用户名: 密码: 验证码:
BG复合菌剂在处理生活废弃物中的作用及影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对生活废弃物(林区腐殖质、餐厨废弃物、畜禽粪便、农作物秸秆等)常规处理处置弊端突显、农业生产土壤严重退化、生物有机肥在实际生产中用量不足等问题,采用实验室和机械化生产试验相结合的方法,研究了生活废弃物好氧发酵过程中,BG复合菌剂的筛选条件及对生活废弃物的分解作用;用传统方法和16SrDNA分子生物学方法对发酵各阶段的优势微生物进行研究;随发酵天数的变化探索发酵物料中氧含量、温度、湿度、pH值、有机质、C/N比的变化规律;氧含量、温度、湿度、pH值、有机质、C/N比的调节对细菌、真菌、放线菌的影响,进而对有机质降解的影响;对好氧发酵产物生物有机肥进行检测分析的试验研究。主要研究结果如下:
     1.将采集来的林区腐殖质、餐厨废弃物、畜禽粪便、农作物秸秆等有机废弃物按比例混合后,进行好氧发酵。在发酵过程中不断分离、提纯优势菌群,经培养获得有益微生物中的芽孢杆菌群,定名为BG(Bacillus Genus缩写为BG)复合菌剂。
     2.整个实验过程以生活废弃物为原料,创造有益微生物适宜的生活环境,吸引、培育自然界广泛分布的细菌、真菌、放线菌等生长与快速繁殖。在细菌、真菌、放线菌生长的过程中,因分解有机物质而释放热量,使发酵物料的温度升高,促进发酵物料中各类有机物质的快速降解。说明有机混和废物好氧发酵实验是自然界微生物降解有机物质过程的强化,BG复合菌是好氧发酵过程中有机物质降解的主要功能微生物,高温期是有机质等物质快速降解的重要阶段。
     3.生活废弃物经过25天的好氧发酵后,各项指标趋于稳定,有机废弃物腐熟完全,生产出生物有机肥。按照《中华人民共和国农业行业标准(NY884—2004)》,监测各项理化指标的变化,进行营养成分检测与分析,检测结果表明各项指标均符合国家标准,实现了生活废弃物减量化、无害化、资源化的处理目标。
     4.传统的培养方法对微生物进行平板计数测定好氧发酵期发酵物料中微生物的变化,细菌总数呈现“升高-降低”趋势,真菌总数呈现“升高-降低-升高”趋势,放线菌总数呈现“升高-降低-升高”的趋势;温度变化和有机质的变化对细菌、真菌、放线菌起到了决定性的影响作用,随着温度的升高,对细菌、真菌、放线菌的种类也起到了筛选作用;分离、提纯得到菌种,经过生理生化分析和16SrDNA分子生物学鉴定,对DNA测序的序列进行比对,七个样品的DNA序列均与BG复合菌相似度比较高,说明BG复合菌的嗜热细菌是有机混合废物好氧发酵中有机质降解的主要微生物,也是纤维素、半纤维素和木质素降解优势菌群之一。
     5.在实验过程中,分别测定了氧浓度、温度、pH值、湿度、有机质含率、C/N比六大项目随好氧发酵天数增加而发生变化的趋势,得出结论:氧浓度、温度、pH值、湿度、有机质含率、C/N比六个项目是影响有机废弃物好氧发酵的重要因素,主要是通过影响细菌、真菌、放线菌生长繁殖的的速度,对其数量、种群及对有机物质的降解产生影响。六大影响因素是相互依赖、相辅相成的,即每项因素都有其适宜的范围,无论是超过适宜范围还是不足,都会影响微生物的生长与繁殖,影响有机废物的降解程度。
     6.在生活废弃物机械化好氧发酵的试验中,遵循了环境理念,生活废弃物不用分拣,无需除臭装置,添加BG复合菌剂,通过严格监测和及时调节氧浓度、温度、pH值、湿度、有机质含率、C/N比六大影响因素,不仅大大提高了有机废弃物处理处置的效率,而且机械化生产出符合国家指标的优质生物有机肥。
The research focuses on the methods of laboratory and mechanized productiontest which were used to study the BG composite bacteria conditions and the organicmatter decomposition during the aerobic fermentation process of organic mixed wastein order to solve the drawbacks of conventional treatment of mixed organic waste(forest humus, household waste, kitchen waste, animal manure, crop straw, etc.), theserious soil degradation of agricultural production and the lack of bio-organicfertilizer. Traditional methods and16SrDNA molecular biology methods were used ineach stage to study the fermentation beneficiation microbiology. The research alsostudied the fermentation oxygen content, temperature, humidity, pH value, organicmatter, and the C/N-ratio variation with the days of fermentation. Moreover, westudied the effect of Oxygen content, temperature, humidity, pH value, organic matter,and the C/N-ratio in the bacteria, fungi and actinomycetes and degradation of organicmatter. The aerobic fermentation product of bio-organic fertilizer were detected andtested, as well. The main results were listed as below:
     1. Humus of forest areas, household waste, kitchen waste, animal manure, andcrop stalks of organic waste were mixed in proportion to start the aerobicfermentation. Constantly separated and purified for dominant microflora, and obtainedbacillus in beneficial microorganisms by fostering, we called its Bacillus Genus (BG)composite bacteria.
