用户名: 密码: 验证码:
基于水平集方法的分布式柔顺机构拓扑优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔顺机构以其易实现高精度、微型化等独特的优良性能在微纳操作、精密测量等许多尖端领域得到了广泛应用,已成为近年来国际上的研究热点之一,给机构学带来了革命性的冲击,是现代机构和精密机械装备领域发展的新方向。但是,要真正使得柔顺机构得到广泛应用和长足发展,必须以夯实其理论基础、完善其设计方法为前提。本文正是在这一背景下应用水平集方法对柔顺机构拓扑优化设计的基本理论和方法进行研究。
     论文首先研究了在应用水平集方法求解拓扑优化问题时的若干难点,具体内容包括:根据符号距离函数的基本性质,构造了一种距离保持泛函,并将其嵌入到柔顺机构拓扑优化设计模型的目标泛函中,这不仅完全避免了耗时的重新初始化,且大大简化了水平集函数的初始化工作;在整合了水平集方法及渐进结构优化算法的基础上,探索了在优化过程中的拓扑调整策略以拓展寻优空间;针对基于水平集法的拓扑优化方法计算复杂性大、效率低等缺点,提出了速度场预测——矫正构造方法,并对所构造的速度方向为目标函数的可行下降方向进行了数学证明;根据水平集算法具体实施过程中速度场在设计域内均为已知量及其分布特点,提出了形状敏度过滤法以增大单个迭代步中零水平集的演化幅度;分别应用上述技术对经典的结构和柔顺机构设计算例进行了优化和分析,验证了上述方法在避免重新初始化、拓展寻优空间以及提高计算效率等方面的可行性和有效性。其次,针对传统柔顺机构拓扑优化中的类铰链(de factohinge)问题,揭示了产生类铰链的内在机理,提出了一种最小化性能差建模方法。在此基础上,应用线性加权组合方式及比例组合方式构造了用于分布式柔顺机构拓扑优化的两类数学模型,并针对加权组合模型中加权因子难以选择的问题,提出了加权因子的自适应调整策略;综合应用不同的设计案例验证了两类数学模型在抑制类铰链产生从而获得分布式柔顺机构方面的可行性和有效性,并应用不同的拓扑优化设计方法对两类模型进行求解验证了其通用性。再次,针对某些特殊工况下柔顺机构拓扑优化设计时的病态问题,在优化模型中引入了输入端和输出端柔度,结合加权因子的自适应调整策略,构造了一种加权和式目标函数,从而在将设计问题由病态转成适定的同时,有效抑制了类铰链的产生,并应用此方法的基本原理针对单输入多输出柔顺机构的设计进行扩展。最后,总结全文并对未来的工作进行了展望。
     本文的完成对分布式柔顺机构拓扑优化的理论建模以及基于水平集方法的求解算法实现提供了切实可行的思路和方法,对发展柔顺机构拓扑优化领域的理论水平有重要的意义和价值。
Compliant mechanisms have been paid more attention and become one of the internationalresearch hotspots due to their inherent advantages and potential of being used in the micro-nano-manipulation or precision measurement area. To broaden compliant mechanisms’ applications,consolidating their theoretical basis and design methods is the key. That is the background ofthis dissertation in which the focus is on designing distributed compliant mechanisms usinglevel set methods.
     Firstly, several methods are developed to overcome the inherent shortcomings of the con-ventional level set method, include:(I) presenting a new distance-remaining functional for-mulation that forces the level set function to be close to a signed distance function during theoptimization process, and therefore completely eliminates the need of the costly re-initializationprocedure;(II) presenting a topology-adjusting scheme which allows new holes being automat-ically generated in the design domain and obtains optimized configurations even being startedfrom a minimum possible initial guess;(III) presenting a predictor-corrector scheme for con-structing velocity field and a shape sensitivity filtering scheme which both can converge withless iterations and thus improve the overall computational efciency.
     Secondly, the underlying reason of de facto hinges of using spring model to design com-pliant mechanisms is analyzed. A performance diference minimization method for the topol-ogy optimization of compliant mechanisms aimed at eliminating de facto hinges is developed.Based on the method, several alternative formulation are developed. The validity and versatilityof the method are examined using several topology optimization approaches, such as the levelset methods and SIMP method.
     Thirdly, for designing compliant mechanisms without using the output spring, a method isdeveloped by inserting the input and output mean compliance into the optimization model. Anew objective function is developed using the weighting sum method. The weighting factorsare set based on the information that is obtained from the previous iteration and automaticallyupdated with each optimization iteration step. The validity and versatility of the method are ex-amined using several topology optimization approaches to design compliant mechanisms withboth single input-output behaviour and multiple outputs behaviour.
