用户名: 密码: 验证码:
多场耦合及多相材料的柔顺机构拓扑优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的发展,多场耦合在实际工程及集成化产品中的作用变得越来越显著,甚至起主导作用。在对这些工程产品进行拓扑优化设计时,单一物理场下进行的拓扑优化设计方法已不能满足实际应用,迫切需要有效的方法来解决耦合问题。本文以多场耦合拓扑优化为研究对象,对多物理场中关联性最大的热场引发的结构散热、材料性能和结构的热可靠性等拓扑优化问题进行了系统地研究,主要研究内容如下:
     (1)在考虑温度效应的作用下,进行刚性结构和柔顺机构的拓扑优化设计。论证了热固耦合分析的必要性,为多场耦合的拓扑优化设计提出一种新的思路和方法。首先,对热场进行有限元分析,在本构关系中计入了热应变,用虚功原理和有限元法推导了等效节点热载荷,并将热载荷转化为体力施加给弹性场,得到了结构的耦合控制方程。然后建立了热固耦合拓扑优化模型,得到了热固耦合结构与柔顺机构最优拓扑图。最后,对比和分析了不同温度下的拓扑结果。
     (2)在热固耦合的基础上,提出了一种热电耦合的多目标拓扑优化方法,设计了一种电热驱动的柔顺机构。根据焦耳定理,电场将产生等效热量,机构在热的作用下将产生热应力和热应变,从而驱动机构产生输出位移。应用顺序耦合方法进行电-热-结构多物理场耦合分析,采用比值法权衡了多个目标之间的比例关系,用移动近似算法对优化问题进行迭代求解,为微机电系统中的电-热-结构材料一体化综合设计提供了一种新的方法。
     (3)提出了一种在对流换热的边界条件下进行结构散热拓扑优化设计的方法。以最小散热弱度为目标,建立了相关模型,得到了与实际应用中的热交换器非常相似的散热拓扑图,以实例论证了忽略对流换热进行的散热结构拓扑优化是不完备的。此外,在均匀温度场的基础上提出了非均匀温度场的散热拓扑优化设计,应用叠加原理将非均匀温度场等效为一个均匀温度场与多个集中热源叠加而成,从而将非均匀温度场的散热拓扑优化设计转化为一个多目标的优化设计。
     (4)根据不同的目标得到了各种材料微观结构拓扑图,并设计了由不同材料构成的柔顺机构。推导了多相材料等效弹性模量、离轴刚度与整体刚度矩阵,研究了不同材料主方向的微观结构,根据不同的功能需求,得到各种不同性能的多相复合材料;并进行了多相复合材料构成的柔顺机构拓扑优化设计研究,实现输入输出成非对应关系的多功能需求,从而充分发挥多相材料的性能。
     (5)基于概率可靠性理论,探讨了如何减少温度环境、几何尺寸以及作用荷载等因素的不确定性而导致的机构性能下降的问题。用可靠度指标衡量各种随机因素的不稳定性,构建了以可靠性指标为约束条件的热固耦合拓扑优化数学模型,最后对比分析了可靠性与确定性拓扑结果,证明了进行可靠性拓扑优化能找到经济与性能的最佳结合点。在此基础上,给出了一种基于密度法的等高线边界轮廓拓扑图提取方法,并采用线切割加工工艺,研制了位移反向器原型,对位移反向器的位移性能及温度效应进行了试验测试。结果表明,考虑温度效应的位移反向器的试验测试结果与理论模型基本吻合,说明了理论模型的正确性。
With the development of technology, multi-field coupling play an increasingly significant role in the engineering and integrated product, even it plays a leading role. Therefore, topology optimization design methods under a single physical field cannot meet the practical application when design these engineering products using topology optimization method. There are urgent needs for effective ways to solve the coupling problem. In this paper, topology optimization in multi-field coupling is research object, the topology optimization problems such as structure cooling, material performance and reliability induced by thermal field.
     (1) Considering the effect of temperature, the topology optimization of rigid structure and compliant structure were carried out. The need for thermal-mechanical-coupling analysis was demonstrated, and a novel method is proposed for topology optimization of multi-field coupling. First, the finite element analysis on thermal field is performed; the thermal strain is included in the constitutive relations. Virtual work principle and finite element method are used to derive equivalent nodal thermal load, and the thermal loads are converted into body forces and applied to the elastic fields, and the coupled control equations of structure are obtained. The thermal- mechanical -coupling topology optimization model is built, and the optimized topology diagrams of thermal- mechanical structure and compliant structure are obtained. Finally, comparison analyses of topology results at different temperatures were carried out.