     2. Organic mixed waste such as raw material in the whole experimental processcreate a suitable living environment for beneficial microorganisms, nurturing innature widely distributed bacteria, fungi, and actinomycetes and allowing their growthand reproduction rapidly. During the growth process of bacteria, fungi, andactinomycetes, due to the decomposition of organic matter and heat released, thetemperature of the fermenting material was elevated, and the process promotes therapid degradation of various types of organic matter fermented material. Organicmixed waste aerobic fermentation experiment is the process of strengthening thenature microbial degradation of organic matter, and BG composite bacteria are the main function organism of biological degradation of organic matter in the aerobicfermentation process. Consequently, the high temperature period is an important stageof rapid degradation of organic matter and other substances.
     3.The changes in the physical and chemical indicators were managed, and after25days of aerobic fermentation, the indicators stabilized, and the organic wastecomposted completely. Nutrients were tested in accordance with the People'sRepublic of China Agricultural Industry Standards (NY884-2004), and they finallyreached the national targets of bio-organic fertilizer and achieved the reduction,harmless, and the resources of the organic mixed waste.
     4. The study used microbial plate count method in traditional training methods todeterminate changes in the microorganisms during the aerobic fermentation offermented material. The results showed three similar “increases-decrease” trends ofthe total number of bacteria, fungi and actinomycetes. Changes of temperature andorganic matter influence the bacteria, fungi, and actinomycetes and play a screeningrole during species screening. Isolated purified strains were analysised by usingphysiological and biochemical method and16SrDNA of molecular Biology method.DNA sequence comparison results indicated that six samples of total seven sampleswere Bacillus close, which indicating that the thermophilic BG composite bacteria arethe main microbial degradation of organic matter not only in the aerobic fermentationof organic mixed waste, but also one of the dominant flora in cellulose, hemicellulose,and lignin degradation.
     5. We measured the oxygen concentration, temperature, pH value, humidity,organic matter containing, and the C/N-ratio changes with the number of aerobicfermentation, and we found that the oxygen concentration, temperature, pH, humidity,organic matter containing rates, C/N-ratio are important factors in aerobicfermentation of organic waste. These factors impacted the number, the species, andthe degradation of organic matter by the speed of growth and reproduction of bacteria,fungi, and actinomycetes. Six factors affected interdependent and complementary, andeach factor has its appropriate scope. Whether it is more than appropriate range or lack of will affect the growth and reproduction of microorganisms, every factoraffects the degree of degradation of organic waste.
     6. In the mechanization of the organic mixed waste aerobic fermentation test, wefollowed the environmental philosophy, which not adding any special bacteria, livingwaste without sorting and without deodorant device. Through strict monitoring andtimely adjustment of six influencing factors, which are the oxygen concentration,temperature, pH value, humidity, the rate of organic matter containing and theC/N-ratio, not only do we greatly improved the efficiency of the organic wastetreatment and disposal, but also we produced high-quality bio-organic fertilizer in linewith national targets.
引文
[1] Mannix S. Pedro,Shin Haruta, Kohfi Nakamuar, et al.Isolation and Characterization ofPredominant Microorganisms during Decomposition of Waste Materials in a Field-ScaleComposter[J]. Joijknai. of Bioscience and Bioengineering.2003,95(4):368-373.
    [2] Shuhei Yabe,Yoshifumi Aiba, Yasuteru Sakai, et al.Thermosporothrix hazakensis gen. nov., sp.nov.,isolated from compost, description of Thermosporotrichaceae fam. nov. within the classKtedonobacteria Cavaletti et al.2007and emended description of the class Ktedonobacteria[J].International Journal of Systematic and Evolutionary Microbiology2010,60:1794–1801.
    [3] Shuhei Yabe, Yoshifumi Aiba,Yasuteru Sakai,et.al. A life cycle of branched aerial myceliumand multiple budding spore-forming bacterium Thermosporothrix hazakensis belonging to thephylum Chloroflexi[J]. J. Gen. Appl. Microbiol.,2010,56,137-141.
    [4] Shuhei Yabe, Atsushi Kato,Masaru Hazaka,et.al.Thermaerobacter composti sp.nov.,a novelextremely thermophilic bacterium isolated from compost[J]. J. Gen. Appl. Microbiol.,200955,323-328.
    [5] Mannix Salvador Pedro, Shin Haruta, Masaru Hazaka, et.al. Denaturing Gradient GelElectrophoresis Analyses of Microbial Community from Field-Scale Cornposter[J]. Journalof Bioscince and Bioengineering.2001,91,(2)159-165.
