用户名: 密码: 验证码:
高耸通信塔抗风性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信塔是一种典型的高耸结构,在通信事业蓬勃发展的今天,其结构安全已与人们的生活息息相关。高耸结构高度较高、重量较轻、刚度较小、外形细长的特点决定了风荷载是其控制荷载,并且随着社会需求的增加和技术的进步,结构向着更高、更轻、更柔和低阻尼的方向发展,使其对风荷载越来越敏感。因此,对高耸结构进行尽量详细的抗风性能分析变得越来越重要。
     本文以中国移动通信湖南郴州地区GSM第七期扩容建设基站铁塔为工程背景,从结构动力特性、拟静力风响应及风振响应三个方面开展了对在建通信塔的抗风性能分析。
     本文首先介绍了风荷载的基本特点及相关概念,阐述了风对结构的作用及结构抗风的理论分析方法。利用通用有限元分析软件ANSYS建立了通信塔结构的精确有限元模型,并分析了结构的动力特性,得到了结构的自振频率、振型等动力特性参数。
     本文采用拟静力风荷载的计算方法,根据《建筑结构荷载规范》和《高耸结构设计规范》计算得到了作用在通信塔结构上不同风向角的拟静力风荷载,在此基础上利用ANSYS静力分析模块分析了通信塔在拟静力风荷载下的响应,并进行了对比分析,得到一些有意义的结论。
     本文介绍了脉动风荷载的模拟方法及实现过程,根据互功率谱矩阵,利用三角级数的谐波叠加法,采用MATLAB编写了脉动风模拟程序,模拟得到了通信塔不同高度的脉动风速时程,利用ANSYS瞬态动力学分析模块采用Newmark法对通信塔进行了动力时程分析,得到了通信塔在设计风速下的位移、速度、加速度时程,并对其进行对比分析,得到了一些有意义的结论。
     基于动力时程分析的结果计算了通信塔不同高度的顺风向风振系数,并与根据规范计算得到的风振系数进行了对比分析,发现根据时程分析结果计算得到的风振系数更能反映通信塔顶部平台集中质量的影响,且比根据规范计算得到的风振系数要小。
Communication tower is a typical high-rise structure. Nowadays, its structural safety has been closely linked with people's lives in the booming telecommunications industry. Due to high-rise structures ' characteristic of high altitude, low stiffness, shape determine, the dominating load of high-rise structures is wind load.The developed direction of the structure is higher, lighter, more gentle and low damping,which make them more sensitive to wind loads with increasing of social demands and technological advances. Therefore, the detailed wind resistance analysis of the high-rise structure becomes more and more important.
     This paper expounds the wind resistant characteristics of communication towers from the three aspect——the dynamic characteristics, pseudo static response to wind and wind induced response,regarding the seventh expansion construction engineering of Chenzhou, Hunan, China Mobile GSM base station tower as the background.
     Firstly, it introduces the basic characteristics of wind loads and related concepts, describes the role of wind on structures and the wind resistant theory of structural analysis. The author obtains the natural frequency, vibration mode and other dynamic properties by the analysis of the dynamic characteristics of the structure making use of finite element analysis software ANSYS to establish a precision finite element model of communications tower structure.
     In this paper, the author chooses pseudo-static wind load calculation method as the research mesures. According to the Load code for the design of building structures and Code for Design of high-rising Structures, calculats the pseudo-static wind load of communications tower structures in different wind direction on the basis of analysising pseudo-static response under wind loads by making use of ANSYS Static analysis module of the communication tower. Meanwhile, the comparative analysises are carried out, and some meaningful conclusions are drawn.
     This article describes the simulation method and implementation process of fluctuating wind load.In tems of Mutual power spectrum matrix, the author simulates obtainning fluctuating wind speed time series at different heights of the communication tower by using trigonometric series harmonic superposition method, and writes the simulation program of fluctuating wind with MATLAB. Then, the author proceeds to analyse the dynamic time and distance of he communication tower by using Newmark method by the module of ANSYS Transient Dynamic Analysis. At last, the thesis makes some meaningful conclusions with the comparative analysis of the displacement, velocity and acceleration time history of the communication tower under design wind speed.
