用户名: 密码: 验证码:
湿式蜂窝扰流滤芯除尘器的机理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日益严重的井下煤尘污染导致煤尘爆炸事故频繁发生和尘肺病的蔓延,严重地威胁了煤矿井下的安全生产和井下作业矿工的身心健康。本文通过对湿法除尘机理的研究,结合平板湍流边界层外区卡门涡街扰动对边界层的耦合成为复涡黏的研究,形成了蜂窝式扰流滤芯附着除尘机理,在此基础上结合数值理论和计算流体动力学对除尘装置进行了数学建模,并对除尘器的除尘性能进行了数值模拟;然后根据该机理设计并搭建了相应的实验平台,对湿式蜂窝扰流滤芯除尘器进行了实验研究,验证了数值模拟结果的正确性。对比结果表明,实验测量所得数据与数值模拟结果基本吻合,证明了湿式蜂窝扰流滤芯除尘器除尘机理的合理性和高效性,为湿式蜂窝扰流滤芯除尘器工业化应用提供了理论和技术基础。
Growing underground coal dust pollution has caused that coal dust explosion accidents occurfrequently and pneumoconiosis disease spreads, a serious threat to the safe production ofunderground coal mine and underground miners' physical and mental health. In this paper, throughthe study of wet dust removal mechanism, combine with the research that perturbation by karmanvortex-street in turbulent boundary layer outer region to coupling of boundary layer becomes eddyviscosity, forming a honeycomb filler attachment dust theory, on this basis combining withnumerical theory and CFD simulation, carry on the mathematical modeling to dust removal deviceand the numerical simulation to the dust removal performance of dust collector; Then according tothe theory, design and build the corresponding experimental platform, investigate experimentallythe wet honeycomb lamilloy dust collector, test and verify the accuracy of numerical simulationresults. Comparative results show that the experimental data coincides basically with thenumerical simulation results, proving that the dust removal principle of wet honeycomb lamilloydust collector is reasonable and efficient, and providing a theoretical and technical foundation forthe industrial application of wet honeycomb lamilloy dust collector.
引文
1.中国煤炭工业劳动保护科学技术学会.矿井粉尘防治技术.北京:煤炭工业出版社,2007:1~2
    2. Sverre Vedal. Ambient particles and health. Journal of the Air&Waste ManagementAssociation,1997,47(5):551~581
    3.王省身.矿井灾害防治理论与技术.徐州:中国矿业大学出版社,1986:114~120
    4.赵雪峰.浅析煤尘爆炸事故机理.科技信息,2007,3:208
    5.史兴国.煤矿粉尘控制.金属矿山,2009,11:776~779
    6.杨书召.受限空间煤尘爆炸传播及伤害模型研究.河南理工大学,2010,1~2
    7.胡社荣,刘海荣.中国煤矿超大死亡事故及其原因雏析.中国矿业,2009,18(5):99~103
    8.古力.尘肺病:看不见的“杀手”.现代职业安全,2009,8(96):76~79
    9.王显政.美国煤矿安全监察体系.北京:煤炭工业出版社,2001:1~3
    10.李新东,许波云,田水承.矿山粉尘防治技术.陕西西安:陕西科学技术出版社,1995:30~37
    11.赵益芳,赵文才,张德等.矿井防尘理论及技术.北京:煤炭工业出版社,1995:7~9
    12.李强,蒋承林,翟果红.我国煤炭行业尘肺病现状分析及防治对策.中国安全科学生产技术,2011,11(4):148~151
    13.辛广龙,王铁根.我国煤矿尘肺病现状和对策.中国煤炭,2005,31(2):62~64
    14.葛玲军,贾发元,郝清亮等.尘肺病及矿尘综合防治技术.科技创新导报,2011,22:48~49
    15.徐景德.矿尘防治.徐州:中国矿业大学出版社,1992:12
    16.陈强业,张永清.固体颗粒冲蚀磨损的实验研究.摩擦磨损,1985,1:9~19
    17.纪小奇.煤矿掘进粉尘治理探讨与研究.科苑论坛,2009,11:117
    18.夏广宁.试论煤矿采掘作业中粉尘污染现状与治理对策.科技风,2013,4:222
    19.崔金玉.矿井粉尘的危害与治理.科技传播,2013.6(11):106~107
    20.高树运,宋忠亮,高庆洋.炮采工作面煤尘综合治理研究.山东煤炭科技,2010,1:182~185
    21.赵利安.炮采工作面防尘的实践.矿业安全与环保,2008,35(4),54~56.