     Finally, conclusions and future works are put forward
     This work will surely provide the theoretical support both in developing more powerfuland efcient level set-based topology optimization method and in consolidating the theoreticalbasis of designing compliant mechanisms.
引文
[1]邹慧君,高峰.现代机构学进展[M].北京:高等教育出版社,2007.
    [2]裴旭.基于虚拟运动中心概念的机构设计理论与方法[D].北京:北京航空航天大学,2009.
    [3] Uicker J. J., Pennock G. R., Shigley J. E., et al. Theory of Machines and Mechanisms[M]. New York: Oxford University Press,2003.
    [4] Howell L. L. Compliant Mechanisms [M]. New York: John Wiley&Sons,2001.
    [5] Roach G. M. An Investigation of Compliant Over-running Ratchet and Pawl Clutches
    [D]. Utah:Brigham Young University,1998.
    [6] Derderian J. M., Howell L. L., Murphy M. D., et al. Compliant Parallel-guiding Mecha-nisms [C]. Proceedings of the1996ASME Design Engineering Technical Conferences.California,1996: DETC96–MECH1208.
    [7] Wang H., Zhang X. Input Coupling Analysis and Optimal Design of a3-dof CompliantMicro-positioning Stage [J]. Mechanism and Machine Theory,2008,43(4):400–410.
    [8] Sardan O., Eichhorn V., Petersen D. H., et al. Rapid Prototyping of Nanotube-basedDevices Using Topology-optimized Microgrippers [J]. Nanotechnology,2008,19(49):495503.
    [9] Her I., Midha A. A Compliance Number Concept for Compliant Mechanisms and TypeSynthesis [J]. Journal of Mechanical Design,1987,109(3):348–355.
    [10] Midha A., Norton T. W., Howell L. L. On the Nomenclature, Classification, and Ab-stractions of Compliant Mechanisms [J]. Journal of Mechanical Design,1994,116(1):270–279.
    [11] Howell L. L., Midha A. A Method for Design of Compliant Mechanisms with Small-length Flexural Pivots [J]. Journal of Mechanical Design,1994,116(1):280–290.
    [12] Howell L. L., Midha A. Parametric Deflection Approximations for End-loaded, Large-deflection Beams in Compliant Mechanisms [J]. Journal of Mechanical Design,1995,117(1):156–165.
    [13] Saxena A., Kramer S. N. A Simple and Accurate Method for Determining Large Deflec-tions in Compliant Mechanisms Subjected to End Forces and Moments [J]. Journal ofMechanical Design,1998,120(3):392–400.
    [14] Yu Y. Q., Howell L. L., Lusk C., et al. Dynamic Modeling of Compliant MechanismsBased on the Pseudo-rigid-body Model [J]. Journal of Mechanical Design,2005,127(4):760–765.
    [15]于靖军,周强,毕树生,等.基于动力学性能的全柔性机构优化设计[J].机械工程学报,2003,39(8):32–36.
    [16] Chen G. M., j. Gou Y., Zhang A. M. Synthesis of Compliant Multistable MechanismsThrough Use of a Single Bistable Mechanism [J]. Journal of Mechanical Design,2011,133(8):081007.
    [17] Chen G. M., Zhang S. Y., Li G. Multistable Behaviors of Compliant Sarrus Mechanisms[J]. Journal of Mechanisms and Robotics,2013,5(2):021005.
    [18] Pucheta M. A., Cardona A. Design of Bistable Compliant Mechanisms Using Precision-position and Rigid-body Replacement Methods [J]. Mechanism and Machine Theory,2010,45(2):304–426.
    [19] Lu T. F., Handley D. C., Yong Y. K., et al. A Three-dof Compliant Micromotion Stagewith Flexure Hinges [J]. Industrial Robot: An International Journal,2004,31(4):355–361.
    [20]王华.基于柔顺机构的微位移精密定位平台理论与试验研究[D].广州:华南理工大学,2008.
    [21] Jin M., Zhang X., Zhu B., et al. Spring-joint Method for Topology Optimization of PlanarPassive Compliant Mechanisms [J]. Chinese Journal of Mechanical Engineering,2013,26(6):1063–1072.
    [22] Jin M., Zhang X., Zhu B. A Numerical Method for Static Analysis of Pseudo-rigid-body Model of Compliant Mechanisms [J]. Proceedings of the Institution of Me-chanical Engineers, Part C: Journal of Mechanical Engineering Science,2014, DOI:10.1177/0954406214525951.
    [23] Nah S. K., Zhong Z. W. A Microgripper Using Piezoelectric Actuation for Micro-objectManipulation [J]. Sensors and Actuators A: Physical,2007,133(1):218–224.
    [24] Carlson K., Andersen K. N., Eichhorn V., et al. A Carbon Nanofibre Scanning ProbeAssembled Using an Electrothermal Microgripper [J]. Nanotechnology,2007,18(34):345501.
