用户名: 密码: 验证码:
月面巡视器端抱式转移机构的力学特性分析与优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对未知世界的探索是人类科技发展的原动力,深空探测就是人类当前探索未知的重要活动,月球作为人类探测太阳系和其它星球最理想的跳板和中转基地,也就成为人类深空探测的首选目标。采用月面巡视探测器(月球车)进行巡视探测是月球探测的重要手段,但月球车不能直接降落到月球表面,必须通过带有缓冲装置的着陆器进行搭载,待着陆器安全软着陆后借助专门的特殊释放装置从着陆器的搭载舱转移到月面之上,这个特殊释放装置就是转移机构。转移机构是月面巡视探测器在着陆器和月球表面之间的桥梁,转移过程是实现工程目标的重要环节。
     为了保证月球探测任务顺利完成,必须解决转移机构的结构刚度和强度、月面适应性以及巡视器在转移过程中的平稳性和可靠性等难点。在发射和飞行阶段,转移机构需压紧在着陆器上,必须具有足够的刚度和强度,能经受发射过载,能承受着陆器软着陆时复杂的冲击载荷和结构响应;在着陆后,转移机构要求能够适应各种着陆器姿态及月面工况,在可能存在的极限工况下都能保证巡视器安全可靠平稳地转移到月面上并顺利分离。
     因此,本文直接针对上述重大理论问题和技术难题,进行了大量文献调研,运用航天力学理论、数值计算和试验分析方法,独创性地提出一种新颖转移机构,并以最高的结构刚度、强度并满足其结构质量指标以及发射和工作环境要求为目标,开展转移机构结构优化设计,以确保巡视器释放和转移过程的可行性、可靠性和平稳性。所取得的主要研究成果如下:
     (1)对比研究了国外已经成功应用的巡视探测器转移机构的典型范例及其构型特点与适用条件,并对国内相关单位提出的转移机构原理样机方案技术特点进行了概述和总结,结合我国探月二期工程任务目标和技术要求及特点,提出了端抱式的转移机构方案。
     (2)针对月面巡视器转移机构的整个工作过程以及典型极限工况,运用运动学、动力学原理,建立了转移工作各个阶段的力学模型,应用经典力学方法对转移机构主要承载部件各个阶段的力学载荷进行了理论计算,然后再通过多体动力学软件对转移机构工作过程的动力学特性进行了仿真分析,通过理论计算和仿真分析进行相互验证,确定了转移机构各个承载部件的载荷数据。
     (3)针对目前航天电机环境适应性差、较笨重的特点,本文提出了特殊的开口环形截面薄壁扭杆取代电机作为端抱式转移机构的动力源方案。为了获得开口环形截面薄壁扭杆的性能数据,基于圣维南原理、小变形理论和外轮廓不变假设,建立开口环形截面薄壁扭杆的约束扭转微分方程,采用初参数法对约束扭转微分方程进行了求解,得到开口环形截面薄壁扭杆的扭转性能及其应力应变关系;再通过理论计算与数值计算方法和实验相结合的研究方法,对开口扭杆的力学特性进行了研究,确定了开口环形截面薄壁扭杆的扭转力学特性。
     (4)针对航天机构的轻量化和环境要求,采用了碳纤维复合材料对转移机构摆臂进行结构设计。针对碳纤维复合材料的特殊性能,基于经典层合板理论研究了各向异性的碳纤维复合材料的应力应变关系,并借助分层实体单元模型建立了各向异性的多层碳纤维复合材料的材料单元模型;然后根据端抱式转移机构的载荷工况定义了转移机构的边界约束条件和在和条件,建立了各个典型工况下的转移机构的有限元模型,并对转移机构所处的力学环境和典型极限工况,进行了谐振分析及力学校核,完成了端抱式转移机构的力学特性研究。
     (5)针对跨度比较大的摆臂,以结构质量为约束条件,以摆臂的刚度为设计目标函数,采用多目标粒子群算法,对其截面尺寸进行了优化设计;针对空间结构的举升框,以举升框的体积为约束条件,以结构柔度为目标函数,基于变密度法对举升框进行了多工况下的拓扑优化设计。通过对转移机构主要部件的尺寸优化和拓扑优化,完善了端抱式转移机构的方案设计,提高了转移机构的结构刚度、强度以及整个转移机构的可靠性。
     (6)为了验证整个端抱式转移机构方案的可行性以及合理性,针对转移机构的极限工况,以“共心三轴承”机构为基础,设计了姿态模拟试验平台,并对端抱式转移机构进行了相关的功能验证和环境适应性验证等地面模拟试验,验证了转移机构结构设计的可行性和可靠性。
The exploration of the unknown world is the motive power of human technologicaldevelopment. The deep space exploration is an important activity in the process ofexploring the unknown. As an optimal springboard and transfer base of human’sexploring the solar system and other planets, the moon becomes a first target of deepspace exploration. Lunar exploration rover (or Lunar rover vehicle) used to explore isan important means of lunar exploration, but it can not directly descend to the surfaceof the moon. Lunar rover vehicle must be equipped with a lander of buffer device andis transferred to the lunar surface with the dedicated special release device from thelander equipped with tanks after a safe soft landing of the lander. The special releasedevice is transfer mechanism, and directly determines the success of a lunarexploration project as a bridge between the lander and lunar surface.
     In order to complete the lunar exploration mission successfully, we must solvestructure of the transfer mechanism stiffness and strength, adaptability of the lunarsurface, as well as the stability and reliability in the process of the inspector transfer.In the launch and flight phases, the transfer mechanism which has sufficient stiffnessand strength to withstand emitted overload, and withstand complex impact load andstructural response when a soft landing of the lander need to be pressed against thelander; After landing, the transfer mechanism requires the ability to adapt to the landerattitude and working conditions of the lunar surface, and guarantees safe and reliabletransfer smoothly to the lunar surface and a smooth separation in possible extremeworking conditions.