     (2) On the basis of the thermal- mechanical coupling model, a multi-objective thermal-electrical-coupling topology optimization method was proposed, and a thermal-and-electrical-driven compliant mechanism was designed. According to Joule theorem, the electric field will produce the equivalent heat, the mechanism will generate thermal stress and deformation under the thermal field, and thus it drives the mechanism to obtain output displacements. Sequential coupling method is applied to perform the analysis of electric-thermal-structural-coupling multi-physics, and the ratio method is used to balance the proportional relation between multiple objectives, and the optimization problem is solved by using MMA approximation algorithm. Thus, it provides a theoretical foundation for the electricity-thermal-structure-material integrated and comprehensive design of MEMS system.
     (3) A topology optimization method for structure cooling based on convection heat transfer in the boundary conditions was proposed. The optimization model is built using minimum weak degree of heat as optimized object, and the topology results of cooling structure similar to the practical heat exchanger were obtained, thus it illustrates the idea and the model proposed in the paper is correct. And examples have demonstrated that the neglect of heat convection for topology optimization is not entirely correct. In addition, the topology optimization of cooling structure under the non-uniform temperature field is proposed on the basis of uniform temperature field, and the non-uniform temperature field is treat as the superposition of a number of uniform temperature fields and concentrated heat sources by using the superposition principle, and thus the topology optimization problem of cooling structure under non-uniform temperature field is converted into a multi-objective optimal design.
     (4) Topology results of a variety of material microstructure were obtained according to different objects, and the compliant mechanisms consisting of different materials were designed. The equivalent elastic modulus, off-axis stiffness and overall stiffness matrix of multiphase materials are derived, and the microstructures of main directions of different materials are studied. The multiphase composites of a variety of different properties are obtained according to different functional requirements. The topology optimization of compliant mechanisms based on multiphase composite is studied to achieve multi-functional needs of correspondence between input and output in order to maximize the performance of multiphase materials.
     (5) Based on probability reliability theory, we study how to reduce the effect of uncertain of temperature environment, geometry and loading. The reliability index is used to quantitatively measure the various random uncertain factors, and the thermal-solid-coupling topology optimization model is built using the reliability index as constraint conditions. By comparing the topology results by using reliability method and deterministic one, it proved that the best combination of economy and performance point can be found by using reliability topology optimization. On the basis of the above study, we presented a method of topology extraction based on density contour boundary contour. And the displacement reverser was machined by wire cutting technology, and its displacement performance and the temperature effect was tested. The test showed the results from test are consistent one from theoretical model, and it illustrated the correctness of the theoretical model.
引文
[1]周克民,李俊峰,李霞.结构拓扑优化研究方法综述[J].力学进展,2005,35(1):69-76.
    [2]张宪民,陈永健.考虑输出耦合时柔顺机构机构拓扑与压电驱动单元的优化设计[J].机械工程学报,2005,41(8):69-74.
    [3] Wang Nianfeng, Tai K. Target matching problems and an adaptive constraint strategy for multiobjective design optimization using genetic algorithms[J]. Computers and Structures, 2010, 88(19-20): 1064-1073.
    [4] Shuib S, Ridzwan MIZ, Kadarman AH. Methodology of compliant mechanism in application a review [J]. American Journal of Applied Sciences, 2007, 4: 160-167.
    [5]左孔天.连续体结构拓扑优化理论与应用研究[D].武汉:华中科技大学,2004.
    [6]占金青.基于基础结构法的柔顺机构拓扑优化设计研究[D].广州:华南理工大学,2010.
    [7] Prager W. A note on discredited michell structures[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3(3): 349-355.
    [8] Michell AGM. The limits of economy of material in frame structure, Philosophical Magazine, 1904, 8 (47): 589-597.
    [9] Dorn WS, Gomory RE, Greenberg HJ.Automatic design of optimal structures [J]. Journal of Mechanics, 1964, 3: 25–52.