    [25] Fatikow S., Wich T., Hulsen H., et al. Microrobot System for Automatic NanohandlingInside a Scanning Electron Microscope [J]. Nanotechnology,2007,12(3):244–252.
    [26] Ananthasuresh G. K., Kota S., Kikuchi N. Strategies for Systematic Synthesis of Com-pliant Mems [C]. Proceedings of the1994ASME winter annual meeting, Symposiumon MEMS: Dynamics Systems and Control. Chicago, USA,1994:677–686.
    [27]程耿东.工程结构优化设计基础[M].大连:大连理工大学出版社,2012.
    [28] Bends e M. P., Sigmund O. Topology Optimization: Theory, Methods and Applications[M]. Berlin: Springer,2005.
    [29] Choi K. K., Kim N. H. Structural Sensitivity Analysis and Optimization I: Linear Sys-tems [M]. Berlin: Springer,2005.
    [30] Tang X., Chen I.-M., Li Q. Design and Nonlinear Modeling of a Large-displacementXyz Flexure Parallel Mechanism with Decoupled Kinematic Structure [J]. Review ofScientific Instruments,2006,77(11):115101.
    [31]梁济民.基于柔顺机构的空间六自由度微位移精密定位平台研究[D].广州:华南理工大学,2012.
    [32] Zhu B., Zhang X., Fatikow S. Topology Optimization of Single-axis Flexure HingesUsing Continuum Topology Optimization Method [J]. SCIENCE CHINA TechnologicalSciences,2014,57(3):560–567.
    [33] Sigmund O. On the Design of Compliant Mechanisms Using Topology Optimization [J].Journal of Structural Mechanics,1997,25(4):493–524.
    [34] Deepak S. R., Dinesh M., Sahu D. K., et al. A Comparative Study of the Formulationsand Benchmark Problems for the Topology Optimization of Compliant Mechanisms [J].Journal of Mechanisms and Robotics,2009,1(1):1–8.
    [35] Michell A. G. M. The Limits of Economy of Material in Frame-structures [J]. Philo-sophical Magazine,1904,8(47):589–597.
    [36] Bends e M. P., Sigmund O. Material Interpolation Schemes in Topology Optimization[J]. Archive of Applied Mechanics,1999,69(9-10):635–654.
    [37] Sigmund O. A99Line Topology Optimization Code Written in Matlab [J]. Structuraland Multidisciplinary Optimization,2001,21(2):120–127.
    [38] Wang M. Y., Wang X. M., Guo D. M. A Level Set Method for Structural Topology Opti-mization [J]. Computer Metheds in Applied Mechanics and Engineering,2003,192(1-2):227–246.
    [39] Allaire G., Jouve F., Toader A. M. Structural Optimization Using Sensitivity Analysisand a Level Set Method [J]. Journal of Computational Physics,2004,194(1):363–393.
    [40] Motiee M. Development of a Novel Multi-disciplinary Design Optimization Scheme forMicro Compliant Devices [D]. Ontario, Canada:University of Waterloo,2008.
    [41]占金青.基于基础结构法的柔顺机构拓扑优化设计研究[D].广州:华南理工大学,2010.
    [42] Yamada T., Izui K., Nishiwaki S. A Level Set-based Topology Optimization Method forMaximizing Thermal Difusivity in Problems Including Design-dependent Efects [J].Journal of Mechanical Design,2011,133(3):031011.
    [43]李冬梅.多场耦合及多相材料的柔顺机构拓扑优化研究[D].广州:华南理工大学,2011.
    [44] Wang M. Y. A Kinetoelastic Formulation of Compliant Mechanism Optimization [J].Journal of Mechanisms and Robotics,2009,1(2):021011.
    [45] Frecker M. I., Ananthasuresh G. K., Nishiwaki S., et al. Topological Synthesis of Com-pliant Mechanisms Using Multi-criteria Optimization [J]. Journal of Mechanical Design,1997,119(2):238–245.
    [46] Nishiwaki S., Min S., Yoo J., et al. Optimal Structural Design Considering Flexibility [J].Computer Methods in Applied Mechanics and Engineering,2001,190(34):4457–4504.
    [47] Kota S., Joo J., Li Z., et al. Design of Compliant Mechanisms: Applications to Mems[J]. Analog Integrated Circuits and Signal Processing,2001,29(1-2):7–15.
    [48] Chen S. K. Compliant Mechanisms with Distributed Compliance and Characteristic S-tifness: A Level Set Method [D]. Hong Kong:Chinese University of HongKong,2007.
    [49] Lau G. K., Du H., Lim M. K. Use of Functional Specifications as Objective Functions inTopological Optimization of Compliant Mechanism [J]. Computer Methods in AppliedMechanics and Engineering,2001,190(34):4421–4433.
