用户名: 密码: 验证码:
几丁质及高附加值产物酶法生产关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几丁质是自然界产量仅次于纤维素的可再生性多聚物。自然界在不断产生大量几丁质的同时,微生物也合成了大量能够降解几丁质的不同性质的酶。几丁质在自然界的广泛分布,意味着能够分解利用几丁质及其类似物的微生物也有着广泛的分布。环境的多样性、微生物种类的多样性为人类筛选不同性质不同要求的几丁质及其衍生物降解酶提供了可能性。
     近年来几丁质及其脱乙酰基产物壳聚糖和他们的寡糖,几丁寡糖和壳寡糖,在诸如食品、制药、材料科学、微生物学、组织工程、纳米材料等很多领域得到广泛的应用。因此对几丁质及其相关产物形成巨大的需求,但是目前无论几丁质的工业化生产,还是几丁质脱乙酰基生产壳聚糖或生产几丁寡糖、壳寡糖,均以化学方法为主,几乎都要用到强酸强碱,对环境造成极大的污染。因此迫切需要开发新的绿色生产工艺。
     采用生物学或酶学方法制备几丁质、壳聚糖及其寡糖具有生产条件温和可控,对环境污染少的优点,因此是替代化学方法的理想技术,也是目前的研究重点。目前几丁质的生产主要是从虾蟹壳中采用盐酸和氢氧化钠分别脱除碳酸钙和蛋白质的办法,尽管有了一些改进,但是仍需要使用强酸或强碱。另一方面,科研人员从自然界,特别是海洋环境中已经筛选出很多和几丁质分解有关的酶,如几丁质酶(EC3.2.1.14)、几丁质脱乙酰基酶(CDA; EC3.5.1.41)和壳聚糖酶(EC3.2.1.99)等,但是都普遍都存在酶活力不够高和酶产量低的问题,因此多处于实验室阶段,尚未应用于工业生产。基于此,本研究首先尝试采用蛋白酶和有机酸分别脱除虾壳中蛋白质和碳酸钙的办法生产几丁质,然后从与海洋环境差异巨大的秦岭山区不同生境中采集土样,从中分离新型几丁质酶和几丁质脱乙酰酶高产菌株,并对其培养基和发酵条件进行优化。
     本研究尝试采用柠檬酸脱钙、胃蛋白酶去除蛋白质的工艺从虾壳中提取几丁质。首先以灰分的含量为指标,通过单因素试验确定柠檬酸浓度和处理时间的最佳参数,即浓度12%的柠檬酸溶液处理13小时。该处理得到的几丁质灰分含量为1.5%,达到工业级的标准(≤3%),接近食品级标准(≤1%)。胃蛋白酶去除虾壳中蛋白质的研究中,采用凯氏定氮法测定蛋白质的含量。在考察胃蛋白酶的用量(U/g)、时间(h)、温度(℃)和pH等单因素基础上,利用响应面优化方法的Box-Behnken设计,以脱除蛋白质的量为响应值,构建了酶的用量、时间和温度的三维响应曲面模型。ANOVA分析和实际验证证明该模型准确可靠。通过该模型推测出最佳处理参数为胃蛋白酶使用量为700U/g、反应温度36.09℃和反应时间5h,蛋白质的脱除率达到8.47%,占总蛋白质含量的27.89%,。蛋白质去除率偏低,推测与虾壳几丁质的微观结构有关。可以通过先脱钙再脱蛋白或者进行两次脱钙和脱蛋白的方法提高蛋白质的去除效果。
     优良的菌种是微生物发酵的基础和关键,一直是微生物降解几丁质研究的重要内容之一。但目前筛选到的几丁质酶和几丁质脱乙酰酶生产菌株均存在酶活力不够高和稳定性差的问题,因此仍处于实验室阶段,距离工业化应用还有很大的差距。本研究从秦岭山脉采集土壤样品,经过富集培养后,从中筛选几丁质酶和几丁质脱乙酰酶高产菌株。几丁质酶高产菌株的初筛选是利用以胶体几丁质为唯一碳源的筛选培养基进行培养,从中挑出100株产生较大透明圈的菌株,根据D值(透明圈与菌落直径的比值)大小筛选出20株产酶能力较强的菌株。复筛选采用液体摇瓶发酵,DNS法测定酶活力的方法筛选出产酶能力最高的3株细菌,编号分别为Z4、F9和D5-23。其中菌株Z4的酶活最大,达到了2.3U/mL。菌体形态观察和16S rDNA序列分析表明菌株Z4属于微杆菌属(Microbacterium)。通过优化培养基的组成和培养条件,其产酶能力得到极大的提高。首先以发酵液中的酶活为指标,通过单因素实验确定其产几丁质酶的最佳碳源和氮源分别为葡萄糖和酵母膏。