    [10] Jog CS, Haber RB.Stability of finite element models for distributed-parameter optimization and topology design[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 130 (3-4): 203-226.
    [11] Petersson J, Sigmund O.Slope constrained topology optimization [J]. International Journal for Numerical Methods in Engineering, 1998, 41 (8): 1417-1434.
    [12] Zhou M, Shyy YK, Thomas HL.Checkerboard and minimum member size control in topology optimization [J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 152-158.
    [13] Ringertz U.On optimal optimization of trusses [J]. Engineering Optimization, 1985, 9(3): 209-218.
    [14]程耿东.关于桁架结构拓扑优化设计中的奇异最优解[J].大连理工大学学报, 2000, 40(2):379-383.
    [15] Bends?e MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224.
    [16]王健,程耿东.应力约束下薄板结构的拓扑优化[J].固体力学学报,1997,18(4):317-322.
    [17] Tenek LH, Hagiwara I. Optimal rectangular plate and shallow shell topologies using thickness distribution or homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 115(1-2): 111-124.
    [18]周克民,胡云昌.用可退化有限单元进行平面连续体拓扑优化[J].应用力学学报,2002,19(1):124-126.
    [19]周克民,胡云昌.结合拓扑分析进行平面连续体拓扑优化[J].天津大学学报,2001,34(3):340-345.
    [20] Cheng KT, Olhoff N.An investigation concerning optimal design of solid elastic plates [J]. International Journal of Solids and Structures, 1981, 17(3): 305-323.
    [21] Bends?e MP, Rodrigues HC. Integrated topology and boundary shape optimization of 2-D solids [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 87: 15-34.
    [22] Bends?e MP, Sigmund O. Material Interpolations in Topology Optimization [J]. Archive of Applied Mechanics, 1999, 69: 725-741.
    [23] Olhoff N, Bendsoe MP, Rasmussan J. On CAD-integrated Structural Topology and Design Optimization [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 259-279.
    [24] Tenek LH, Hagiwara I. Optimization of Material Distribution Within Isotropic and Anisotropic Plates Using Homogenization [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 109(1-2): 155-167
    [25] Rozvany GIN., Zhou M., Birker T. Why Multi-load Topology Design Based on Orthogonal Microstructures Are in General Non-optimal [J]. Structural Optimization, 1993, 6(3): 200-204.
    [26] Diaz AR, Bendsoe MP. Shape Optimization of Structures for Multiple Loading Conditions Using the Homogenization Method [J]. Structural Optimization, 1992, 4(1): 17-22.
    [27] Suzuki K, Kikuchi N. Layout Optimization Using the Homogenization Method: Generalized Layout Design of 3-D Shells for Car Bodies[J]. In the InternationalConference of NATO/DFG ASI Optimization of Large Structural System 1991, Lecture No.3: 110-126.
    [28] Tenek LH, Hagiwara I. Static and Viberational Shape and Topology Optimization Using Homogenization and Mathematical Programming [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 109(1-2): 143-154.
    [29] Ma ZD, Kikuchi N, Cheng H.C. Topological Design for Viberating Structures [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 121: 259-280.
    [30] Rodrigues H., Fernandes P. A Material Based Model for Topology Optimization of Thermoelastic Structures [J]. International Journal Numerical Methods in Engineering. 1995, 38: 1951-1965.
    [31] Neves MM., Rodrigues H, Gudes JM. Generalized Topology Design of Structures with a Buckling Load Criterion [J]. Structural Optimization, 1995, 10(2): 71-78.
    [32] Fukushima J, Suzuki K. Applications to Car Bodies: Generalized Layout Design of 3-D Shells for Car Bodies [J]. In the International Conference of NATO/DFG ASI Optimization of Large Structural System 1991, Lecture No.3: 127-138.
    [33] Cheng HC, Kikuchi N, Ma ZD. An Improved Approach for Determining the Optimal Orientation of Orthotropic Material [J]. Structural Optimization, 1994, 8(2-3): 101-112.
    [34] Hassani B, Hinton E. A Review of Homogenization and Topology Optimization I—Homogenization Theory for Media with Periodic [J]. Computers and Structures, 1998, 69: 707-717.
    [35] Mlejnek HP. Some Aspects of the Genesis of Structures [J]. Structural Optimization, 1992, 5(1-2): 64-69.