    [6]杨恋,城市生活废弃物好氧堆肥实验及嗜热微生物群落研究[D].杨恋硕士学位论文.湖南大学,2008.12.
    [7]李玲玲,有机废弃物CO2施肥发酵过程中基质理化性状变化及残渣培肥土壤的作用[D].李玲玲学位论文.浙江大学。2010.7.
    [8]崔俊涛,微生物在土壤腐殖质形成与转化中作用的研究[D].崔俊涛博士学位论文.吉林农业大学,2005.5.
    [9]有用微生物研究会.EM活用技术事例集[M].EM研究所,2004.
    [10]赵由才,生活垃圾资源化原理与技术[M].北京:化学工业出版社,2002,140.
    [11]刘荣琼,葛晓光.我国生活垃圾的处理现状及展望[C].中国环境保护优秀论文集,2005,1543-1546.
    [12]马诗院,马建华.我国城市生活垃圾分类收集现状及对策[J].环境卫生工程,2007,15(1):12-14.
    [13]付钟.国外生活垃圾厌氧发酵技术的工程应用[J].江苏环境科技,2008,04期.
    [14]孙胜,白英.日本有益微生物应用技术及在我国应用前景[J].农业与技术,2010,30(1):79-82.
    [15]徐海云,周宏春.城市生活垃圾处理现状与对策建议[J].经济研究参考,2008,(25):15-19.
    [16]陈世和,张所明.城市垃圾堆肥原理与工艺[M].上海:复旦大学出版社,1990,112-160.
    [17]罗宇煊,张甲耀,马瑛.有害废物堆肥技术及堆肥生态系统研究进展[J].上海环境科学,1999,18(10):478-480.
    [18] Beffa T,Blanc M,Lyon P F,et al.Isolation of Thermus strains from hot composts(60to80℃)[J].Applied and Environmental Microbiology,1996,(62):1723-1727.
    [19] Morten K,Erland B.Microbial community dynamics during composting of straw materialstudied using phospholipids fatty acid analysis[J].FEMS Microbiology Ecology,1998,(27):9-20.
    [20] Komelia S,Ute W,Holger H,et al.Analysis of Biolog substrate utilization pattern bymicrobial communities[J].Appllied Environmantal Microbiology,1998,64(4):1220-1225.
    [21] Van Heerden J,Ehlers M M,Cloete T E.Biolog for the determination of microbial ofmicrobial diversity in activated sludge systems[J].Water Science Technology,2001,43(1):83-90.
    [22] James B G,Gregory J G,Troy D J,et al.Community analysis by Bioblog:curve integrationfor statistical analysis of activated sluge microbial habitat s [J].Journal MicrobiologyMethods,1996,27(22):183-197.
    [23] Blanc M,Marilley L and Beffa T.Thermophilic bacterial communities in hot composts asrevealed by most probable number counts and molecular16S rDNA methods [J].FEMSMicrobiology Ecology,1999,(28):141-149.
    [24] Thambirajah J J,Kuthubutheen A J.Composting of palmpress fibre[J].Biology Wastes,1989,(27):257-269.
    [25]章家恩,蔡燕飞.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350.
    [26] Cahyani V R,Watanabe A and Matsuya K.Succession of microbiota estimated byphospholipid fatty acid analysis and changes in organic constituents during the compostingprocess of rice straw [J].Soil Science Plant Nutr,2002,(48):735-743.
    [27] Bolta S V,Mihelic R,Lobnik F,et al.Microbial community structure during compostingwith and without mass inocula [J].Compost Sci Util,2003,(11):6-15.
    [28] Steger K,Jarvis A,Smars S.Comparison of signature lipid methods to determine microbialcommunity structure in compost [J].Journal of Microbiology Methods,2003,(55):371-382.
    [29] Dees PM and Ghiorse W C.Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA [J].FEMSMicrobiol Ecol,2001,(35):207-216.
    [30] Peters S,Koschinsky S and Schwieger F.Succession of microbial communities during hotcomposting as detected by PCR-single-strand-conformation polymorphism-basedgenetic profiles of small-subunit rRNA genes [J].Appllied Environmental Microbiology,2000,(66):930-936.
    [31] Tebbe C C.Microbial genomes:DNA-based research uncovers composting microorganisms[J].Biocycle,2002,(43):24-27.
    [32] Alfreider A, Peters S and Tebbe C C.Microbial community dynamics during compostingof organic matter as determined by16S ribosomal DNA analysis [J].Compost Sci Util,2002,(10):303-312.
    [33] Pan X J,SANOY,ITOT.Atmospheric acetic acid pulping of rice straw76:Behavior of ashand aihce in rice straw during atmosphesic acetic acid pulping and bleaching[J].Holxforaching,1999,53(1):49-55.
    [34] SUN R C,TOMKINSON T.In encyclopedia of separation science [M].London:AcademicPress,2000,4568-4574.