    [50] Joo J., Kota S., Kikuchi N. Topological Synthesis of Compliant Mechanisms UsingLinear Beam Elements [J]. Mechanics of Structures and Machines,2007,28(4):245–280.
    [51] Saxena A., Ananthasuresh G. K. An Optimality Criteria Approach for the TopologySynthesis of Compliant Mechanisms [C]. ASME Design Engineering Technical Confer-ences, MECH-5937. Atlanta, USA,1998.
    [52] Hetrick J. A. An Energy Efciency Approach for Unified Topological and DimensionalSynthesis of Compliant Mechanisms [D]. USA:University of Michigan,1999.
    [53] Petersson J., Sigmund O. Slope Constrained Topology Optimization [J]. InternationalJournal for Numerical Methods in Engineering,1998,41(8):1417–1434.
    [54] Poulsen T. A. A New Scheme for Imposing a Minimum Length Scale in Topology Opti-mization [J]. International Journal for Numerical Methods in Engineering,2003,57(6):741–760.
    [55] Duysinx P., Bends e M. P. Topology Optimization of Continuum Structures with Lo-cal Stress Constraints [J]. International Journal for Numerical Methods in Engineering,1998,43(8):1453–1478.
    [56] Yin L., Ananthasuresh G. K. Design of Distributed Compliant Mechanisms [J]. Mechan-ics Based Design of Structures and Machines: An International Journal,2003,31(2):151–179.
    [57] Wang N., Zhang X. Compliant Mechanisms Design Based on Pairs of Curves [J]. SCI-ENCE CHINA Technological Science,2012,55(8):2099–2106.
    [58] Guo X., Zhang W., Zhong W. Explicit Feature Control in Structural Topology Optimiza-tion via Level Set Method [J]. Computer Methods in Applied Mechanics and Engineer-ing,2014,272(15):354–378.
    [59] Luo Z., Chen L., Yang J., et al. Compliant Mechanism Design Using Multi-objectiveTopology Optimization Scheme of Continuum Structures [J]. Structural and Multidisci-plinary Optimization,2005,30(2):142–154.
    [60] Sigmund O. Morphology-based Black and White Filters for Topology Optimization [J].Structural and Multidisciplinary Optimization,2007,33(4-5):401–424.
    [61] Yoon G. H., Kim Y. Y., Bends e M. P., et al. Hinge-free Topology Optimization withEmbedded Translation-invariant Diferentiable Wavelet Shrinkage [J]. Structural andMultidisciplinary Optimization,2004,27(3):139–150.
    [62] Kim J. E., Kim Y. Y., Min S. A Note on Hinge-free Topology Design Using the SpecialTriangulation of Design Elements [J]. International Journal for Numerical Methods inEngineering,2005,21(12):701–710.
    [63] Zhou H. Topology Optimization of Compliant Mechanisms Using Hybrid DiscretizationModel [J]. Journal of Mechanical Design,2010,132(11):111003.
    [64] Wang M. Y., Chen S. Compliant Mechanism Optimization: Analysis and Design with In-trinsic Characteristic Stifness [J]. Mechanics Based Design of Structures and Machines:An International Journal,2009,37(2):183–200.
    [65] Luo J., Luo Z., Chen S., et al. A New Level Set Method for Systematic Design ofHinge-free Compliant Mechanisms [J]. Computer Metheds in Applied Mechanics andEngineering,2008,198(2):318–331.
    [66] Lee E., Gea H. C. A Strain Based Topology Optimization Method for Compliant Mech-anism Design [J]. Structural and Multidisciplinary Optimization,2014,49(2):199–207.
    [67] Rahmatalla S., Swan C. C. Sparse Monolithic Compliant Mechanisms Using ContinuumStructural Topology Optimization [J]. International journal for numerical methods inengeneering,2005,62(12):1579–1605.
    [68] Cardoso E. L., Fonseca J. S. O. Strain Energy Maximization Approach to the Design ofFully Compliant Mechanisms Using Topology Optimization [J]. Latin American Journalof Solids and Structures,2004,1(3):263–275.
    [69] Rozvany G. I. N., Kirsch U. Layout Optimization of Structures [J]. Applied MechanicsReviews,1995,48(2):41.
    [70] Dorn W. S., Gomory R. E., Greenberg H. J. Automatic Design of Optimal Structures [J].Journal de mecanique,1964,3(6):25–52.
    [71] Ringertz U. L. F. T. On Topology Optimization of Trusses [J]. Engineering Optimization,1985,9(3):209–218.
    [72] Cheng G. D. Some Aspects of Truss Topology Optimization [J]. Structural Optimization,1995,10(3-4):173–179.
    [73]程耿东.关于桁架结构拓扑优化中的奇异最优解[J].大连理工大学学报,2000,40(2):379–383.