    [36] Yang RJ. Topology Optimization Analysis with Multiple Constraints [J]. American Society of Mechanical Engineers, Design Engineering Division, 1995, 147: 393-398.
    [37]王健,程耿东.应力约束下平面弹性结构拓扑优化设计—密度法[J].计算力学学报,1997,14:541-546.
    [38]袁振,吴长春,庄守兵.基于杂交元和变密度法的连续体结构拓扑优化设计[J].中国科学技术大学学报,2001,31(6):694-699.
    [39] Querin OM., Steven GP, Xie YM.Evolutionary structural optimization (ESO) using a bi-directional algorithm [J]. Engineering Computation, 1998, 15(8): 1031-1048.
    [40] Tanskanen P.The evolutionary structural optimization method: theoretical aspects [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(47-48): 5485-5498.
    [41] Zhou M, Rozvany GLN.On the validity of ESO type methods in topology optimization [J]. Structural and Multidisciplinary Optimization, 2001, 21(1): 80-83.
    [42] Rozvany GLN.Stress ratio and compliance based methods in topology optimization - a critical review [J]. Structural and Multidisciplinary Optimization, 2001, 21(1): 109-119.
    [43] Steven GP, Querin OM, Xie YM.Evolutionary structural optimization (ESO) for combined topology and size optimization of discrete structures [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 188(4): 743-754.
    [44] Li Q, Steven GP, Querin OM.Shape and topology design for heat conduction by Evolutionary Structural Optimization [J]. International Journal of Heat and Mass Transfer, 1999, 42(17): 3361-3371.
    [45] Xie YM, Steven GP.Evolutionary structural optimization for dynamic problems [J]. Computers and Structures, 1996, 58(6): 1067-1073.
    [46] Kim H, Querin OM, Steven GP, Xie YM.Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh [J]. Structural and Multidisciplinary Optimization, 2003, 24(6): 441-448.
    [47] Sethian JA., Wiegmann A.Structural boundary design via level set and immersed interface methods [J]. Journal of Computational Physics, 2000, 163(2): 489-528.
    [48] Allaire G, Jouve F. A level-set method for vibaration and multiple loads structural optimization [J]. Computer Mechods in Applied Mechanics and Engineering, 2005, 194:3269-3290.
    [49] Wang MY, Chen S, Wang XM, et al. Design of multimaterial compliant mechanisms using level-set methods [J]. Journal of Mechanical Design, 2005, 127: 941-956.
    [50] Amstutz S, Andra H. A new algorithm for topology optimization using a level-set method[J]. Journal Computational Physics, 2006, 216: 573-588.
    [51] Eschenauer HA, Kobelev HA, Schumacher A.Bubble Method for Topology and Shape Optimization of Structures [J]. Structural and Multidisciplinary Optimization, 1994, 8: 142-151.
    [52]隋允康,任旭春,龙连春,等.基于ICM方法的刚架拓扑优化[J].计算力学学报,2003,6(20):286-289.
    [53] Burns RH, Crossley FRE. Kinetostatic synthesis of flexible link mechanisms [C]. ASME Paper, 1968, No.68-MECH-36.
    [54] Her I. Methodology for compliant mechanism design [D]. Indiana: Purdue University,1986.
    [55] Howell LL.Compliant Mechanisms[M].New York,McGraw-Hill,2001.
    [56]陈永健.柔顺机构的拓扑优化与驱动单元配置的集成设计研究[D].汕头:汕头大学,2005.
    [57] Her I, Midha A.A compliance number concept for compliant mechanisms and type synthesis [J]. Journal of Mechanisms Transmissions, and Automation in Design, 1987, 109(3): 348-355.
    [58] Howell LL., Midha A . A method for design of compliant mechanisms with small-length flexural pivots [J]. Journal of Mechanical Design, 1994, 116(1): 280-290.
    [59] Ananthasuresh GK, Kota S.Design and Fabrication of Microelectromechanical Systems [J]. Proceeding of ASME Mechanism Conference, 1992, 45:251-258.
    [60] Shield RT, Prager W.Optimal structural design for given deflection [J].Applied Mathematics and Physics,1970, 21: 513-523
    [61] Frecker MI, Ananthasuresh G.K., Nishiwaki S., et al. Topological synthesis of compliant mechanisms using multi-Criterion optimization [J]. Journal of Mechanical Design, 1997, 119(1): 238-245.