    [35]曹健,郭德宪,曾实等.一株里氏木霉产纤维素酶的条件及酶系的优化[J].郑州工程学院学报,2003,24(1):10-15.
    [36]陈坚.环境生物技术[M].北京:中国轻工业出版社,2000,42-67.
    [37]王建龙,文湘华.现代环境生物技术[M].北京:清华大学出版社,2001,265-273.
    [38] Amano Y,Kanda T.New Insights into Cellulose Degradation by Cellulases and RelatedEnzymes [J].Trends in Glycoscience and Glycotechnology,2002,(14):27-34.
    [39] Tuomela M,Vikman M,Hatakka A,et al.Biodegradation of lignin in a compostenvironment:a review [J].Bioresource Technology,2000,72(2):169-183.
    [40]郁红艳,曾光明,胡天觉等.真菌降解木质素研究进展及在好氧堆肥中的研究展望[J].中国生物工程杂志,2003,23(10):57-61.
    [41]蒋挺大.木质素[M].北京:化学工业出版社,2001,16-18.
    [42] Zacchi L,Burla G,Zuolong D,et al.Metabolism of cellulose by Phanerochaetechrysosporium in continuously agitated culture is associated with enhanced production oflignin peroxidase [J].Journal of Biotechnology,2000,78(2):185-192.
    [43] Shingo K,Masanori A,Noriko O,et al.Degradation of a non-phenolic L-O-4substructureand of polymeric lignin model compounds by laccase of Coriolus versicolor in the presenceof1-hydroxybenzotriazole [J].FEMS Microbiology Letters,1999,170(1):51-57.
    [44]席北斗,刘鸿亮,孟伟等.垃圾堆肥高效复合微生物菌剂的制备[J].环境科学研究,2003,16(2):58-64.
    [45] Reddy G V,Babu P R,Komaraiah P,et al.Utilization of banana waste for the productionof lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotusspecies(P.ostreatus and P.sajorcaju)[J].Process Biochemistry,2003,38(10):1457-1462.
    [46] Tuomela M,Oivanen1P,Hatakka A.Degradation of synthetic14C-lignin by various white-rot fungi in soil [J].Soil Biology and Biochemistry,2002,34(11):1613-1620.
    [47]席北斗,刘鸿亮,白庆中等.堆肥中纤维素和木质素的生物降解研究现状[J].环境污染治理技术与设备,2002,3(3):19-23.
    [48] Zhao J,De Koker T H,Janse B J H.Comparative studies of lignin peroxidases andmanganese-dependent peroxidases produced by selected white rot fungi in solid media[J].FEMS Microbiology Letters,1996,145(3):393-399.
    [49] Ejechi B O,Obuekwe C O,Ogbimi A O.Microchemical Studies of Wood Degradation byBrown Rot and White Rot Fungi in Two Tropical Timbers [J].International Biodeteriorationand Biodegradation,1996,38(2):119-122.
    [50] Kenneth E H.Extracellular free radical biochemistry of ligninolytic fungi [J].New Journal ofChemistry,1996,20(2):195-198.
    [51]张晶,黄民生,徐亚同.白腐真菌木质素降解酶的研究及应用进展[J].净水技术,2004,23(1):19-21.
    [52] Pérez J,Muńoz-Dorado J,Dela R T,et al.Biodegradation and biological treatments ofcellulose,hemicellulose and lignin:an overview [J].International microbiology,2002,5(2):53-63.
    [53]刘尚旭,赖寒.木质素降解酶的分子生物学研究进展[J].重庆教育学院学报,2001,14(3):64-67.
    [54] Cullen D.Recent advances on the molecular genetics of liniolytic fungi [J].Journal ofBiotechnology,1997,53(3):273–289.
    [55] Sun R C,Lawther I M,Banks W B.Isolation and characterization of hemicellulose B andcellulose from pressure refined wheat straw [J].Industrial Crops and Products,1998,(7):121-128.
    [56] Cahyani V R,Matsuya K,Asakawa S,et al.Succession and phylogenetic composition ofbacterial communities responsible for the composti ng process of rice straw estimated byPCR-DGGE analysis [J].Soil Sci Pla nt Nutr,2003,(49):619-630.
    [57]王光玉,陈雷,宣世伟等.生活垃圾好氧堆肥微生物接种的初步研究[J].环境科学与技术,2005,28(2):20-21,5075.
    [58]黄得扬,陆文静,王洪涛.有机固体废物堆肥化处理的微生物学机理研究[J].环境污染治理技术与设备,2004,5(1):12-18,71.
    [59]国家环境保护总局污染控制司.城市固体废物管理与处理处置技术[M].北京:中国石化出版社.2001,243,246-247.
    [60] Nogueira W A,Nogueira F N,Devens D C.Temperature and pH control in composing ofcoffee and agricultural wastes [J].Wat Sci Tech,1999,40(1):113-119.