     Therefore, to solve the major theoretical and technical problems, this thesis carriesout extensive literature research, uses the aerospace mechanics theory, numericalmethods of calculation and experimental analysis, and originally proposes a noveltransfer mechanism. Targeting to their lightest structural quality meeting its launch andworking environment, it carries out the structural optimization design of transfermechanism to ensure that the feasibility, reliability and stability in the process ofinspections release and transfer. Main research results obtained are as follows:
     (1) This thesis compares and studies a typical example of the transfer mechanismapplied abroad successfully and its configuration features and applicable conditions,draws an overview and summary of technical characteristics of the transfer mechanism on the principle prototype program, and proposes the hold-type transport mechanismprograms through combining with the second phase of China's lunar explorationmission objectives and technical requirements and characteristics.
     (2) For the whole working process of the lunar transfer mechanism as well as thetypical limit conditions, the mechanical models of the various stages of the transferwork are built by use of the principle of kinematics and dynamics, the mechanicalloads of the various stages of transfer mechanism bearing members are calculated bythe application of classical mechanics method, and then the dynamics of the process ofthe transfer mechanism work are analyzed by using the multi-body dynamics software.The payload data of the respective bearing member of the transfer mechanism isdetermined through the comparison between theoretical calculations and simulationanalysis.
     (3) For the characteristics of heavy and poor environmental adaptability ofaerospace motor, this thesis proposes a special opening annular cross-sectionthin-walled torsion bar to replace the motor as the power source for the program ofhold-type transport mechanism. In order to obtain the performance data of openingannular cross-section thin-walled torsion bar, the torsion differential equations of theopening ring-shaped cross-section thin-walled torsion bar are established based on theSaint-Venant principle, small deformation theory and the outer contour of the sameassumptions, and the torsion properties of the opening ring-shaped cross-sectionthin-walled torsion bar and its stress-strain relationship are obtained by solvingconstrained torsion differential equations with the initial parameter method; Thenthrough theoretical calculations combined with numerical methods and experimentalresearch methods, the mechanical properties of the torsion bar are studies and thetorsion mechanical characteristics of the opening ring-shaped cross-section thin-walledtorsion bar are determined.