在此基础上采用Plackett-Burman设计实验确定初始培养基中影响酶产量的主要因素分别是葡萄糖、酵母膏和培养基pH,经过爬坡实验和Box-Behnken设计对培养基组成进行响应面优化,最终确定培养基主要因素的最佳组合为葡萄糖为0.314g/100mL,酵母膏为0.308g/100mL,培养基pH为7.41。在该培养基条件下,酶产量提高了78%。在单因素实验的基础上,对影响发酵的几个因素,温度(℃)、接种量(%)、装液量(mL)和初始pH进行四因素三水平正交试验确定Z4产酶的最佳发酵条件。结果表明温度对产酶的影响最大,其次是pH、接种量和装液量。四个因素的最佳组合为培养温度28℃,起始pH7,装液量60mL,接种量6%。在该条件下,酶产量提高了79.6%。
     在培养基优化过程中,还发现Z4菌株几丁质酶合成存在多态现象,因此有必要对其几丁质酶基因的表达调控进行深入研究。此外将几丁质酶基因克隆到高效表达载体中使其进行异源表达,这样可以去除供体菌自身对产几丁质酶的代谢控制,也可以提高酶产量。为此根据GENE BANK中唯一的一个微杆菌属几丁质酶基因序列和几丁质酶催化域氨基酸保守序列设计引物,对其保守区域进行PCR扩增和测序,获得催化域192bp的一段DNA序列。对该序列的生物信息学分析表明该基因为几丁质酶基因,属于糖苷水解酶18家族。该序列的获得为进一步克隆其整个基因创造了条件,为进一步基因的异源表达和分子改造奠定了基础。
     CDA高产菌株的筛选首先是通过变色圈法筛选出产酶能力较强的菌株,再通过比较发酵液中的酶活,筛选出产酶能力最强的菌株,编号为F2-7-3。根据菌体的形态观察和16S rDNA序列分析,确定该菌株属于放线菌门(Actinobacteria)的红球菌属(Rhodococcus)。酶学性质的研究表明该酶催化反应的最适pH为7.0、最适温度为50℃。为提高几丁质脱乙酰基酶的产量,对发酵培养基的组成和发酵条件进行了优化,首先通过单因素实验确定产酶培养基最佳碳源和氮源分别为蔗糖和酵母膏,通过正交试验确定初始培养基中对产酶影响最大的无机盐是KH2PO4。据此,以发酵液酶活为响应值,采用Box—Behnken设计构建了培养基影响产酶的三个主要因素,蔗糖、酵母膏和KH2PO4的响应曲面模型。该模型预测三个因素的最佳组合为:蔗糖7g/L;酵母膏9.15g/L;KH2PO40.93mmol/L;响应值即发酵液酶活力预测值为250.61U/mL。经方差分析和实验验证,该模型是准确可靠的。在单因素实验中,当酶活最大时对应的培养温度、pH和装液量分别为30℃、pH7和40mL。
     本论文工作为几丁质的酶法制备以及壳聚糖和几丁寡糖的酶法生产提供了新型的产酶菌株和基础数据,这对酶法生产壳聚糖和几丁寡糖具有极其重要的意义。
Chitin is the most abundant renewable natural resource like cellulose.Billions tons of chitin is produced each year in nature, whereas a large amountof chitinolytics is produced to decompose the same amount chitins. The fact thatchitin is broadly produced and stablely existed in nature shows and prove thatthe chitinolytic enzymes is existed broadly too. The diversity of environmentand species of microorganisms make it possible to find chitinolytic enzymeswith different properties.