    [62] Kikuchi N, Nishiwaki S, Fonseca ECN, et al. Design optimization method for compliant mechanisms and material microstructure [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 151(1): 401-417.
    [63] Larsen UD, Sigmund O, Bouwstra S . Design and fabrication of compliant micromechanics and structures with negative Poisson’s ration [J]. Journal of Microelectromechanical. System, 1997, 6(2): 99-106.
    [64] Lau GK, Du H, Lim MK.Use of functional specifications as objective function in topological optimization of compliant mechanism [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 4421-4423.
    [65] Sigmund O.Design of Multiphysics Actuators using Topology Optimization—Part I: One-material Structures [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49-50): 6577-6604.
    [66] Sigmund O.Design of Multiphysics Actuators using Topology Optimization—Part II: Two-material Structures [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49-50): 6605-6627.
    [67] Pedersen CBW, Buhl T., Sigmund O.Topology synthesis of large-displacementcompliant mechanisms [J]. International Journal for Numerical Methods in Engineering,2001, 50: 2683-2705.
    [68] Saxena A.Synthesis of compliant mechanisms for path generation using algorithm [J]. Journal of mechanical design, 2001, 4(127): 745-752.
    [69] Joo JY, Kota S. Topology synthesis of compliant mechanisms using nonlinear beam elements [J]. Mechanics Based Design of Structures and Machines, 2004, 32(1): 17-38.
    [70]张秋光.场论.北京:地质出版社,1988.
    [71]龚光彩,梅炽,周萍.关于多场耦合问题的几个概念探讨.湖南大学学报(自然科学版),1999,26(6):71-77.
    [72]宋少云.多场耦问题的协同求解方法研究与应用[D] .武汉:华中科技大学,2007.
    [73] Jacques Jonsmann, Sinmund O, Siebe Bouwstra. Compliant thermal microactuators[J]. Sensors and Actuators, 1999,76(1-3):463-469.
    [74]汪雷.材料与结构的传热性能优化设计[D] .西安:西北工业大学,2006.
    [75] Tian J, Kim T, Lu TJ etc. The effects of topology upon fluid-flow and heat-transfer within cellular copper structures[J]. International Journal of Heat and Mass Transfer, 2004, 47(14-16):3171-3186.
    [76] Bejan A, Constructal-theory network of conducting paths for colling a heat Generating Volume[J]. International Journal of Heat and Mass transfer, 1997, 40(4):799-816.
    [77] Rocha LAO, Lorente S. Bejan A. Constructal design for cooling a disc-shaped area by conduction, International Journal of Heat and MsaaTransfer, 2002, 45(8):1643-1652.
    [78] Sigmund O.A 99 Line Topology Optimization Code Written in Matlab[J]. Structural and Multidisciplinary Optimization. 2001,21(2):120-127.
    [79]张晖,刘书田,张雄.拓扑相关热载荷作用下稳态热传导结构拓扑优化[J].中国机械工程, 2009, 20(11): 1339-1343.
    [80]李震.柔性机构拓扑优化方法及其在微机电系统中的应用[D].大连:大连理工大学,2005.
    [81] Li Q, Steven G P, Xie Y M, et al. Evolutionary To-Pology Optimization for Temperature Reduction of Heat Conducting Fields[J]. International Journal of Heat and Mass Transfer.2004,47(23):5071-5083.
    [82] Autio M. Optimization of coupled thermal-structural problems of laminated plates with lamination parameters [J]. Structural and Multidisciplinary Optimization, 2001, 21(1):40-51.
    [83]顾元宪,刘涛,亢战,赵国忠.热结构瞬态响应的耦合灵敏度分析方法与优化设计[J].力学学报,2004,36(1):37-42
    [84]左孔天,陈立平,张云清.拓扑优化方法进行热传导散热体的结构优化设计[J].机械工程学报,2005,41(4):13-16.
    [85] Hansen G, Bendsoe M P, Sigmund O. Topology Optimization of Heat Conduction Problems Using the Finite Volume Method[J]. Struct.Multidiscipl.Optim., 2006, 31(4): 251-259.
    [86]孙士平.材料和结构的拓扑优化关键理论与方法研究[D] .西安:西北工业大学,2006.