     (4) For the lightweight of space agency and environmental requirements, the swingarms of transfer mechanism are designed by using a carbon fiber composite material.For the special properties of carbon fiber composite materials, the stress-strainrelations of anisotropic carbon fiber composite materials are studied based on theclassical laminated plate theory and the anisotropic multi-layered carbon fibercomposite materials unit model is built by layered solid element model; Then theboundary constraint conditions of the transfer mechanism are defined according to theload conditions of the hold-type transport mechanism, a finite element model of the transfer mechanism of various typical conditions is established and the resonanceanalysis and mechanical check are conducted on the mechanical environment andtypical limit conditions in which the transfer mechanism is, and the study of themechanical properties of hold-type transport mechanism is completed.
     (5) For the larger span swing arm, the design of its cross-sectional dimension isoptimized by use of multi-objective particle swarm algorithm under the constraintconditions of structure quality and the design objective function of swing arm stiffness;For the lifting frame of the spatial structure, the topology optimization design of liftframe under multiple working conditions is conducted by using variable densitymethod under the constraint conditions of lifting frame's size and the objectivefunction of structure compliance. Through the size optimization and topologyoptimization of the main components of transfer mechanism, the design of hold-typetransport mechanism is improved, and the structure stiffness, strength and reliability oftransfer mechanism are increased.
     (6) In order to verify the feasibility and rationality of the entire hold-type transportmechanism programs, the attitude simulation test platform under the limit conditionsof the transfer mechanism is designed based on a concentric three-bearing bodies, andthe feasibility and reliability of the transfer mechanism structure design is verifiedunder the related functional verification and environmental adaptability verification ofhold-type transport mechanism.
引文
[1]李俊峰,宝音贺西.深空探测中的动力学与控制.力学与实践,2007,29(4):1-8.
    [2]欧阳自远,李春来,邹永廖,等.月球探测的进展与我国的月球探测.中国科学基金,2003,17(4):193-197.
    [3]王闯,邓宗全,高海波,等.国内外月球着陆器研究状况.导弹与航天运载技术,2006(4):31-36.
    [4]邹永廖,欧阳自远,李春来.月球探测与研究进展.空间科学学报,2000,20(10):93-104.
    [5]王巍,夏玉华,梁斌,等.月球漫游车关键技术初探.机器人,2001,23(3):280-284.
    [6]欧阳自远.月球科学概论.北京:中国宇航出版社,2005,1-7,56-65,251-278,304-317.
    [7]吉玮,王心源,郭振亚,等.对月探测技术研究回顾及展望.地理与地理信息科学,2011,27(2):6-10.
    [8] Masahiro N.Modeling For Lunar Lander By Mechanical Dynamics. Modelingand Simulation Technologies Conference and Exhibit.AIAA.2005:61-68.
    [9] Spudis PD.Solar system science and exploration.John Hopkins APL TechnicalDigest,2005,26(4):315-320.
    [10]中国空间技术研究院“月球探测卫星”工程论证组.中国的绕月探测工程.国际太空.2004(3):1-7.
    [11] Mark Lardas.Space Shuttle Launch System1972-2004.New Vanguard,Ospreypublishig.2005,26(4):9-68.
    [12] Grant Heiken, David Vaniman, Bevan M. French.LUNAR SOURCEBOOK: AUser’s Guide to the Moon. Cambridge: Cambridge University Press,1991,720-736.
    [13] Williamson M. Aiming for the Moon: The Engineering Chanllege ofApollo.Engineering Science and Eduction Journal.2002,11(5):164-172.
    [14] Vivake Asnani, Damon Delap, Colin Creager. The development of wheels for theLunar Roving Vehicle.Journal of Terramechanics.46(2009):89–103.
    [15] Marien G J. Engineering design challenges of the lunar lander. AIAA2004—5889,Space2004Conference and Exhibit,Sept.San Diego,Catofornia,U.S,2004.