     The author caculates the wind-induced vibration coefficients with different height of communication towers based on the results of dynamic analysis, then compares it to the results calculated according to the specification. Throgh this way, the author finds that the wind-induced vibration coefficients based on dynamic analysis can reflect the impact better of the concentrated mass of the platform at the top of communication tower. What is more, the wind-induced vibration coefficients is smaller then the one which is based on the specification., and it's smaller.
引文
[1]张相庭.结构风工程:理论规范实践.北京:中国建筑工业出版社, 2006, 99-125
    [2]陈政清.桥梁风工程.北京:人民交通出版社, 2005, 1
    [3]项海帆.结构风工程研究的现状和展望.振动工程学报, 1997, 10(3): 258-263
    [4]谢强,张勇,李杰.华东电网500kV任上5237线飑线风致倒塔事故调查分析.电网技术, 2006, 30(10): 59-63
    [5]梁枢果,邹良浩.格构式塔架顺风向、横风向等效动力风荷载简化计算.见:第十三界全国风工程学术会议论文集. 2007, 253-259
    [6]范学伟.工程结构的风灾破坏和抗风设计.中国安全科学学报, 2001
    [7]王肇民.高耸结构的发展和展望.特种结构, 2000, 17(1): 4-7
    [8]项海帆.大跨高耸柔性结构的风致振动.振动与冲击, 1997, 16(4): 1-5
    [9] Li Q S, Fang J Q, Jeary A P, et al. Full-scale measurement of wind effects on tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1998, (74 /75 /76): 741-750
    [10] Li Q S, Wu J R, Liang S G, et al. Full-scale measurements and numerical evaluation of wind-induced vibration of a 63-story reinforced concrete tall building. Engineering Structures, 2004, 26 (12): 1779-1794
    [11] Li Q S, Xiao Y Q, Wong C K. Full-scale monitoring of typhoon effects on super tall buildings. Journal of Fluids and Structures, 2005, 20 (5): 697-717
    [12] Li Q S, Wu J R. Correlation of dynamic characteristic of a super-tall building from full-scale measurements and numerical analysis with various finite element models. Earthquake Engineering and StructuralDynamics, 2004, 33(14): 1311-1336
    [13] Li Q S, Fu J Y, Xiao Y Q, et al. Wind tunnel and full-scale study of wind effects on China’s tallest building. Engineering Structures, 2006, 28 (12): 1745-1758
    [14]庞加斌,林志兴,葛耀君.浦东地区近地强风特性观测研究.流体力学试验与测量, 2002, 16(3): 32-39
    [15]胡非,洪钟祥,雷孝恩.大气边界层和大气环境研究进展.大气科学, 2003, 27(4): 712-728
    [16]高志球,卞林根,逯昌贵等.城市下垫面空气动力学参数的估算.应用气象学报, 2002, 13 (增1): 26-33
    [17]陆龙骅,卞林根,程彦杰等.冬季北京城市近地层的气象特征.应用气象学报, 2002, 13(增1): 34-42
    [18]李秋胜,郅伦海,胡非.沙尘暴天气下城市中心边界层风剖面观测及分析.土木工程学报, 2009, 42(12), 83-86
    [19]埃米尔,希缪,罗伯特. H.斯坎伦.风对结构的作用——风工程导论.刘尚培,项海帆,谢霁明译.上海:同济大学出版社, 1992, 2-8
    [20]黄本才.高层建筑结构计算与设计.上海:同济大学出版社, 1998, 1-9
    [21]黄本才.结构抗风分析原理及应用.上海:同济大学出版社, 2008, 9
    [22] Tennekes H. The logarithmic wind profile.Journal of Atmospheric Sciences, 1973, 30: 234-238
    [23] Davenport A G.Rationale for determining design wind velocities.Journal of Structural Division, 1960, 86(ST5): 39-68