    [74] Ramrakhyani D. S., Frecker M. I., Lesieutre G. A. Hinged Beam Elements for the Topol-ogy Design of Compliant Mechanisms Using the Ground Structure Approach [J]. Struc-tural and Multidisciplinary Optimization,2009,37(6):557–567.
    [75] Kota S., Lu K. J., Kreiner Z., et al. Design and Application of Compliant Mechanismsfor Surgical Tools [J]. Journal of biomechanical engineering,2005,127(6):981–989.
    [76] Bends e M. P., Kikuchi N. Generating Optimal Topologies in Structural Design Using aHomogenization Method [J]. Computer Methods in Applied Mechanics and Engineering,1988,71(2):197–224.
    [77] Cheng K. T., Olhof N. An Investagation Concerning Optimal Design of Solid ElasticPlates [J]. International Journal of Solids and Structures,1981,17(3):305–323.
    [78] Cheng K. T., Olhof N. Regularized Formulation for Optimal Design of AxisymmetricPlates [J]. International Journal of Solids and Structures,1982,18(2):153–169.
    [79]隋允康,叶红玲.连续体结构拓扑优化的icm方法[M].北京:科学出版社,2013.
    [80] Hassani B., Hinton E. A Review of Homogenization and Topology Optimization I-homogenization Theory for Media with Periodic Structure [J]. Computers&Structures,1998,69(6):707–717.
    [81] Hassani B., Hinton E. A Review of Homogenization and Topology Opimization I-i-analytical and Numerical Solution of Homogenization Equations [J]. Computers&Structures,1998,69(6):719–738.
    [82] Hassani B., Hinton E. A Review of Homogenization and Topology Optimization Iii-topology Optimization Using Optimality Criteria [J]. Computers&Structures,1998,69(6):739–756.
    [83] Bendsoe M. P. Optimal Shape Design as a Material Distribution Problem [J]. StructuralOptimization,1989,1(4):193–202.
    [84] Guedes J. M., Kikuchi N. Preprocessing and Postprocessing for Materials Based on theHomogenization Method with Adaptive Finite Element Methods [J]. Computer Methodsin Applied Mechanics and Engineering,1990,83(2):143–198.
    [85] Suzuki K., Kikuchi N. A Homogenization Method for Shape and Topology Optimization[J]. Computer Methods in Applied Mechanics and Engineering,1991,93(3):291–318.
    [86] D′az A. R., Bends e M. P. Shape Optimization of Structures for Multiple Loading Con-ditions Using a Homogenization Method [J]. Structural Optimization,1992,4(1):17–22.
    [87] Tenek L. H., Hagiwara I. Static and Vibrational Shape and Topology Optimization UsingHomogenization and Mathematical Programming [J]. Computer Methods in AppliedMechanics and Engineering,1993,109(1):143–154.
    [88] Allaire G., Jouve F. Optimal Design of Micro-mechanisms by the HomogenizationMethod [J]. Revue Europe′enne desE′le′ments,2002,11(2-4):405–416.
    [89]刘书田,程耿东.复合材料应力分析的均匀化方法[J].力学学报,1997,29(3):306–313.
    [90] Xie Y. M., Steven G. P. A Simple Evolutionary Procedure for Structural Optimization[J]. Computers&Structures,1993,49(5):885–896.
    [91] Xie Y. M., Steven G. P. Evolutionary Structural Optimization for Dynamic Problems [J].Computers&Structures,1996,58(6):1067–1073.
    [92] Tanskanen P. The Evolutionary Structural Optimization Method: Theoretical Aspects [J].Computer Methods in Applied Mechanics and Engineering,2002,191(47):5485–5498.
    [93] Xie Y. M., Steven G. P. Basic Evolutionary Structural Optimization [M]. London:Springer,1997.
    [94]谢亿民,杨晓英, Steven G. P., et al.渐进结构优化法的基本理论及应用[J].工程力学,1999,16(6):70–81.
    [95] Mlejnek H. P., Schirrmacher R. An Engineer’s Approach to Optimal Material Distribu-tion and Shape Finding [J]. Computer Methods in Applied Mechanics and Engineering,1993,106(1):1–26.
    [96] Sigmund O. Design of Material Structures Using Topology Optimization [D]. Den-mark:Technical University of Denmark,1994.
    [97] Rietz A. Sufciency of a Finite Exponent in Simp (power Law) Methods [J]. Structuraland Multidisciplinary Optimization,2001,21(2):159–163.
    [98] Ansola R., Veguer′a E., Canales J., et al. A Simple Evolutionary Topology OptimizationProcedure for Compliant Mechanism Design [J]. Finite Elements in Analysis and Design,2007,44(1):53–62.
    [99] Querin O. M., Steven G. P., Xie Y. M. Evolutionary Structural Optimisation (eso) Usinga Bidirectional Algorithm [J]. Engineering Computations,1998,15(8):1031–1048.