    22.吕建为,陈少华,王兴雨.薄煤层炮采工作面湿式打眼及综合防尘技术探索与实践.煤炭科技,2008,10:55~57
    23.孙晓鹏.矿尘的危害与预防.水力采煤与管道运输,2013,2:12~14
    24.黄群,李文凯,谷迎豪等.浅谈矿井煤尘的防治方法.科学技术,2011,8:274
    25.刘新强.煤矿井下粉尘的产生极其分布的探讨.煤炭工程师,1987,5:7~12
    26.张琰东.综采工作面煤尘的研究与治理.矿业安全与环保,2005,32(s1):73,94
    27.赵继云,张德生,张子荣等.综采工作面粉尘综合防治技术研究.煤矿机械,2008,29(2):151~153
    28.王文才,杨敏综.采工作面割煤时煤尘污染状况的现场实测研究.内蒙古科技大学学报,2009,28(2):106~109
    29.刘建荣,史文安.采煤工作面粉尘状况与防尘重点.中国安全科学报,1992,2(4):20~25
    30.程卫民,刘伟,聂文等.煤矿采掘工作面粉尘防治技术及其发展趋势.山东科技大学学报(自然科学版),2010,29(4):77~82
    31.郭世明,许栋琳,毛宗普.矿井粉尘综合治理的创新与应用.中州煤炭,2012,204(12):97~99
    32.杨志.综采工作面防尘技术研究及其应用.河北煤炭,2012,1:40~41
    33.宋伟,孙庆鹏,王美光等.综采、综掘工作面综合防尘技术.山东煤炭科技,2011,1:175~176
    34.金龙哲.德国煤层注水防尘发展动向.煤炭工程师,1994,5:46~49
    35.李晓豁.基于产尘量最小的掘进机参数优化设计研究.煤炭学报,2003,25(4):437~439
    36.时训先,蒋仲安,邓云峰等.综采工作面粉尘污染状况研究.中国安全生产科学技术,2008,4(1):67~70
    37.栾昌才,陈荣策.国内外矿用湿式除尘器发展概况.煤矿安全,1994,6:36~37
    38.煤科院重庆所机电室风机课题组. SCF-6型湿式除尘风机.煤炭工程师,1986,6:1~6
    39.贺光让. SCF系列湿式除尘机.北京:煤炭工业出版社,1988:20~23
    40.郭建明. KSWS湿式除尘装置在石圪节矿井的应用.煤,2009,18(6):71~72,76
    41.张有成. YcTb1—1型液压除尘风机的研制.西山科技,1998,3:14~15
    42. Ranade V V. An efficient computational model for simulating flow in stirred vessels; a caseof Rushton turbine. Chemical Engineering Science,1997,52(24):4473~4484
    43. Cockx A, Line A, Roustan M, et al. Numerical simulation and physical modeling of thehydrodynamics in an air-lift internal loop reactor. Chemical Engineering Science,1997,52(21):3787~3793
    44. Van Heek K H. Progress of coal science in the20th century. Fuel,2000,79(1):1~26
    45. Ortiz de Salazar R, Ollero P, Cabanillas A, et al. Flue gas desulphurization in a circulatingfluidized bed. Coal Science and Technology,1995,24:1843~1846
    46. Spalding D B. A. general purpose computer program for multi-dimensional one-andtwo-phase flow. Mathematics and Computers in Simulation,1981,23(3):267~276
    47.陈贵林. CFD软件的明日之星. CAD与自动化,1994,10:55~62
    48. H K Versteeg, W Malalasekera. A introduce to Computational Fluid Dynamics: The FiniteVolume Method. New York: Wiley,1995.4~5