    [24]周淑贞,束炯.城市气候学.北京:气象出版社, 1994, 12-19
    [25] Deaves D M, Harris R I. A mathematical model of the structure of strong winds. London: Construction Industry Research and Information Association, 1978, 35-40
    [26] Helliwell N C. Wind over London. In: Proc of the The Third International Conference on Wind Effects on Building and Structures, 1972, 23-32
    [27] Melbourne W H. Turbulence effects on Maximum surface Pressures-a Mechanism and Possibility of reduction.In: Proc 5th int conf on wind Eng. Londons: Cambridge university press, 1997, 56-60
    [28] Davenport A G. The Relationship of Wind Structure to Wind Loading. In: proc of the Symposium on Wind Effect on Building and Structures. vol. 1. London, 1965, 54-102
    [29]李秋胜,郅伦海,胡非.沙尘暴天气下城市中心边界层风剖面观测及分析.土木工程学报, 2009, 42(12): 87-90
    [30]黄本才.高层建筑结构计算与设计.上海:同济大学出版社, 1998, 21-27
    [31]中华人民共和国建设部主编.建筑结构荷载规范GB50009-2001.北京:中国计划出版社, 2006, 28-48
    [32]张相庭.结构风压和风振计算.上海:同济大学出版社, 1985, 87-95
    [33]张相庭.工程结构风荷载和抗风技术手册.上海:同济大学出版社, 1990, 15-18
    [34]盛骤.概率论与数理统计.北京:高等教育出版社, 2001, 352-383
    [35]李鹏飞.紊流风对大跨度分体双箱桥梁的作用: [同济大学硕士学位论文】.上海:同济大学, 2007, 10-40
    [36]欧进平,王光远.结构随机振动.北京:高等教育出版社, 1998, 61-83
    [37] Davenport A G. The application of statistical concepts to the wind loading of structures. Proc Inst Civ. Eng, 1961, 19(4): 449-472
    [38] Davenport A G.The spectrum of horizontal gustiness near the ground in highwinds. Quarterly Journal of the Royal Meteorological Society, 1961, 87(312): 194-211
    [39]黄本才.随高度变化的脉动风速谱及风振计算.力学与应用论文集.上海:同济大学出版社, 1998, 90-96
    [40]张相庭.工程抗风设计计算手册.北京:中国建筑工业出版社, 1998, 32-35
    [41]黄本才.随高度变化的脉动风速谱及风振计算.力学与应用论文集.上海:同济大学出版社, 1998, 84-91
    [42]胡卫兵,何建.高层建筑与高耸结构抗风计算及风振控制.北京:中国建筑工业出版社, 2003, 31-182
    [43]中华人民共和国建设部主编.高耸结构设计规范GB50135-2006.北京:中国计划出版社, 2007, 53-64
    [44]瞿伟廉,梁枢果,李正农等.对我国荷载规范中等效设计风荷载概念的分析.见:第十二界全国风工程学术会议论文集. 2005, 275-277
    [45]王新敏. ANSYS工程结构数值分析.北京:人民交通出版社, 2007, 501-508
    [46]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社, 1997, 1-100
    [47] Shinozuka M, Jan C M. Digital simulation of random precess and its applications. Journal of Sound and Vibration, 1972, 25: 225-237
    [48]舒新玲,周岱.风荷载测试与模拟技术的回顾及展望.振动与冲击, 2002, 3: 6-10
    [49] Rice, S O. Mathematical analysis of random noise. Selected papers on noise and stochastic processes, N.Wax, et, Dover Publish Inc.New York, 1954, 133-294
    [50] Shinozuka, M Monte. Carlo solution of structural dynamics. Computers and Structures, 1972, 2(3): 855-874
    [51] Peter J Brockwell, Richard A Davise.时间序列的理论的方法.北京:高等教育出版社, 2003, 214-232
    [52]李小军.地震工程中动力方程求解的逐步积分方法.工程力学, 1996, 13(2): 110-118
    [53]陈亚勇. MATLAB信号处理详解.北京:人民邮电出版社, 2001, 131-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700