     Chitin, as well as chitosan, which is deacetylse chitin, and theiroligosaccharides forms has been studied and applied in many fields, such asfood technology, phamorcology, material science, microbiology, tissueengineering, bionanotechnology and so on. So there comes the huge demand forthis production. However, the conventional production of chitin, chitosan and their oligosaccharides involves the use of strong acids and base, which creates adisposal problem due to the large amounts of toxic waste that need furthertreatment and may pollute the environment. To overcome this problem, analternative method using enzyme has been emerged, which can be in aconsiderable extent replace the non-environment friendly chemical process.
     Producing chitin and its related products by method of bioprocess ispromising and interesting. Because of the milder producing conditions, and lessenvironment pollution, the biological or enzymes method has become an idealmethod replacing the chemical method, which is the focus. The recent studyingfocused on the methods of biological or enzymes methods which are idealmethod with advantages such as mild producing conditions, less environmentalpollutions. On account of these backgrounds, a novel process was applied toextract chitin from shrimps materials that pepsin and citrate was used todemineralization and deprotein. And then, novel strains with the high ability toproduce chitinase or CDA was isolated from soils of Qinling Mountains that isdifferent from marine environment used to isolated these strains. After that, the cultural medium and parameter of fermentation was optimized by one-factorexperiment and response surface methodology (RSM).
     In this thesis, pepsin and citrate were applied for demineralization anddeprotein during produce chitin. According to the ash content, the parameter ofcitrate solution, whose concentration and time were12%and13hours, wasdecided by one factor experiment. Under this condition, the ash content of chitinwas1.5%, which is meet the requirment of industrial grade, and close to foodgrade. As for the deprotein studies, the optimal deproteinization conditions wasstudied by one factor experiment at first, and Kjeldahl method was used todetermine the protein content. The data of one factor experiments indicates thatthe proper catalytic condition might be as follows, pH1.5, temperature35℃,enzyme dose500U/g, and the process time4hours, take the cost of productioninto account. On the basis of these results, response surface methodology (RSM)was used to study the optimal process conditions, the data indicates that theoptimal condition occurs at700U/g,36.09℃, and5hours, and the maximumdeproteinization rate approaches8.47%.
     The strain with significant ability is the foundation and the key offermentation industrial, that is one of the most important work in the field ofdecompose chitin by microorganisms. In this study, soils in different envirementwere collected from Qinling Mountains, and the strains with high ablity toproduce chitinase or CDA screened after enrichment culture. Applying theisolation medium that colid chitin was the sole carbon source,20strains wereselected according to the scale of clarity zone around the colony in medium.These strains were filtered further by fermentation, and the chitinase activity insupernatant was determined by DNA method. The first three strains with highablitity producing chitnase were Z4, F9,and D5-23. The strain Z4was the bestone whose enzyme activity in supernantant reaches to2.3U/mL. Morphologyand sequencing of the16S rDNA information indicated that the strain wasmicrobacterium sp. The chitinase production of Z4was markedly enhanced bystatistical optimization of medium composition and culture conditions. Thesingle factor experiment shows that the glucose and yeast extract is the optimalsource of carbon and nitrogen. The effect of glucose, yeast extract and initial pH on chitinase production was studied with method of Plackett-Burman design,and was then further optimized with the method of steepest ascent and RSM.Data show that3.38g/L glucose,3.24g/L yeast extract and an initial pH of7.5were optimum for the production of chitnase. According to the results of singlefactor experiment, the optimum technological parameters were ascertained byorthogonal experiment which is culture temperature28℃, initial pH of7,thevolume of liquid60mL, inoculum size6%.