    49.于勇. FLUENT入门与进阶教程.北京:北京理工大学出版社,2008:1~4
    50. Croom M L. Effective selection of filter dust collectors. Chemical Engineering,1993,100(7):861
    51. Agarwal AT. Design guide for dust collectors. Chemical Engineering,2005,112(2):42~491
    52. Shannon Michael J. Understanding and selecting dust collectors. Journal of ProtectiveCoatings&Linings,1996,13(5):37~421
    53. Mohebbi A, Taheri M, Fathikaljahi J, et al. Simulation of an orifice scrubber performancebased on eulerian/lagrangian method. Journal of Hazardous Materials,2003,100(1~3):13~25
    54. Pak S I, Chang K S. Performance estimation of a venture scrubber using a computationalmodel for capturing dust particles with liquid spray. Journal of Hazardous Materials,2006,138(3):560~573
    55. W D Griffiths, F Boysan. Computational fluid dynamics (CFD) and empirical modeling ofthe performance of a number of cyclone samplers. Aerosol Science,1996,27(2):281~3041
    56. Gimbun J, Chuah T G, Fakhrul Razi A, et al. The influence of temperature and inlet velocityon cyclone pressure drop: a CFD study. Chemical Engineering and Processing,2005,44(1):7~121
    57. Jolius Gimbun, T G Chuah, Thomas S Y, et al. Prediction of the effects of cone tip diameteron the cyclone performance. Aerosol Science,2005,36:1056~10651
    58.周虓岗.中国能源消费与经济增长的实证分析.上海交通大学,2013,1~2
    59.黄晗君.我国清洁能源消费与经济增长的关系.华东理工大学,2012,1~2
    60.中国工程院项目组.中国能源中长期(2030,2050)发展战略研究:煤炭·洁净煤·节能战略卷.北京:科学出版社,2011:228~256
    61.孙熙,柳静献.除尘技术.沈阳:东北大学出版社,200:1~2
    62.金龙哲.矿井粉尘防治.北京:煤炭工业出版社,1993:207~235
    63.张小艳,郭强,李全.微细水雾除尘技术的实验研究.环境污染与防治.2003.(8):234~236
    64.何涛.了解粉尘性质,预防粉尘危害.现代职业安全,2007,(1):93
    65.马俊.煤矿呼吸性粉尘危害及监测技术.北京:煤炭工业出版社,1999:1~4
    66.支学艺,何锦龙,张红婴.矿井通风与防尘.北京:化学工业出版社,2009:244~245
    67.杨胜来.采煤工作面粉尘颗粒运动的动力学模型的探讨.山西矿业学院学报,1994,12(3):250~251
    68. Bhaskar R. Experimental Studies of Dust Dispertion in Mine Airways. Mining Engineering,1988,3:191~195
    69.樊建人.煤粉颗粒在气流中受力分析及其运动轨迹的研究.浙江大学学报,1987(6):1~11
    70.李战军.尘粒起动机理的初步研究.爆破,2003,20(4):17~23.
    71.蒋仲安,杜翠凤,牛伟.工业通风与除尘.北京:工业出版社,2010,90~94.