    [61] Smars S,Gustafsson L,Beck-Friis B,et al.Improvement of the composting time forhousehold waste during an initial low pH phase by mesophilic temperature control[J].Bioresource Technology,2002,(84):237-241.
    [62] Rolleke S,Gurtner C,Drewello U,et al.Analysis of bacterial communities on historical glassby denaturing gradient alectrophoresis of PCR-amplified gene fragments coding for16SrRNA[J].Journal of Microbiology Methods1999,(36):107-114.
    [63] Kulcu R,Yaldiz O.Determination of aeration rate and kinetics of composting someagricultural wastes[J].Bioresource Technology,2004,(93):49-57.
    [64]杨朝晖,肖勇,曾光明等.用于分子生态学研究的堆肥DNA提取方法[J].环境科学,2006,27(8):1613-1618.
    [65] Yang Zh H,Xiao Y,Zeng G M,et al.Comparison of methods for total community DNAextraction and purification from compost[J].Applied Microbiology and Biotechnology,2007,74(4):918-925.
    [66]刘有胜,杨朝晖,曾光明等.PCR-DGGE技术对城市餐厨垃圾堆肥中细菌种群结构分析[J].环境科学学报,2007,27(7):1151-1156.
    [67]杨朝晖,刘有胜,曾光明等.厨余垃圾高温堆肥中嗜热细菌种群结构分析[J].中国环境科学,2007,27(6):733-737.
    [68] Ishii K, Fukui M, Takii S, et al.Microbial succession during a composting process asevaluated by denaturing gradient gel electrophoresis analysis[J]. Journal of AppliedMicrobiology,2000,89(5):768-777.
    [69] Ferris M J, Muyaer G, Ward D M.Denaturing gradient gel electrophor esis Profiles of16SrRNA—defined population inhabiting a hot spring microbial mat community[J].Applied andEnvironmental Microbiology,1996,(62):340-346.
    [70] Kjellerup B V,Veeh R H,Sumithraratne P,et al.Monitoring of microbi al souring inchemically treated produced-water biofilm syste ms using molecular techniques[J].J IndMicrobiol Biotechnol,2005,(32):163-170.
    [71] Muyzer G,Brinkhoff T,Ulrich N,et al.Denaturing gradient gel electrophoresis (DGGE) inmicrobial ecology[J].Molecular Microbial Ecology M anual,1998,(344):1-27.
    [72] Yoshida N, Yagi K, Sato D, et al. Bacterial communities in petroleum oil instockpiles[J].Journal of Bioscience and Bioengineering,2005,99(2):143-149.
    [73] Dees P M,Ghiorse W C.2000.Microbial diversity in hot synthetic compost as revealed byPCR-amplified rRNA sequences from cultivated isolates and extracted DNA[J].FEMSmicrobiology Ecology,35(2):207-216.
    [74] LaMontagne M G,Michel F C,Holder P A,et al.Evaluation of extraction and purificationmethods for obtaining PCR-amplifiable DNA from compost for microbial communityananlysis[J].Journal of Microbiology Methods,2002,49(3):255-264.
    [75] Heuer H,Krsek M,Baker P,et al.Analysis of actinomycete communities by specificamplification of genes encoding16S rRNA and Gel-Electrophoretic separation indenaturing gradient[J].Appl Environ Microbiol,1997,63(8):3233-3241.
    [76] Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diversecomposition[J].Applied and Environmental Microbiology,1996,62(2):316-322.
    [77] Konstantinov S R,Zhu W Y,Williams B A,et al.Effect of fermentable carbohydrates onpiglet facial bacterial communities as revealed by16S ribosomal DNA[J]. FEMSMicrobiology Ecology,2003,43(2):225-235.
    [78] Peters S,Koschinsky S,Schiwieger F,et al.Succession of microbial communities duringhot composting as detected by PCR-single strand conformation polymorphism basedgenetic profiles of small subunit rRNA genes[J].Appl Environ Microbiol,2000,66(3):930-936.
    [79]张晶,张惠文,李新宇等.土壤真菌多样性及分子生态学研究进展[J].应用生态学报,2004,15(10):1958-1962.
    [80]刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京:高等教育出版社,2004,210-218.
    [81]邓桂兰,彭超英,卢峰.利用微生物和酶降解粗纤维的研究[J].饲料工业,2004,25(11):48-51.
    [82]杨虹,李道棠,朱章玉.温嗜粪菌的选育和猪粪发酵研究[J].上海环境科学,1999,18(4):170-172.
    [83]韩如旸,闵航,陈美慈等.嗜热厌氧纤维素降解细菌的分离、鉴定及其系统发育分析[J].微生物学报,2002,42(2):138-144.
    [84] Xi B D,Liu H L,Bai Q Z,et al.Study on current status of lignin and cellulose biodegradationin composting process[J].Techniques and Equipment for Environmental Pollution Control,2002,3(3):19-23.