    [87]张永存.多孔材料传热特性分析与散热结构优化设计.[博士学位论文].大连:大连理工大学,2008.
    [88]杜义贤.基于无网格法的柔性机构拓扑优化方法研究.[博士学位论文].武汉:华中科技大学,2007.
    [89]王勖成.有限单元法[M].北京:清华出版社, 2003
    [90] Mlejnek, H. P. and Schirrmacher R..An engineering approach to optimal material distribution and shape finding [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 106, 1-26
    [91] Theocaris P. S. and Stavroulakis G. E..Optimal material design in composites: An iterative approach based on homogenizaed cells [J]. Computer Methods in Applied Mechanics and Engineering, 1999,169:31-42
    [92] Bends?e MP, Sigmund O. Topology optimization: theory, methods and applications [M]. New York; Springer, 2003.
    [93] Rozvany G.I.N., Zhou M..The COC algorithm, part I: Cross-section optimization sizing [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89, 129-144
    [94] Fleuty C.Sequential convex programming for structural optimization problems in G.I.N. Rozvany (ed.) optimization of large structural systems [J]. Kluwer Academic Publishers, 1993,1:567-578
    [95] Sigmund O, Petersson J.Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural Optimization, 1998, 16(1): 68-75
    [96] Diaz AR, Sigmund O.Checkerboard patterns in layout optimization [J]. StructureOptimization, 1995,10(1): 40-45
    [97] Cho S, Choi JY. Efficient topology optimization of thermo-elasticity problems using coupled field adjoint sensitivity analysis method [J]. Finite Elements in Analysis and Design, 2005, 41(15): 1481-1495.
    [98] Ananthasuresh GK, Howell LL. Mechanical design of compliant microsystems—a perspective and prospects [J]. Journal of Mechanical Design, 2005, 127(4):736-738.
    [99] Ansola R, Veguería E, Canales J, et al. A simple evolutionary topology optimization procedure for compliant mechanism design [J]. Finite Elements in Analysis and Design,2007, 44(1-2):53-62.
    [100] Carson JK, Lovatt SJ, Tanner DJ, et al. An analysis of the influence structure on the effective thermal conductivity of theoretical porous material using finite element simulations [J]. International Journal of Refrigeration, 2003, 26(8): 873-880.
    [101] Tai K, Prasad J. Target-matching test problem for multiobjective topology optimization using genetic algorithms[J]. Structural and Multidisciplinary Optimization, 2007, 34(2): 333-345.
    [102] Rahmatalla S, Swan CC. Sparse monolithic compliant mechanisms using continuum structural topology optimization[J]. International Journal of Numerical Methods and Engineer, 2005, 62(12): 1579-1605.
    [103] Ozlem Sardan, Dirch H. Petersen, Kristian M?lhave, et al. Topology optimized electrothermal polysilicon microgrippers[J]. Microelectronic Engineering, 2008, 85 (5-6): 1096-1099.
    [104]张长林,余建星.非线性约束最优化问题的多目标模拟退火算法[J].复旦大学学报,2003, 42(1): 93-97.
    [105]左孔天,赵雨东,钏毅芳等.微型柔性机构的多目标计算机辅助拓扑优化设计[J].计算机辅助设计与图形学学报, 2006, 18(6): 854-859.
    [106] Jiangzi Lin, Zhen Lou, Liyong Tong. A new muli-objective programming scheme for topology optimization of compliant mechanisms[J]. Structural and Multidisciplinary Optimization, 2010, 40(1): 241-255.
    [107] Aguilar Madeira JF, Rodrigues HC, Pina HL. Multi-objective optimization of structures topology by genetic algorithms[J]. Advanced Engeering Software, 2005, 36(1): 21-28.
    [108] Cannarozzi A A, Ubertini F. A mixed variational method for linear coupled thermoelastic analysis [J]. International Journal of Solids and Structures, 2001, 38 (4): 717-739.
    [109] Sigmund O. On the design of compliant mechanisms using topology optimization [J]. Mechanics of Structures and Machines, 1997, 25(4): 495-526.
    [110]张宪民.柔顺机构拓扑优化技术[J].机械工程学报,2003, 39(11): 47-51.
    [111] Frecker M I, Kikuchi N, Kota S. Topology optimization of compliant mechanisms with multiple outputs [J]. Structural and Multidisciplinary Optimization, 1999, 17(4): 269-278.