    72.李彩亭,魏先勋.燃煤烟气湿式除尘脱硫技术研究.环境工程,2000,18(4):32~34
    73.谢瑞腾.洗涤法脱硫除尘净化小型锅炉的烟气.工业安全与防尘,1995,12(3):3~25
    74.陈明功,支友刚,戚彬.10万t/a水泥立窑含尘废气湿法净化的工程体会.环境工程,2003,21(6):40~43
    75.董芃,李军,翟明.湿式除尘器在运行中存在问题分析.通风除尘,1996,22(6):29~30
    76.李炎,蔡觉先,周鸣镝.中心流场湿式除尘器的试验研究.环境工程,2003,21(3):42~44
    77.林肇信,童志权,佘名汉等.大气污染控制工程.北京:高等教育出版社,1991:202~372
    78.向晓东.除尘理论与技术.北京:冶金工业出版社,2013:101~122
    79.化工设备设计全书编辑委员会.除尘设备设计.上海:上海科学技术出版社,1983,384~386
    80.向晓东.现代除尘理论与技术.北京:冶金工业出版社,2002:107~115
    81.林肇信,童志权,佘名汉等.大气污染控制工程.北京:高等教育出版社,1991:202~372
    82. Hinze.O. Turbulence (Second edition).Mcgraw-HILL,1975
    83.罗坤.气固两相自由剪切流动的直接数值模拟和试验研究.浙江大学,2005:201~202
    84.姚军.气固两相圆柱绕流的直接数值模拟和肋条弯管抗磨机理的数值实验研究.浙江大学,2002.49~51
    85.张晋.圆柱尾迹周期性流动结构对湍流边界层影响的实验研究.天津大学,2006:24~34
    86.隋相坤.平板湍流边界层外区卡门涡街扰动的实验研究.天津大学,2009:49~50
    87.陈明绍.除尘技术的基本理论与应用.北京:中国环境科学出版社.1987:558~563
    88.王福军.计算流体动力学分析.北京:清华大学出版社,2006.1~3
    89. Ranade V V. An efficient computational model for simulating flow in stirred vessels: a caseof Rushton turbine. Chemical Engineering Science,1997,52(24):4473~4484.
    90. Cockx A, Line A, Roustan M, et al. Numerical simulation and physical modeling of thehydrodynamics in an air-lift internal loop reactor. Chemical Engineering Science,1997,52(21):3787-3793
    91.袁竹林,朱立平,耿凡等.气固两相流动与数值模拟.南京:东南大学出版社,57~60
    92.熊鳌魁.湍流模式理论综述.武汉理工大学学报(交通与工程科学版),2001,25(4):451~455.
    93.李福田,倪浩清.工程湍流模式的研究开发及其应用.水利学报,2001,(5):23~32
    94. Launder B E, Spalding D B. The numerical computation of turbulent flows. ComputerMethods in Applied Mechanics and Engineering,1974,3(2):269~289
    95. Okamoto M, Shima N. Numerical prediction of periodic transpired channel flow withlow-Reynolds-number turbulence models. Energy,2005,30(2-4):149~163
    96. Murakami S. Discussions of turbulence modelling and their applications: Comparison ofvarious turbulence models applied to a bluff body. Journal of Wind Engineering andIndustrial Aerodynamics,1993,(46-47):183~191
    97. Chernobrovkin A, Lakshminarayana B. Turbulence modeling and computation of viscoustransitional flows for low pressure turbines [J]. Engineering Turbulence Modelling andExperiments,1999,4:555~566
    98.张健, Nieh S.强漩湍流气固两相流动的颗粒随机轨道法模拟.力学学报,1994,26(6):657~663
    99. ZHANG Z, XIE Z L. Numerical simulation of fluid-solid two-phase flows. Journal ofChemical Industry and Engineering,2001,52(1):1~12
    100. Eric P, Bo L. Fundamentals of turbulent gas-solid flows applied to circulating fluidized bedcombustion. Progress in Energy and Combustion Science,1998,24(4):259~296
    101.张远哲,王慧玉,张振鹏.多相流体动力学.北京:航空学院出版社,1987,(1):73~74
    102.刘大有,王柏懿.推导悬浮体二相流基本方程的一种新方法.力学学报,1992,24(1):122~127
    103. Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow.AICHE Journal,1990,36(4):523~538
    104. Griffiths W D, Boysan F. Computational fluid dynamics (CFD) and empirical modeling ofthe performance of a number of cyclone samplers. Journal of Aerosol Science,1996,27(2):281~304
    105. Haim M, Weiss Y, Kalman H, et al. The effect of the inlet conditions on the numericalsolutions of particle-gas flows. Advanced Powder Technology,2003,14(1):87~110