     Besides the optimizing the medium and fermentation parameter, themethod of molecular biology were also used to study the property of the relatedgenes because clone and express the chitinase gene in other microorganism isanother useful method to enhance the production of chitinase. For the purposeof clone the chitinase gene of Z4, several PCR primers were designed accordingthe sole chitinase gene from microbacterium genus and conserved amino acidsequence of chitinase. The genome DNA was extracted by kits and used astemplate for PCR amplification. The production was sequenced and analyzed bybioinformation methods. The results show that the sequence was part of chitnase gene, and belong to chitinase of GH18familys.
     In order to get new strains with powerful ability to produce CDA,28strainswere isolated and screened out from the soil samples by method of color reactionin plate medium. And then, the paranitroacetanilide was used as the substrate toanalyze the enzyme activity. The strain F2-7-3was screened out from thesestrains for the highest CDA activity, which can reach more than250U/mL. Themorphological properties and16SrDNA sequencing were studied and datasuggested that the isolated strain belonged to the evolution branch ofRhodococcus. The enzyme activity was studied further, data shows that theoptimum temperature was50℃, the optimum pH was7.
     The component of medium and parameters during fermentation wereoptimized respectively in order to improve the production efficient of CDA.According the results of single factor experiment and orthodox experiment,orthogonal experiment implies that the KH2PO4was a most significant influencefactor than other salts. Hence, the maximum chitinase activity of250.61U/mLwas obtained by using the optimized medium that contents of the three most important components, sucrose, yeast extract and KH2PO4were7g/L,9.15g/Land0.93mmol/L respectively. Subsequencetly, the fermentation conditions ofF2-7-3were optimized by method of the single factor analysis to improve thefermentation process, the optimum conditions obtained were: temperature30℃,pH7and liquid volume40mL in250Ml flask.
     New strains with excellent ability to produce enzymes and associated datewere offered in the present studies, which are essential to producechitin/chitosan and their oligosaccharide by enzymes, a kind of friendly methodto environment.
引文
[1] Muzzarelli R A A. Chitin [M]. Pergamon Press: Oxford, UK,1977.
    [2] Zeng J B, He Y S, Li S L. Chitin whiskers: an overview[J].Biomacromolecules,2012,13(1):1-11.
    [3] Jeuniaux C. A brief survey of the early contribution of European scientiststo chitin knowledge [C]. In Advances in Chitin Sciences, Domard A,Jeuniaux C, Muzzarelli, et al,1996:1–9.
    [4] Muzzarelli R A A. Chitin and chitosan hydrogels [M]. In Handbook ofHydrocolloids, Phillips G O, Williams P A, Woodhead Publishing Ltd:Cambridge, UK,2009:849–888.
    [5]蒋挺大.甲壳素[M].北京:化学工业出版社,2003:217-224.
    [6] Clark G L, Smith A F. X-Ray diffraction studies of chitin, chitosan, andderivatives [J]. J Phys Chem,1936,40:863–879.
    [7] Herring P J. Marine Ecology and natural products [J]. Pure Appl Chem,1979,51:1901–1911.
    [8] Blumenthal H J, Roseman S. Quantitative estimation of chitin in fungi [J]. JBacteriol,1957,74:222–224.
    [9] Sikorski P, Hori R, Wada M. Revisit of alpha-chitin crystal structure usinghigh resolution X-ray diffraction data [J]. Biomacromolecules,2009,10:1100–1105.
    [10]Atkins E. Conformations in polysaccharides and complex carbohydrates [J].J Biosci,1985,8:375–387.
    [11]Lavall R L, Assis O B G, Campana-Filho S P.[beta]-Chitin from the pens ofLoligo sp.: Extraction and characterization [J]. Bioresour Technol,2007,98:2465–2472.
    [12]Mazeau K, Winter W T, Chanzy H. Molecular and crystal structure of ahigh-temperature polymorph of chitosan from electron diffraction data [J].Macromolecules,2002,27:7606–7612.