    [85] Tuomela M,Vikman M,Hatakka A,et al.Biodegradation of lignin in a compostenvironment:a review[J].Bioresource Technology,2000,(72):169-183.
    [86]连宾,刘丛强.嗜热真菌的生物转化功能与经济价值[J].地球与环境,2004,32(2):49-54.
    [87] Eichner C A,Erb R W,Timmis K N,et al.Thermal gradient electrophoresis analysis ofbioprotection from pollutant shock in the activated sludge microbial community[J].ApplliedEnvironmental Microbiology,1999,(65):102-109.
    [88] Vita R C,Kazuo M,Susumu A,et al.Succession and phylogenetic profile of eukaryoticcommunities in the composting process of rice straw estimated by PCR-DGGEanalysis[J].Biol Fertil Soils,2004,(40):334-344.
    [89]席北斗,刘鸿亮,白庆中等.堆肥中纤维素和木质素的生物降解研究现状[J].环境污染与治理技术与设备,2002,3(3):19-23.
    [90]吴坤,张世敏,朱显峰.木质素生物降解研究进展[J].河南农业大学学报,2000,34(4):349-354
    [91]赵庆良,王琨.城市垃圾的再生利用[J].能源工程,1999,(5):24-26.
    [92] Ruzena Gajdos.Bioconversion of organic waste by the year2010:To recycle elements andsave energy.Resources,Conservation and Recycling,1998,23:67-86.
    [93]邹仪明.植物纤维素化学(第2版)[M].北京:中国轻工业出版社,1995.152-154.
    [94]陈世和,张所明.城市垃圾堆肥原理与工艺[M].上海:复旦大学出版社,1990.
    [95] Nakasaki K,Sasaki M,Shoda M,Kubota H.Characteristic of mesophilic bacteria isolatesisolated during thermophilic composting of sewage sludge[J]. Appl.Environ.Microbiol,1985,49:42-45.
    [96] Abdennaceur Hassen,Kaouala Belguith,Naceur Jedidi.Microbial characterization duringcomposting of municipal solid waste[J]. Bioresource Technology,2001,80:217-225.
    [97] Beffa,T.,Blanc M,Lyon P.F.,Vogt G.,Marchiani M.,Fis cher J.L.,AraganoM.Isolation of thermus strains from hot composts60-80℃[J].Appl.Environ.Microbiol,1996,62:1723-1727.
    [98] Morten Klamer,Erland Baath.Microbial community dynamics during composting of strawmaterial studied using phospholipids fatty acid analysis[J].FEMS Microbiology Ecology,1998,27:9-20.
    [99] Strauch,D.Occurrence of microorganisms pathogenic for man and animals in sourceseparated biowaste and compost importance,control,limits and epidemiology.The Sciencesof Composting, Blackie Academic and Professional, Glasgow,UK,1996.224-232.
    [100] W.A. Nogueira, F.N. Nogueira,D.C. Devens. Temperature and pH controlin composting of coffee and agricultural waste[J].Wat.Sci.Tech,1999,40(1):113-119.
    [101] Sonia M. Tiquia, Judy H.C. Wan, Nora F.Y. Tam. Dynamics of yard trimmingscomposting as determined by dehydrogenase activity, ATP content, arginineammonification,and nitrification potential[J]. Process Biochemistry,2002,37:1057-1065.
    [102] Engracia Madejon,Manuel Jesus Diaz,Rafael Lopez,Francisco Cabrera.Cocompostingof sugarbeet vinasse:Influence of the organic matter nature of the bulking agentsused[J]. Bioresource Technology,2001,76:275-278.
    [103] J.W.C.Wong,K. F. Mak, N. W. Chan, A. Lam,M.Fang, L. X. Zhou,Q.T.Wu,X.D.Liao.Cocomposting of soybean residues and leaves in HongKong[J]. Bioresource Technology,2001,76:99-106.
    [104] Suman Ghosh,B.P.K apadnis.N.B.Singh.Composting of cellulosic hospital solidwaste:A potentially novel approach[J].International Biodeterioration&Biodegradation,2000,45:89-92.
    [105] M.J.Lopez,M.A.Elorrieta,M.C.Vargas-Garcia,F.Suarez-Estrella,J.Moreno.Theeffect of aeration on the biotransformation of lignocellulosic wastes by white-rotfungi[J].Bioresource Technology,2002,81:123-129.
    [106]王洪涛,李雨松.动态好氧堆肥模拟模型研究与应用[J].中国环境科学,2001,21(3):240-244
    [107] J. Kaiser. Modelling composting as a microbial ecosystem: A simulationapproach[J].Ecological Modelling,1996,91:25-37.
    [108] Jiunn-Jyi Lay,Young-Joon Lee, Tatsuya Noike. Feasibility of biological hydrogenproduction from organic fraction of municipal solid waste[J].Wat.Res.,1999,33(11):2579-2586.