    106.周力行.湍流气粒多相流动和燃烧的理论与数值模拟.北京:科学出版社,1994,153~200
    107.欧阳洁,李静海.模拟气固多相流动非均匀结构的颗粒运动分解轨道模型.中国科学(B辑),1999,29(1):29~38
    108.王维,李佑楚.颗粒流体两相流模型研究进展.化学进展,2000,12(2):208~217
    109. Xu B H, Yu A B. Numerical simulation of the gas-solid flow in a fluidized bed by combiningdiscrete particle methods with computational fluid dynamics. Chemical Engineering Science,1997,52(16):2785~2809
    110. Stevens A B, Hrenya C M. Comparison of soft-sphere models to measurements of collisionproperties during normal impacts. Powder Technology,2005,154(2-3):99~109
    111. Ge W, Li J H. Simulation of particle-fluid systems with macro scale pseudo-particle modeling.Powder Technology,2003,137(1-2):99~108
    112.符松.非线性湍流模式研究及进展.力学进展,1995,25(3):318~328
    113.李福田,倪浩清.工程湍流模式理论综述及展望.力学进展,1996,26(2):145~165
    114. Launder B E, Reece G J, Rodi W. Progress in the development of a ReynoldsStress0turbulence closure. Journal of Fluid Mechanics,1975,68(3):537~566
    115. Launder B E, Spalding D B. The numerical computation of turbulent flows. ComputerMethods in Applied Mechanics and Engineering,1974,3(2):269~289
    116. Daly B J, Harlow F H. Transport equations in turbulence. Physics of Fluids,1970,13(11):2634~2649
    117. Lien F S, Leschziner M A. Assessment of turbulent transport models including non-linearRNG eddy viscosity formulation and second-moment closure. Computers and Fluids,1994,23(8):983~1004
    118. Speziale C G, Sarkar S, Gatski T B. Modelling the pressure-strain correlation of turbulence:an invariant dynamical systems approach. Journal of Fluid Mechanics,1991,227:245~272
    119. Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems.Journal of Fluid Mechanics,1972,55(2):193~208
    120. Haider A, Levenspiel O. Drag coefficient and terminal velocity of spherical and non sphericalparticles. Powder Technology,1989,58(1):63~70
    121. Ounis H, Ahmadi G, McLaughlin J B. Brownian diffusion of sub-micrometer particles in theviscous sub-layer. Journal of Colloid and Interface Science,1991,143(1):266~277
    122. Hanjalic K, Launder B E. A Reynolds Stress Model of Turbulence and its Application to ThinShear Flows. Journal of Fluid Mechanics,1972,52(4):609~638
    123.国家技术监督局.中华人民共和国国家标准(GB/T16913.3—1997)
    124.国家技术监督局.中华人民共和国煤炭行业标准(MT/T713—1997)
    125.国家技术监督局.中华人民共和国国家标准(GB/T16913.8—1997)
    126.国家技术监督局.中华人民共和国国家标准(GB/T16913.9—1997)
    127.国家技术监督局.中华人民共和国国家标准(GB/T16913.5—1997)
    128.向晓东.除尘理论与技术.北京:冶金工业出版社,2013:210~212
    129. Ghorai S, Nigam K D P. CFD modeling of flow profiles and interfacial phenomenontwo-phase flow in pipes. Chemical and Engineering Processing,2006,45(1):55~65
    130. Lee C W, Palma P C, Simmons K, et al. Comparison of computational fluid dynamics andparticle image velocimetry data for the airflow in an aero engine bearing chamber. Journal ofengineer for gas turbines and powder,2005,127(4):697~703.
    131.周亨达.工程流体力学.北京:冶金工业出版社,1981:8~11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700