    [100] Rozvany G. Stress Ratio and Compliance Based Methods in Topology Optimization–aCritical Review [J]. Structural and Multidisciplinary Optimization,2001,21(2):109–119.
    [101] Zhou M., Rozvany G. On the Validity of Eso Type Methods in Topology Optimization[J]. Structural and Multidisciplinary Optimization,2001,21(1):80–83.
    [102] Kohn R. V., Strang G. Optimal Design and Relaxation of Variational Problems, I [J].Communications on Pure and Applied Mathematics,1986,39(1):113–137.
    [103] Kohn R. V., Strang G. Optimal Design and Relaxation of Variational Problems, Ii [J].Communications on Pure and Applied Mathematics,1986,39(2):139–182.
    [104] Kohn R. V., Strang G. Optimal Design and Relaxation of Variational Problems, Iii [J].Communications on Pure and Applied Mathematics,1986,39(3):353–377.
    [105] Eschenauer H. A., Olhof N. Topology Optimization of Continuum Structures: A Review[J]. Applied Mechanics Reviews,2001,54(4):331–390.
    [106] Rozvany G. I. N. A Critical Review of Established Methods of Structural TopologyOptimization [J]. Structural and Multidisciplinary Optimization,2009,37(3):217–237.
    [107] Tcherniak D., Sigmund O. A Web-based Topology Optimization Program [J]. Structuraland Multidisciplinary Optimization,2001,22(3):179–187.
    [108]张宪民,陈永健.多输入多输出柔顺机构拓扑优化及输出耦合的抑制[J].机械工程学报,2006,42(3):162–165.
    [109]李兆坤,张宪民.多输入多输出柔顺机构几何非线性拓扑优化[J].机械工程学报,2009,45(1):180–188.
    [110] Cho S., Kwak J. Topology Design Optimization of Geometrically Non-linear StructuresUsing Meshfree Method [J]. Computer Methods in Applied Mechanics and Engineering,2006,195(44):5909–5925.
    [111] Sigmund O. Design of Multiphysics Actuators Using Topology Optimization–Part I:One-material Structures [J]. Computer Methods in Applied Mechanics and Engineering,2001,190(49):6577–6604.
    [112] Sigmund O. Design of Multiphysics Actuators Using Topology Optimization–Part Ii:Two-material Structures [J]. Computer Methods in Applied Mechanics and Engineering,2001,190(49):6605–6627.
    [113] Thomas H., Zhou M., Schramm U. Issues of Commercial Optimization Software Devel-opment [J]. Structural and Multidisciplinary Optimization,2002,23(2):97–110.
    [114] Altair. Hyper Works. http://www.altairhyperworks.com.cn/hw12/index.aspx?AspxAutoDetectCookieSupport=1.
    [115] Jog C. S., Haber R. B. Stability of Finite Element Models for Distributed ParameterOptimization and Topology Design [J]. Computer Methods in Applied Mechanics andEngineering,1996,130(3-4):203–226.
    [116] Sigmund O., Petersson J. Numerical Instabilities in Topology Optimization: A Surveyon Procedures Dealing with Checkerboards, Mesh-dependencies and Local Minima [J].Structural and Multidisciplinary Optimization,1998,16(1):68–75.
    [117] D′az A., Sigmund O. Checkerboard Patterns in Layout Optimization [J]. Structural andMultidisciplinary Optimization,1995,10(1):40–45.
    [118] Haber R. B., Jog C. S., Bends e M. P. A New Approach to Variable-topology ShapeDesign Using a Constraint on Perimeter [J]. Structural Optimization,1996,11(1-2):1–12.
    [119] Poulsen T. A. A Simple Scheme to Prevent Checkerboard Patterns and One-node Con-nected Hinges in Topology Optimization [J]. Structural and Multidisciplinary Optimiza-tion,2002,24(5):396–399.
    [120] Li Q., Steven G., Xie Y. A Simple Checkerboard Suppression Algorithm for EvolutionaryStructural Optimization [J]. Structural and Multidisciplinary Optimization,2001,22(3):230–239.
    [121] Zhou M., Rozvany G. I. N. Dcoc: An Optimality Criteria Method for Large Systems PartI: Theory [J]. Structural Optimization,1992,5(1-2):12–25.
    [122] Zhou M., Rozvany G. I. N. Dcoc: An Optimality Criteria Method for Large Systems PartIi: Algorithm [J]. Structural Optimization,1993,6(4):250–262.
    [123] Fleury C. Structural Weight Optimization by Dual Methods of Convex Programming [J].International Journal for Numerical Methods in Engineering,1979,14(24):1761–1783.
