6+O2 over the mesoporous SBA-15 supported transition metal catalysts[J]. Catal. Today,2011,175(1):26-33
    [152]Janas J, Machej T, Gurgul J, et al. Effect of Co content on the catalytic activity of CoSiBEA zeolite in the selective catalytic reduction of NO with ethanol:Nature of the cobalt species[J]. Appl. Catal. B,2007,75(3-4):239-248
    [153]Nishibori M, Shin W, Izu N, et al. CO oxidation performance of Au/Co3O4 catalyst on the micro gas sensor device[J]. Catal. Today,2013,201:85-91
    [154]Kohler M A, Curry-Hyde H E, Hughes A E, et al. The structure of CuSiO2 catalysts prepared by the ion-exchange technique[J]. J. Catal.,1987,108(2):323-333
    [155]Sun K, Xia H, Feng Z, et al. Active sites in Fe/ZSM-5 for nitrous oxide decomposition and benzene hydroxylation with nitrous oxide[J]. J. Catal.,2008,254(2):383-396
    [156]Yan J, Kung N C, Sachtler W M H, et al. Co/Al2O3 lean NOx reduction catalyst[J]. J. Catal.,1997,172(1):178-186
    [157]Sultana A, Nanba T, Haneda M, et al. Influence of co-cations on the formation of Cu+ species in Cu/ZSM-5 and its effect on selective catalytic reduction of NOx with NH3[J]. Appl. Catal. B,2010,101(1-2):61-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700