    [13]Schiffman J D, Schauer C L. Solid state characterization of [alpha]-chitinfrom Vanessa cardui Linnaeus wings [J]. Mater Sci Eng C,2009,29:1370–1374.
    [14]Rudall K M, Kenchington W. The Chitin System [J]. Biol Rev,1973,48:597–633.
    [15]Minke R, Blackwell J. The structure of [alpha]-chitin [J]. J Mol Biol,1978,120:167–181.
    [16]Mano J F, Silva G A, Azevedo H S, et al. Natural origin biodegradablesystems in tissue engineering and regenerative medicine: present status andsome moving trends [J]. J R Soc Int erface2007,4:999–1030.
    [17]Rinaudo M. Chitin and chitosan: Properties and applications [J]. Prog PolymSci,2006,31:603–632.
    [18]Khoushab F, Yamabhai M. chitin research revisited [J]. Marine Drugs,2010,8(7):1988-2012.
    [19]Bulawa C E. Genetics and Molecular Biology of Chitin Synthesis in Fungi[J]. Annu Rev Microb,1993,47:505–534.
    [20]Roncero C. The genetic complexity of chitin synthesis in fungi [J]. CurrGenet,2002,41:367–378.
    [21]Merzendorfer H. Insect chitin synthases: a review [J]. J Comp Physiol B,2006,176:1–15.
    [22]Kato N, Mueller C R, Fuchs J F, et al. Regulatory mechanisms of chitinbiosynthesis and roles of chitin in peritrophic matrix formation in the midgutof adult Aedes aegypti [J]. Insect Biochem Mol Biol,2006,36:1–9.
    [23]Veronico P, Gray L J, Jones J T, et al. Nematode chitin synthases: genestructure, expression and function in Caenorhabditis elegans and the plantparasitic nematode Meloidogyne artiellia [J]. Mol Genet Genomics,2001,266:28–34.
    [24]Cohen E, Chitin synthesis and inhibition: a revisit [J]. Pest Manag Sci,2001,57:946–950.
    [25]McMurrough I, Flores-Carreon A, Bartnicki-Garcia S. Pathway of chitinsynthesis and cellular localization of chitin synthetase in Mucor rouxii [J]. JBiol Chem,1971,246:3999–4007.
    [26]Kawasaki T, Tanaka M, Fujie M, et al. Chitin Synthesis in ChlorovirusCVK2-Infected Chlorella Cells [J]. Virology,2002,302:123–131.
    [27]Lerouge P, Roche P, Faucher C, et al. Symbiotic host-specificity ofRhizobium meliloti is determined by a sulphated and acylated glucosamineoligosaccharide signal [J]. Nature,1990,344:781–784.
    [28]Semino C E, Robbins P W. Synthesis of "Nod"-like chitin oligosaccharidesby the Xenopus developmental protein DG42[J]. Proc Natl Acad Sci USA,1995,92:3498–3501.
    [29]Semino C E, Specht C A, Raimondi A, et al. Homologs of the Xenopusdevelopmental gene DG42are present in zebrafish and mouse and areinvolved in the synthesis of Nod-like chitin oligosaccharides during earlyembryogenesis [J]. Proc Natl Acad Sci USA,1996,93:4548–4553.
    [30]Endo T, Koizumi S. Large-scale production of oligosaccharides usingengineered bacteria [J]. Curr Opin Struct Biol,2000,10:536–541.
    [31]Cottaz S, Samain E. Genetic engineering of Escherichia coli for theproduction of NI,NII-diacetylchitobiose (chitinbiose) and its utilization as aprimer for the synthesis of complex carbohydrates [J]. Metab Eng,2005,7:311–317.
    [32]Samain E. Drouillard S, Heyraud A, et al. Gram-scale synthesis ofrecombinant chitooligosaccharides in Escherichia coli [J]. Carbohydr, Res,1997,302:35–42.