    [16] Dale C. Ferguson, Joseph C. Kolecki, Mark W. Siebert, et al.Evidence forMartian electrostatic charging and abrasive wheel wear from the Wheel AbrasionExperiment on the Pathfinder Sojourner rover.Journal of geophysical research,2000,104(E4),8747-8789.
    [17] Ben Iannotta.Happy landings on Mars.Aerospace America,2004,34(12):30-35.
    [18] Gianfranco Visentin, Michel vanWinnendael. Robotics options for low-costplanetarymissions.Acta Astronautica,2006(59):750-756.
    [19] W. H. Siegfried. Luner Base lunar base Development Mission. IAFCongress.1999(44):755-767
    [20] Bradley L. Jolliff, Mark A. Wieczorek, Charles K, et al.New Views of The Moon.America: Mineralogical Society of Amer,2006,1-66.
    [21] D. Cadogan, C. Sandy and M. Grahne.Development and Evalution of MarsPathfinder Inflatable Airbag Landing System.Mars pathfinder landing system.50(2002):633-640.
    [22]彭玉明,李爽,满益云,等.火星进入、下降与着陆技术的新进展——以"火星科学实验室"为例.航天返回与遥感,2010,31(4):7-14.
    [23] Steltzner A, Kipp D, Chen A, et al. Mars Science Laboratory: Entry, Descent,and Landing System.In:IEEE Aerospace Conference,big Sky MT,2006.1497:1-15.
    [24]叶培建,彭兢.深空探测与我国深空探测展望.中国工程科学,2006,8(10):13-18.
    [25]王少纯,邓宗全,杨涤.月球着陆器新结构的ADAMS仿真研究.哈尔滨工业大学学报,2007,39(9):1392-1394.
    [26]冯立静.气动式月球车着陆梯的结构设计与实验研究:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学,2007,1-22.
    [27]张大鹏.升降式着陆梯结构设计和分析:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学,2008,1-24.
    [28] PENG Jing, LIU Zhongyao,ZHANG He. Conceptual Design of A LunarLander. SPACECRAFT ENGINEERING,2008,17(1):18-23.
    [29] Lance K. Erickson.Space Flight: History Technology and Operations.Publishedin the U S A. The Rowman&Littlefield Oublishing Group, Inc.2010,1-81.
    [30]李芳,凌道盛.工程结构优化设计发展综述.工程设计学报,2002,9(5):229-235.
    [31] LEE D C,LEE JI.Structural optimization design for large mirror.Optics andLasers in Engineering,2004,42(1):109-117.
    [32]秦东晨,陈江义,胡滨生,等.机械结构优化设计的综述与展望.中国科技信息,2005,(9):90-91.
    [33] Maxwell, C. The Scientific Papers of James Clerk Maxwell, Cambridge:Cambridge University Press,2003,30-74.
    [34]周克民,李俊峰,李霞.结构拓扑优化研究方法综述.力学进展,2005,35(1),69-76.
    [35] Michell, A. GM., The Limits of Economy of Materialin FrameStructures.Philosophical Magazine,1904,8(6):589-597.
    [36]郭海丁,路志峰.基于BP神经网络和遗传算法的结构优化设计.航空动力学报,2003,18(2):197-201.
    [37]许素强,夏人伟.结构优化方法研究综述.航空学报,1995,16(4):385-396.
    [38]张锦江,多阶频率与振型约束下的结构动力学优化设计:[西北工业大学硕士学位论文].西安:西北工业大学,2007,1-10.
    [39]陈汝训,刘勇琼.火箭发动机壳体封头的形状优化.计算结构力学及其应用,1989,6(3):67-71.
    [40]顾元宪,程耿东.有限元-优化-GAD集成一体的微机软件系统MCADS.计算结构力学及其应,计算结构力学及其应用,1990,7(1):71-81.
    [41]顾元宪,程耿东.结构形状优化设计数值方法的研究和应用.计算结构力学及其应,1993,10(3):321-335.
    [42]罗志军,乔新.基于遗传算法的雷达天线罩优化设计.计算力学学报,1997,14(3):361-365.