    [112]张宪民,陈永健.多输入多输出柔顺机构拓扑优化及输出耦合的抑制[J].机械工程学报,2006,42(3):162-165.
    [113] Rubio WM, Silva ECN, Bordatchev EV, et al. Topology optimized design, microfabrication and characterization of electro-thermally driven microgripper [J]. Journal of Intelligent Material Systems and Structuers, 2009, 20(6): 669-681.
    [114] Lee CC, Hsu W. Optimization of an electro-thermally and laterally driven microactuator [J]. Microsystem Technologies, 2003, 9: 331-334.
    [115] Du YX, Chen LP, Tian QH, et al. Topology synthesis of thermomechanical compliant mechanisms with geometrical nonlinearities using meshless method [J]. Advances in Engineering Software, 2008, (2): 1-8.
    [116] A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms [J].
    [117] Mankame ND, Ananthasuresh GK. Topology synthesis of electrothermal compliant mechanisms using line elements [J]. Structural Multidisciplinary Optimization, 2004, 26(3-4): 209-218.
    [118] Motiee, M Khajepour A, Mansour R.R. A new topology optimization method for multi-physics micro domains [C]. IEEE/ASME International Conference on Mechtronic and Embedded Systems and Application, 2008: 106-111.
    [119] Zhou M, Rozvany G. The COC algorithm, part II: topological, geometry and generalized shape optimization [J]. Computational Methods in Applied Mechanics and Engineering 1991, 89: 197-224.
    [120] Svanberg K. The method of moving asymptotes: a new method for structural optimization [J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
    [121] Nishiwaki S, Frecker M I, Min S, Kikichi N. Topology optimization of compliant mechanisms using the homogenization method [J]. International Journal for Numerical Methods in Engineering, 1998, 42: 535-559.
    [122] Zhang Y, Liu S. Design of conducting paths based on topology optimization[J]. International Journal Journal of Heat and Mass Transfer, 2008, 44(10): 1217-1227.
    [123]龙凯,左正兴.稳态热传导下的连续体结构拓扑优化[J].中国机械工程, 2007, 18(24): 2939-2943.
    [124]龙凯,左正兴.多工况稳态热传导下的连续体结构拓扑优化[J].中国机械工程, 2007, 18(16): 1925-1929.
    [125] Tzou DY. A universal model for the overall thermal conductivity of porous media[J]. Journal of Composite Materials, 1991, 25:1064-1084.
    [126]程耿东,刘书田.单向纤维复合材料导热性预测[J].复合材料学报, 1996, 13(1): 78-85.
    [127]张卫红,汪雷,孙士平.基于导热性能的复合材料微结构拓扑优化设计[J].航空学报, 2006, 27(6): 1229-1233.
    [128] Chun Gang Zhuang, ZhenHua Xiong, Han Ding. A level set method for topology optimization of heat conduction problem under multiple load cases[J]. Computer Methods in Applied Mechanics and Engrging, 2007, 196(4-6):1074-1084.
    [129]曾庆敦.复合材料的细观破坏机制与强度[M].北京:科学出版社, 2002.
    [130]孙士平,张卫红.多相材料微结构多目标拓扑优化设计[J].力学学报,2006, 38(5):633-638.
    [131] Wang XM, Mei YM, Wang MY. Level-set method for design of multi-phase elastic and thermoelastic materials[J]. International Journal of Mechanics and Materials in Design, 2004, 1 :213-239.
    [132] Yuan Zhen, Wu Changchun. Topology optimization for periodic linear elastic microstructures of composite materials[J]. Chinese Journal of Solid Mechanics, 2003, 24(1): 40-45.
    [133] Sigmund O. Materials with prescribed constitutive parameters: An inverse homogenization problem[J]. Intermational of Solid and Structures, 1994, 31:2313-2329.
    [134] Sigmund O, Torquato S. Composites with extremal thermal expansion coefficients[J]. Applied Physics Letters, 1996,69(21):3203-3205.
    [135] Dongmei Li, Xianmin Zhang, Yisheng Guan, et al. Topology Optimization of Anisotropic Composite Material Compliant Mechanisms [C]. ICMA Intermational Conference on Mechatronics and Automation, 2010:416-421.