    [124] Svanberg K. The Method of Moving Asymptotes—a New Method for Structural Opti-mization [J]. International Journal for Numerical Methods in Engineering,1987,24(2):359–373.
    [125]左孔天.连续体结构拓扑优化理论与应用研究[D].中国:华中科技大学,2004.
    [126] Balamurugan R., Ramakrishnan C. V., Swaminathan N. A Two Phase Approach Basedon Skeleton Convergence and Geometric Variables for Topology Optimization UsingGenetic Algorithm [J]. Structural and Multidisciplinary Optimization,2011,43(3):381–404.
    [127] Madeira J. F. A., Pina H. L., Rodrigues H. C. Ga Topology Optimization Using RandomKeys for Tree Encoding of Structures [J]. Structural and Multidisciplinary Optimization,2010,40(1-6):227–240.
    [128] Sigmund O. On the Usefulness of Non-gradient Approaches in Topology Optimization[J]. Structural and Multidisciplinary Optimization,2011,43(5):589–596.
    [129] Haftka R. T., Grandhi R. V. Structural Shape Optimization—a Survey[J]. ComputerMethods in Applied Mechanics and Engineering,1986,57(1):91–106.
    [130] Eschenauer H. A., Kobelev V. V., Schumacher A. Bubble Method for Topology andShape Optimization of Structures [J]. Structural Optimization,1994,8(1):42–51.
    [131] J J. S., Zochowski A. On Topological Derivative in Shape Optimization [J]. SIAMJournal on Control and Optimization,1999,37(4):1251–1272.
    [132] Osher S., Sethian J. A. Fronts Propagating with Curvature-dependent Speed: AlgorithmsBased on Hamilton-jacobi Formulations [J]. Journal of Computational Physics,1988,79(1):12–49.
    [133] Sethian J. A., Wiegmann A. Structural Boundary Design via Level Set and ImmersedInterface Methods [J]. Journal of Computational Physics,2000,163(2):489–528.
    [134] Sokolowski J., Zolesio J.-P. Introduction to Shape Optimization [M]. New York: SpringerBerlin Heidelberg,1992.
    [135] Osher S., Santosa F. Level-set Methods for Optimization Problem Involving Geometryand Constraints: I. Frequencies of a Two-density Inhomogeneous Drum [J]. Journal ofComputational Physics,2001,171(1):272–288.
    [136] Chen S. K., Gonella S., Chen W., et al. A Level Set Approach for Optimal Design ofSmart Energy Harvesters [J]. Computer Methods in Applied Mechanics and Engineering,2010,199(37-40):2532–2543.
    [137] Zhou S. W., Li W., Chen Y. H., et al. Topology Optimization for Negative PermeabilityMetamaterials Using Level-set Algorithm [J]. Acta Materialia,2011,59(7):2624–2636.
    [138] Ha S. H., Cho S. Level Set Based Topological Shape Optimization of Geometrically Non-linear Structures Using Unstructured Mesh [J]. Computers&Structures,2008,86(13):1447–1455.
    [139] Wang M. Y., Wang X.“color”Level Sets: A Multi-phase Method for Structural Topol-ogy Optimization with Multiple Materials [J]. Computer Methods in Applied Mechanicsand Engineering,2004,193(6):469–496.
    [140] Wang M. Y., Chen S. K., Wang X., et al. Design of Multi-material Compliant Mecha-nisms Using Level Set Methods [J]. Journal of Mechanical Design,2005,127(5):941–956.
    [141] Zhu B., Zhang X., Wang N., et al. Topology Optimization of Hinge-free CompliantMechanisms Using Level Set Methods [J]. Engineering Optimization,2014,46(5):580–605.
    [142] Zhu B., Zhang X., Fatikow S., et al. Topology Optimization of Hinge-free CompliantMechanisms with Multiple Outputs Using Level Set Method [J]. Structural and Multi-disciplinary Optimization,2013,47(5):659–672.
    [143] Luo Z., Tong L., Wang M. Y., et al. Shape and Topology Optimization of CompliantMechanisms Using a Parameterization Level Set Method [J]. Journal of ComputationalPhysics,2007,227(1):680–705.
    [144] Challis V. J. A Discrete Level-set Topology Optimization Code Written in Matlab [J].Structural and Multidisciplinary Optimization,2010,41(3):453–464.
    [145] Luo J., Luo Z., Chen L., et al. A Semi-implicit Level Set Method for Structural Shapeand Topology Optimization [J]. Journal of Computational Physics,2008,227(11):5561–5581.
    [146] Sethian J. A Fast Marching Level Set Method for Monotonically Advancing Fronts [J].Proceedings of the National Academy of Sciences,1996,93(4):1591–1595.
    [147] Sussman M., Smereka P., Osher S. A Level Set Approach for Computing Solutions toIncompressible Two-phase Flow [J]. Journal of Computational physics,1994,114(1):146–159.