    [43]赵稼祥.航天先进复舍材料的现状与展望.热固性树脂,2000,15(2):37-41.
    [44]李东泽,于登云,马兴瑞.航天器桁架结构拓扑优化设计.中国空间科学技术,2009,29(4):1-7.
    [45] LUO Z,WANG M Y,WANG S,et al.Alevelset-based parameterization methodfor structural shape and topology optimization. International Journal forNumericalMethodsin Enginneenng,2008,76:1-26.
    [46] Charles V Barron J B. Design of space trusses using ant colonyoptimization.Journal of Structural Engineering,2004,130(5):741-751.
    [47]李艳辉.钢架结构动力学形状优化:[西北工业大学硕士学位论文].西安:西北工业大学,2005,1-24.
    [48] Sadek E.A..Minimum weight design of structure under frequency and frequencyconstraints, Computers&Structures,1996,60(1):73-77.
    [49] Sedaghati R,Suleman A,Tabarrok B.Structural optimization with frequencyconstraints using the finite element force method,AIAA,2002,40(2):382-388.
    [50] Zienkiewicz O. C.,Campbell J. S.Shape optimization and sequencial linearprogramming.In:Optimization Structural Design,John Wiley&Sons,London.1973.
    [51] Ding Yun-liang. Shape optimization of structures: a literature survey. Comput&Struct,1986,24(06):984-1004.
    [52] Botkin M E.Shape optimization of plate and shell structures,AIAA,1982(20):268-273.
    [53].Rajan S D, BELEGUNDU A D,BUDIMAN J. An integrated system for shapeoptimal design.Comput&Struct,1988,30(1-2):337-346.
    [54] Yang R J. A three-dimensional shape optimization system-SHOP3D. Comput&Struct,1989,31(6):881-890.
    [55] Belegundu A D,RAJAN S D.A shape optimization approach based on naturaldesign variables and shape functions. Comput Appl Mesh Engrg,1988,66:87-106.
    [56] W. prager.A note on disctrtized michell structures.Comput Meth Appl MechEngrg.1974,3:349-355.
    [57] Dorn W, Gomory R, Greenberg H. Automatic design of optimalstructures. design Mechaniuque, l964,3(1):25-52.
    [58] Bendsoe, M. P.,&Kikuchi, N.Generating optimal topologies in structural designusing a homogenization method. Computer Methods inApplled Mechanics andEngineering.1988,71(2):197-224.
    [59] Feng Enmin, Wang xilu, Wang xinmei.Ect. An algorithm of global optimizationfor solving layout problems. Euro J of Opera Res,1999,114(2):430-436.
    [60]王春会.连续体结构拓扑优化设计:[西北工业大学硕士学位论文].西安:西北工业大学,2005,2-21.
    [61]侯春阳.着陆梯和加载器相关技术研究:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学,2007,1-8.
    [62]杨水林.自动展开式月球车着陆梯结构设计与分析:[哈尔滨工业大学硕士学位论文].哈尔滨:哈尔滨工业大学,2006,1-6.
    [63] Visentin G, van Winnendael M. Robotics Options for Low-costPlanetarymissions[J]. Acta Astronautica,2006,59(8/11):750-756.
    [64]高岗宣善著.结构杆件的扭转解析.韩毅译.第1版.北京:中国铁道出版社,1982,1-6.
    [65]傅向荣,岑松,刘慧鹏,等.截面含切口圆柱体自由扭转的弹塑性分析.计算力学学报,2009,26(3):415-419.
    [66]郝际,钟炜辉.薄壁杆件的弯曲与扭转.北京:高等教育出版社,2006,116-170.
    [67]包世华,周坚.薄壁杆件结构力学.北京:中国建筑工业出版社,2006,29-36,38-86.
    [68] LIU Huipeng, FU Xiangrong, CEN Song, et al.Elastic-plastic torque analysis ofnotched cross-sectionbars usingthe finite difference method.Key EngineeringMaterials,2008,869-872.
    [69]梁文凤.以应力函数导出细长开口薄壁圆管的扭转应力.华侨大学学报,1989,10(1):70-73.