    [33]Samain E, Chazalet V, Geremia R A. Production of O-acetylated andsulfated chitooligosaccharides by recombinant Escherichia coli strainsharboring different combinations of nod genes [J]. J Biotechnol1999,72:33–47.
    [34]Aam B B, Heggset E B, Norberg A L, et al. Production ofChitooligosaccharides and Their Potential Applications in Medicine [J]. MarDrugs,2010,8:1482–1517.
    [35]Muzzarelli R A A. Chitins and chitosans as immunoadjuvants andnon-allergenic drug carriers [J]. Mar Drugs,2010,8:292–312.
    [36]Jeong H J, Koo H N, Oh E Y, et al. Nitric oxide production by highmolecular weight water-soluble chitosan via nuclear factor-kappaBactivation [J]. Int J Immunopharmacol,2000,22:923–933.
    [37]Minami S, Suzuki H, Okamoto Y, et al. Chitin and chitosan activatecomplement via the alternative pathway [J]. Carbohydr Polym,1998,36:151–155.
    [38]Freier T, Montenegro R, Shan Koh H, et al. Chitin-based tubes for tissueengineering in the nervous system [J]. Biomaterials,2005,26:4624–4632.
    [39]Yabuki M, Uchiyama A, Suzuki K, et al. Purification and properties ofchitosanase from Bacillus circulans MH-K1[J]. Journal of General andApplied Microbiology,1988,34:255-270
    [40]Shen K T, Chen M H, Chan H Y. Inhibitory effects of chitooligosaccharideson tumor growth and metastasis [J]. Food Chem Toxicol,2009,47:1864–1871.
    [41]Tsukada K, Matsumoto T, Aizawa K. Antimetastatic and growth-inhibitoryeffects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma [J].Jpn J Cancer Res,1990,81:259–265.
    [42]Wang S L, Lin H T, Liang T W, Reclamation of chitinous materials bybromelain for the preparation of antitumor and antifungal materials [J].Bioresour Technol,2008,99:4386–4393.
    [43]Mizuochi T, Nakata M. HIV infection and oligosaccharides: a novelapproach to preventing HIV infection and the onset of AIDS [J]. J InfectChemother,1999,5:190–195.
    [44]Klokkevold P R, Fukayama H, Sung E C, et al. The effect of chitosan(poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits [J].J Oral Maxillofac Surg,1999,57:49–52.
    [45]Okamoto Y, Yano R, Miyatake K, et al. Effects of chitin and chitosan onblood coagulation [J]. Carbohydr Polym,2003,53:337–342.
    [46]You Y, Park W H, Ko B M. Effects of PVA sponge containingchitooligosaccharide in the early stage of wound healing [J]. J Mater SciMater Med,2004,15:297–301.
    [47]Shelma R, Paul W, Sharma C P. Chitin Nanofibre Reinforced Thin ChitosanFilms for Wound Healing Application [J]. Trends Biomater Artif Organs,2008,22:111–115.
    [48]Mi F L, Shyu S S, Wu Y B, et al. Fabrication and characterization of asponge-like asymmetric chitosan membrane as a wound dressing [J].Biomaterials,2001,22:165–173.
    [49]Ong S Y, Wu J, Moochhala S M, et al. Development of a chitosan-basedwound dressing with improved hemostatic and antimicrobial properties [J].Biomaterials,2008,29:4323–4332.
    [50]Dai T, Tegos G P, Burkatovskaya M, et al. Chitosan acetate bandage as atopical antimicrobial dressing for infected burns [J]. Antimicrob AgentsChemother,2009,53:393–400.
    [51]Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissueengineering: Impact of physical factors on cell behavior [J]. Biomaterials,2007,28:134–146.
    [52]Tsioptsias C, Tsivintzelis I, Papadopoulou L, et al. A novel method forproducing tissue engineering scaffolds from chitin, chitin-hydroxyapatite,and cellulose [J]. Mater Sci Eng C,2009,29:159–164.
    [53]Drury J L, Mooney D J. Hydrogels for tissue engineering: scaffold designvariables and applications [J]. Biomaterials,2003,24:4337–4351.