    [109] J.Mata-Alvarez, S.Mace, P.Llabres. Anaerobic digestion of organic solid wastes:An overview of research achievements and perspectives[J].Bioresource Technology,2000,74:3-16.
    [110] Silvey,P.,et al.Microbial ecology of the leach-bed anaerobic digestion of unsortedmunicipal solid waste.In:Mata-Alvarez,J.,Tilche,A.,Cecchi, F.(Eds.).Proceedingsof the Second International Symposium on Anaerobic Digestion of Solid Wastes,Barcelona,1999,92(1):17-24.
    [111] Michael J.Broughton,Jurgen H.Theiele,Edward J.Birch,Alberto Cohen.Anaerobicbatch digestion of sheep tallow[J].Wat.Res.,1998,32(5):1423-1428.
    [112] V.C.K alia, V.Sonakya, N.Raizada. Anaerobic digestion of banana stemwaste[J]. Bioresource Technology,2000,73:191-193.
    [113] Nandi R., Sengupta. Microbial production of hydrogen: Anoverview[J].Crit.Rev.Microbiol.,1998,24(1):61-84.
    [114] Jiunn-Jyi Lay,Young-Joon Lee,Tatsuya Noike.Feasibility of biological hydrogenproduction from organic fraction of municipal solid waste[J].Wat.Res.,1999,33(11):2579-2586.
    [115] De Baere,L.,Boelens,J.The treatment of grey and mixed solid waste by means ofanaerobic digestion:Future developments.In:Mata-Alvarez,J.,T ilche,A.,Cecchi,F(Eds.)[J].Proceedings of the Second International Symposium on Anaerobic Digestion ofSolid Wastes,Barcelona,1999,92(1):290-299.
    [116] Vavilin V.A.,Rytov S.V.,Lokshina L.Y.A balance between hydrolysis andmethanogenesis during the anaerobic-digestion of organic matter[J].Microbiol.,1997,66(6):712-717.
    [117] Christ,O.,Faulstich,M.,Wilderer,P.Mathematical modeling of the hydrolysis ofanaerobic processes.In:Mata-Alvarez,J.,Tilche,A.,Cecchi,F.(Eds.)[J].Proceedingsof the Second International Symposium on Anaerobic Digestion of Solid Wastes,Barcelona,1999,92(2):5-8.
    [118]占新华.微生物制剂促进植物生长机理的研究进展[J].植物营养与肥料学报,1999,5(2):97-105.
    [119]慕永红.生物菌剂在寒地水稻秸秆还田上的应用[J].垦殖与稻作,1999,(3):31-32.
    [120]顾希贤,许月蓉.垃圾堆肥微生物接种实验[J].应用与环境生物学报,1995,1(3):274-278.
    [121]童朝晖,潘学军.木质生物原料的液化[J].林产工业,2000,27(6):3-10.
    [122]薛允连.美国城市废弃物在农业中的利用[J].中国资源再生,1997,4(1):40-41.
    [123]刘克锋.北京市城市生活垃圾成分调查及农用性分析[J].北京农学院学报,2001,16(4):25-31.
    [124]陈百明,陈安宁,张正峰,杜红亮.秸秆气化商业化发展的驱动与制约因素分析[J].自然资源学报,2007,22(l):62-69.
    [125]戴小枫,赵秉强.我国农产品安全生产技术发展的现状与优先领域[J].中国科技论坛,2002,2:21-24.
    [126]单洪涛,吴跃明,刘建新.秸秆饲料化技术的研究进展[J].中国饲料,2007(4):34-36.
    [127]丁国强,郁樊敏,张瑞明.上海市蔬菜土壤连作障碍问题及原因对策分析[J].中国蔬菜,2009(15):17-20.
    [128]杜静,林咸永,章永松.农业废弃物分解产生CO2的影响因素研究[J].应用生态学报,2004,15(3):501-505.
    [129]都韶婷,杜静,章永松,林咸永,于承艳.纤维素降解菌对农业有机废弃物发酵进行CO2施肥的作用[J].植物营养与肥料学报,2007,13(4):625-630.
    [130]樊琳,都韶婷,黄利东,陈一定,章永松.农业有机废弃物发酵CO2施肥对大棚番茄产量及品质的影响[J].浙江大学学报(农业与生命科学版),2009,35(6):626-632.
    [131]高峰,曹林奎,陈国军,施科豪.生物有机肥在糯玉米生产上的应用研究[J].上海交通大学学报(农业科学版),2003,21(3):237-241.
    [132]高建程,于金莲,孟庆翔,石登荣,任丽萍.堆肥中微生物及分子生物学技术的应用研究进展[J].农业环境科学学报,2007,26(增刊):624-627.
    [133]胡明勇,刘强,陈雄鹰,彭树初.两种钙化合物在猪粪一稻草堆肥中除臭及保氮效果研究[J].湖南农业科学,2009,7:51-54.