    [70]尹刚.扇形截面杆扭转的应力分析.计算力学学报,2008,25(6):917-920.
    [71]矫桂琼,贾普荣.复合材料力学.西安:西北工业大学出版社,2008,1-14,19-33,53-81.
    [72]方括,张青,闰国华.应用ANSYS的复合材料层合板静强度预测.玻璃钢/复合材料,2011(1):3-6.
    [73] Jing H S, Tzeng K G.. Refined shear deformation theory of laminatedshells.AIAA J,1993(31):765-773.
    [74]邬丹丹.碳纤维缠绕复合材料气瓶的有限元数值分析:[大连理工大学硕士学位论文].大连:大连理工大学,2007:22-27.
    [75]张鑫.基于ANSYS的复合材料仿真分析:[西安电子科技大学硕士学位论文].西安:西安电子科技大学,2009:9-26.
    [76]王震鸣.复合材料力学和复合材料结构力学.北京:机械工业出版社.1990,35-63.
    [77]刘新东,刘伟.复合材料力学基础.西安:西北工业大学出版社.2010,31-63,161-194.
    [78]张承宗.复合材料板壳力学解析理论.北京:国防工业出版社.2009,1-8,11-20.
    [79] Sheng H Y, Ye J Q.A three-dimensional state space finite element solution forlaminated composite cylindrical shells.Computer Methodsin Applied Mechanicsand Engineering.2003,192:244-249.
    [80]庄兴民.聚乙烯自增强复合材料的制备与力学性能研究:[东华大学博士学位论文].上海:东华大学,2005:21-30.
    [81]何录武,冯春.复合材料层合壳有限元分析的预测一修正法.力学季刊,2004,25(3):317-321.
    [82]小飒工作室.最新经典ANSYS及Workbench教程.北京:电子工业出版社,2004,6-10.
    [83]褚桂柏,张熇.月球探测器技术.北京:中国科学技术出版社,2007,506-527.
    [84]王法武.基于二阶分析的钢框架截面优化设计:[东南大学博士学位论文].南京:东南大学,2006:6-10.
    [85]汤文成.机械结构件拓扑优化设计的研究:[东南大学博士学位论文].南京:东南大学,2003:3-16.
    [86]王安麟,刘广军,姜涛.广义机械优化设计.武汉:华中科技大学出版社,2008,1-40.
    [87]刘桂萍.基于微型遗传算法的多目标优化方法及应用研究:[湖南大学博士学位论文].长沙:湖南大学,2006,1-15.
    [88]刘惟信,孟嗣宗.机械最优化设计.北京:清华大学出版社,1986,1-11,189-194.
    [89]卢熹.机械结构优化方法及应用研究:[东南大学博士学位论文].南京:东南大学,2004:1-14.
    [90]李董辉,童小娇,万中.数值最优化.北京:科学出版社,2005,1-15,113-124.
    [91]许秋艳.斜拉立体桁架结构优化设计:[硕士学位论文].西安:西安建筑科技大学,2008,11-19.
    [92]陈建军,车建文,崔明涛,等.结构动力优化设计述评与展望.力学进展,2001,31(2):181-191.
    [93] Fleury C.Reconcilation of Mathematical programming and optimility criteriaApproaches to Structural Optimization.Chichester: Jone Wiley&Sons,1982,363-404.
    [94] Martin Philip BENDSOE, Noboru KIKUCHI.Generating optimal topologies instructural design using a homogenization method.Computer Methods In AppliedMechanics And Engneering,1988,71:197-224.
    [95] Xie Y M, Steven G P. A simple evolutionary procedure for structuraloptimization.Computers&Structures,1993,49(5):885-896.
    [96] Kikuchi N, SUZUKI K. A homogenization method for shape and topologyoptimization.Computer Methods in Applied Mechanics and Engineering,1991,93:291-318.
    [97] CHEN Shuxun,YE Shanghui.A guide-weight criterion method for the optimaldesign of antenna structures.Engineering Optimization,1986,10(3):199-216.