    [148] Burger M., Hackl B., Ring W. Incorporating Topological Derivatives Into Level SetMethods [J]. Journal of Computational physics,2004,194(1):344–362.
    [149] Allaire G., Gournay F., Jouve F., et al. Structural Optimization Using Topological andShape Sensitivity via a Level Set Method [J]. Control and cybernetics,2005,34(1):59–80.
    [150] Jia H., Beoma H., Wang Y., et al. Evolutionary Level Set Method for Structural TopologyOptimization [J]. Computers&Structures,2011,89(5-6):445–454.
    [151] Mei Y., Wang X. A Level Set Method for Structural Topology Optimization and itsApplications [J]. Advances in Engineering Software,2004,35(7):415–441.
    [152] Wang X., Wang M., Guo D. Structural Shape and Topology Optimization in a Level-set-based Framework of Region Representation [J]. Structural and Multidisciplinary Opti-mization,2004,27(1-2):1–19.
    [153] Osher S., Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces [M]. New York:Springer,2002.
    [154] Wang S., Wang M. Y. Radial Basis Functions and Level Set Method for Structural Topol-ogy Optimization [J]. International journal for numerical methods in engineering,2006,65(12):2060–2090.
    [155] Wang S. Y., Lim K. M., Khoo B. C., et al. An Extended Level Set Method for Shape andTopology Optimization [J]. Journal of Computational Physics,2007,221(1):395–421.
    [156] Wei P., Wang M. Y. Piecewise Constant Level Set Method for Structural Topology Opti-mization [J]. International Journal for Numerical Methods in Engineering,2009,78(4):379–402.
    [157] Zhou M., Wang M. Y. A Semi-lagrangian Level Set Method for Structural Optimization[J]. Structural and Multidisciplinary Optimization,2012,46(4):487–501.
    [158]王勖成.有限单元法[M].中国:清华大学出版社,2003.
    [159]欧阳高飞.基于水平集方法的柔顺机构拓扑优化设计研究[D].广州:华南理工大学,2007.
    [160] Yamada T., Izui K., Nishiwaki S., et al. A Topology Optimization Method Based on theLevel Set Method Incorporating a Fictitious Interface Energy [J]. Computer Methods inApplied Mechanics and Engineering,2010,199(45):2876–2891.
    [161] Garcia-Ruiz M. J., Steven G. P. Fixed Grid Finite Elements in Elasticity Problems [J].Engineering Computations,1999,16(2):145–164.
    [162] Li C., Xu C., Gui C., et al. Level Set Evolution without Re-initialization: A New Vari-ational Formulation [C]. Computer Vision and Pattern Recognition,2005. CVPR2005.IEEE Computer Society Conference on. USA,2005:430–436.
    [163]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].中国:科学出版社,2008.
    [164] Zhu B., Zhang X. A New Level Set Method for Topology Optimization of DistributedCompliant Mechanisms [J]. International Journal for Numerical Methods in Engineering,2012,91(8):843–871.
    [165] Li C., Xu C., Gui C., et al. Distance Regularized Level Set Evolution and its Applicationto Image Segmentation [J]. IEEE Transactions on Image Processing,2010,19(12):3243–3254.
    [166] Zhu B., Zhang X., Fatikow S., et al. Bi-directional Evolutionary Level SetMethod for Topology Optimization [J]. Engineering Optimization,2014, DOI:10.1080/0305215X.2014.892596.
    [167] Zhu B., Zhang X., Fatikow S. A Velocity Predictor-corrector Scheme in Level-set BasedTopology Optimization to Improve the Computational Efciency [J]. ASME Journal ofMechanical Design (In press),2014.
    [168] Zhu B., Zhang X., Fatikow S. Level Set-based Topology Optimization of Hinge-freeCompliant Mechanisms Using a Two-step Elastic Modeling Methodhanisms Using aTwo-step Elastic Modeling Method [J]. ASME Journal of Mechanical Design,2014,136(2):031007.
    [169] Zhu B., Zhang X., Fatikow S. A Multi-objective Method of Hinge-free Compliant Mech-anism Optimization [J]. Structural and Multidisciplinary Optimization,2014,49(3):431–440.
    [170]汪俊熙,郭为忠.基于拓扑优化实现平面可控轨迹输出的柔顺机构设计[J].上海交通大学学报,2007,40(12):2046–2050.
    [171] Larsen U. D., Sigmund O., Bouwstra S. Design and Fabrication of Compliant Mi-cromechanisms and Structures with Negative Poisson’s Ratio [C]. Micro Electro Me-chanical Systems,1996, MEMS’96, Proceedings. An Investigation of Micro Structures,Sensors, Actuators, Machines and Systems. IEEE, The Ninth Annual International Work-shop on. San Diego, CA,1996:365–371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700