    [134]黄国锋,钟流举,张振锢,吴启堂.猪粪堆肥化处理过程中的氮素转变及腐熟度研究[J].应用生态学报,2002,13(11):1459-1462.
    [135]黄晓亚,常永义,崔欣,朱建兰,郭霞,李瑞华.拮抗菌Pl、P5对葡萄灰霉病菌的抑制作用及其抗真菌谱的测定[J].植物保护,2009,35(4):134-137.
    [136]黄爵梅,苟春林,来航线,梁军峰.两种添加剂对猪粪玉米秸秆堆肥氮素转化和堆肥质量的影响[J].干早地区农业研究,2005,23(6):112-118.
    [137]李吉进,郝晋眠,邹国元,张有山,王美菊.畜禽粪便高温堆肥生物化学变化特征研究[J].土壤通报,2005,36(2):234-236.
    [138]黎起秦,陈永宁,林纬,彭好文,蒙妓荣,韦绍兴.西瓜枯萎病生防细菌的筛选[J].广西农业生物科学,2000,19(2):81-54.
    [139]李淑芹,胡玖坤.畜禽粪便污染及治理技术[J].可再生能源,2003,(1):21-23.
    [140]林代炎,姚宝全,翁伯琦,林淡.15N示踪法研究复混生物肥对水稻肥效及其对茬后土壤速效养分的影响[J].核农学报,2005,19(5):379-352.
    [141]吕旭东.浙江省农业废弃物的能源利用初探[J].能源研究与利用,2005,(4):11-13.
    [142]鲁如坤.土壤农业化学分析方法北京:中国农业科技出版社,2000.
    [143]马光庭.生态有机肥与农业可持续发展.2004,12(3):191-193.
    [144]牛明芬,赵明梅,何随成,徐丽,马恩.微生物菌剂对有机废弃物堆肥发酵的影响[J].沈阳建筑大学学报,2008,24(3):468-471.
    [145]闰强,王安建,王高尚,于汶加.全球生物质能资源评价[J].中国农学通报,2009,25(18):466-470.
    [146]石志琦,胡梁斌,于淑池,徐朗莱,范永坚.细菌P-FS08的鉴定及其对几种植物病原真菌的拮抗作用[J].南京农业大学学报,2005,28(3):48-52.
    [147]孙永明,李国学,张夫道,施晨璐,孙振钧.中国农业废弃物资源化现状与发展战略[J].农业工程学报,2005,21(8):169-173.
    [148]鲍艳宇,周启星,颜丽,关连珠.畜禽粪便堆肥过程中各种氮化合物的动态变化及腐熟度评价指标[J].应用生态学报,2008,2:374-380.
    [149]王方浩,马文奇,窦争霞,马林,刘小利,许俊香,张福锁.中国畜禽粪便产生量估算及环境效应[J].中国环境科学.2006,26(5):614-617.
    [150]王立刚,李维炯,邱建军,马永良,王迎春,生物有机肥对作物生长、土壤肥力及产量的效应研究[J].土壤肥料,2004,5:12-16.
    [151]阳文锐,李维炯,陈展.EM堆肥对土壤生物影响的研究[J].中国生态农业学报,2007,15(6):88-91.
    [152]杨国义,夏钟文,李芳柏,万洪富,钟继洪,张天彬,高原雪,黄国锋.不同通风方式对猪粪高温堆肥氮素和碳素变化的影响[J1.农业环境科学学报,2003,22(4):463-467.
    [153]张建栋,王梦亮,刘滇生.PLFA方法对堆肥化过程中微生物群落结构变化的影响[J].安徽农业科学,2006,34(3):534-535.
    [154]张树清,张夫道,刘秀梅,王玉军,张建峰.高温堆肥对畜禽粪便中抗生素降解和重金属钝化的作用[J].中国农业科学,2006,39(2):337-343.
    [155]张卫杰,关海滨,姜建国,李晓霞,闰桂焕,孙荣峰,许敏,孙立.我国秸秆发电技术的应用及前景[J].农机化研究,2009,31(5):10-13.
    [156]赵劫,毕阳,葛永红,曹建康,杨冬梅,陈秀蓉.枯草芽抱杆菌Bl、B2液对“黄河蜜”瓜采后黑斑病和粉霉病的抑制效果[J].甘肃农业大学学报,2003,3(l):68-72.
    [157]钟华平,岳燕珍,樊江.中国作物秸秆资源及其利用[J].资源科学,2003,25(4):62-67.
    [158]祝学礼,徐文龙.我国固体废弃物污染与无害化处理技术[J].卫生研究,2002,31(4):331-33.
    [159]中国环境保护产业协会城市生活垃圾处理委员会.我国城市生活垃圾处理行业2007年发展综述[J].中国环保产业,2008,(5):14-17.
    [160]中华人民共和国农业行业标准(NY884—2004)[S].2005.
    [161]中华人民共和国卫生部.GB795987粪便无害化卫生标准[S].北京/中国标准出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700