    [98]刘建华.粒子群算法的基本理论及其改进研究:[中南大学博士学位论文].长沙:中南大学,2009,2-11.
    [99]尹汉锋.着陆缓冲系统中吸能结构的耐撞性优化:[湖南大学博士学位论文].长沙:湖南大学,2011,29-32.
    [100]杨维,李歧强.粒子群优化算法综述.中国工程科学,2004,6(5):87-94.
    [101]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用.北京:机械工业出版社,2004,538-649.
    [102]张学玲.基于广义模块化设计的机械结构静、动态特性分析及优化设计:[天津大学博士学位论文].天津:天津大学,2004,8-12.
    [103]唐驾时,彭献.工程力学(上册).北京:中国科学文化出版社,2003,71-86,91-124.
    [104] Kennedy J, Eberhart R C.. Particle swarm optimization. In: Proc of IEEEInternational Conference on Neural Networks. Piscataway, NJ.,1995,1942-1948.
    [105] Raquel C, Naval P.In: Proc of the2005conference on Genetic and evolutionarycomputation. USA,2005,257-264.
    [106] Zhang X, Huh H. Crushing analysis of polygonal columns and angleelements. International Journal of Impact Engineering,2010,37(4):441-451.
    [107] Giger M, Ermanni P. Evolutionary truss topology optimization using agraph-based parameterization concept. Structural and MultidisciplinaryOptimization,2006,32:313-326.
    [108] Guan-Chun Luh, Chung-Huei Chueh. Multi-modal topological optimization ofstructure using immune algorithm. Comput. Methods Appl. Mech. Engrg.,2004,193:4035-4055.
    [109] Yutaka Iino, Takeshi Hatanaka, Masayuki Fujita. Dynamic TopologyOptimization for Dependable Sensor Networks. In2010IEEE InternationalConference on Control Applications. okohama,2010,274-279.
    [110]芮强,王红岩,王良曦.多工况载荷下动力舱支架结构拓扑优化设计.兵工学报,2010,31(6):782-786.
    [111]胡培龙,陆晓黎,上官文斌.汽车动力总成悬置骨架的拓扑优化设计.噪声与振动控制,2010,30(6):83-87.
    [112]李所军,高海波,邓宗全.摇臂探测车悬架多工况拓扑结构优化设计.哈尔滨工程大学学报,2010,31(6):749-754.
    [113] Lindemanna, Bicklerb, et. Mars exploration rover mobility developmentmechanical mobility hardware design, development, andtesting. IEEE Roboticsand Automation Magazine,2006,13(2):19-26.
    [114]罗震.基于变密度法的连续体结构拓扑优化设计技术研究:[博士学位论文].武汉:华中科技大学,2005,17-43.
    [115] Stolpe M, Svanberg K. An alternative interpolation scheme for minimumcompliance topology optimization.Structural and Multidiscipline Optimization,2001,22:116-124.
    [116] Rozvany, G I N. Aims, Scope, history and unified terminology ofcomputer-aided topology optimization. Structural and MultidisciplinaryOptimization,2001,21:90-108.
    [117] Hong Zhou, Avinash R. Mandala. Topology Optimization of CompliantMechanisms Using the Improved Quadrilateral Discretization Model. Journal ofMechanisms and Robotics,2012,4:0210071-0210079.
    [118]占金青,张宪民.基于基础结构法的柔顺机构可靠性拓扑优化.机械工程学报,2010,46(13):42-47.
    [119] Zifan Fang, Lei Yang, Daojia Du. Study on Multi-objective TopologyOptimization Design for Support Structure. Mechanic Automation and ControlEngineering (MACE),2010International Conference on Date of Conference:636-639.
    [120]唐驾时,彭凡,陈艳.工程力学(下册).北京:中国科学文化出版社,2004,145-156.
    [121]周旋,马力,王皎.重型专用车车架的离散拓扑优化.农业机械学报,2007,38(3):32-34.
    [122]张胜兰,郑冬黎,郝琪,等.基于hyperworks的结构优化设计技术.北京:机械工业出版社,2007,159-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700