    [136] Allaire G, Jouve F, Toader AM, Structural optimization using sensitivity analysis and alevel-set method [J]. Journal of Computational Physics, 2004, 194(1): 363-393.
    [137] Zhang W H , Duysinx P. Dual approach using a variant perimeter constraint and efficient sub-iteration scheme for topology optimization[J]. Computers & Structures, 2003, 81:2173-2181.
    [138]庄春刚.基于水平集的多材料结构拓扑优化设计方法与应用[D].上海交通大学, 2007.
    [139] Wang Hua, Zhang Xianmin. Input coupling analysis and optimal design of a 3-DOF compliant micropositioning stage [J]. Mechanism and Machine Theroy. 2008,43(4): 400-410.
    [140] Hao Xiuchun, Chu Jinkui, Wang lidong. Design and simulation of electrothermal microgripper [C]. 4th International Workshop on Microfactories, 2004.
    [141]余跃庆(译).柔顺机构学[M] .北京:高等教出版社, 2007.
    [142]李双蓓,周小军,黄立新等.基于有限元法的正交各向异性复合材料结构材料参数识别[J].复合材料学报, 2009, 26(4): 197-202.
    [143]孙杰,宋迎东,孙志刚等.水平集法在多相材料细观结构优化中的应用[J].航空动力学报, 2008, 23(8): 1443-1448.
    [144]陈丹,潘文峰,晏石林.基于能量法的复合材料热残余应力的拓扑优化[J].固体力学学报, 2008, 29(51): 90-94.
    [145]秦权,林道锦,梅刚.结构可靠度随机有限元:理论及工程应用[M].清华大学出版社,2006.
    [146] Kharmanda G, Olhoff N, Mohamed A, et al. Reliability-based topology optimization [J]. 2004, 26(5): 295-307.
    [147] Maute K, Frangopol DM. Reliability-based design of MEMS mechanisms by topology optimization [J]. Coputurers and Structures, 2003, 81(8-11): 813-824.
    [148] Allen M, Raullim, Maute K, et al. Reliability-based analysis and design optimization of electrostatically actuate MEMS [J]. Computers and structures, 2004, 82(13-14): 1007-1020.
    [149] Ying Li, Kazuhiro Saitou, Noboru Kikuchi. Topology optimization of thermally actuated compliant mechanisms considering time-transient effect[J]. Finite Elements in Analysis and Design, 2004, 40(11): 1317-1331.
    [150] Jung H, Seonho C. Reliability-based topology optimization of geometrically monlinear structures with loading and material uncertainties [J]. Finite Element in Analysis andDesign, 2004, 41(3): 311-331.
    [151] Mogami K, Nishiwaki S, Izuik, et al. Reliability-based structural optimization of frame structures for multiple failure criteria usring topology opitimization techniques [J]. Structural and Multidisciplinary Optimization, 2006, 32(4): 299-311.
    [152] Chwail Kim, Semyung Wang, Kyoung-ryun Bae, et al. Reliability-based topology optimization with uncertainties [J]. Journal of Mechanical Science and Technology, 2006, 20(4):494-504.
    [153]陈建军,曹一波,孙怀安.多工况下具有体系可靠性约束的桁架结构拓扑优化设计[J].固体力学学报, 2000, 21(1):11-18.
    [154]罗阳军,亢战.连续体结构非概率可靠性拓扑优化.力学学报, 2007, 39(1):125-131.
    [155]占金青,张宪民.基于基础结构法的柔顺机构可靠性拓扑优化[J].机械工程学报, 2010, 46(13): 42-46.
    [156] Hasofer AM, Lind NC. An exact and invariant first order reliability format [J]. Engineering Mechanics Division, ASCE 100 EMI, (1974): 111-121.
    [157]欧阳高飞.基于水平集方法的柔顺机构拓扑优化设计研究[D].广州:华南理工大学,2007.
    [158]马洪波.随机结构可靠性分析和优化设计研究[D].西安:西安电子科技大学,2004.
    [159] Dongmei Li, Xianmin Zhang, Yisheng Guan, et al. Topology optimization of thermo-mechanical continuum structure[C]. International Conference on Advanced Intelligent Mechatronics(IEEE/ASME), Montreal, Canada, July 6-9, 2010: 403-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700