    [54]Khor E, Lim L Y. Implantable applications of chitin and chitosan [J].Biomaterials,2003,24:2339–2349.
    [55]Gong Y, Gong L, Gu X, et al. Chitooligosaccharides promote peripheralnerve regeneration in a rabbit common peroneal nerve crush injury model[J]. Microsurgery,2009,29:650–656.
    [56]Razdan A, Pettersson D. Effect of chitin and chitosan on nutrientdigestibility and plasma lipid concentrations in broiler chickens [J]. Br JNutr,1994,72:277–288.
    [57]Muzzarelli R A A, Muzzarelli C. Chitosan, a dietary supplement and a foodtechnology commodity [C]. In Functional Food Carbohydrates, Biliaderis CG, Izydorczyk M S, Francis and Taylor: Orlando FL USA,2006:215–248.
    [58]Gallaher C M, Munion J, Hesslink R Jr, et al. Cholesterol Reduction byGlucomannan and Chitosan Is Mediated by Changes in CholesterolAbsorption and Bile Acid and Fat Excretion in Rats [J]. J Nutr,2000,130:2753–2759.
    [59]Burton Freeman B. Dietary Fiber and Energy Regulation [J]. J Nutr,2000,130:272–275.
    [60]Maezaki Y, Tsuji K, Nakagawa Y, et al. Hypocholesterolemic Effect ofChitosan in Adult Males [J]. Biosci Biotech Biochem,1993,57:1439–1444.
    [61]Dev A, Mohan J C, Sreeja V, et al. Novel carboxymethyl chitin nanoparticlesfor cancer drug delivery applications [J]. Carbohydr Polym,2010,79:1073–1079.
    [62]Kamiyama K, Onishi H, Machida Y. Biodisposition characteristics ofN-succinyl-chitosan and glycol-chitosan in normal and tumor-bearing mice[J]. Biol Pharm Bull,1999,22:179–186.
    [63]Ishihara M, Obara K, Nakamura S, et al. Chitosan hydrogel as a drugdelivery carrier to control angiogenesis [J]. J Artif Organs,2006,9:8–16.
    [64]Zhao Y, Chen G, Sun M, et al. Study on preparation of the pH sensitivehydroxyethyl chitin/poly (acrylic acid) hydrogel and its drug releaseproperty [J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2006,23:338–341.
    [65]Janes K A, Calvo P, Alonso M J. Polysaccharide colloidal particles asdelivery systems for macromolecules [J]. Adv Drug Deliv Rev,2001,47:83–97.
    [66]Haidar Z S, Hamdy R C, Tabrizian M. Protein release kinetics for core-shellhybrid nanoparticles based on the layer-by-layer assembly of alginate andchitosan on liposomes [J]. Biomaterials,2008,29:1207–1215.
    [67]Calvo P, Remu án-López C, Vila-Jato J L. Novel hydrophilicchitosan-polyethylene oxide nanoparticles as protein carriers [J]. J ApplPolym Sci,1997,63:125–132.
    [68]Bodmeier R, Chen H, Paeratakul O. A Novel Approach to the Oral Deliveryof Micro-or Nanoparticles [J]. Pharm Res,1989,6:413–417.
    [69]Calabrese V, Lodi R, Tonon C. Oxidative stress, mitochondrial dysfunctionand cellular stress response in Friedreich's ataxia [J]. J Neurol Sci,2005,233:145–162.
    [70]Ngo D N, Lee S H, Kim M M. Production of chitin oligosaccharides withdifferent molecular weights and their antioxidant effect in RAW264.7cells[J]. J Funct Foods,2009,1:188–198.
    [71]Je J Y, Kim S K. Antioxidant activity of novel chitin derivative [J]. BioorgMed Chem Lett,2006,16:1884–1887.
    [72]Park P J, Je J Y, Kim S K. Free radical scavenging activities of differentlydeacetylated chitosans using an ESR spectrometer [J]. Carbohydr Polym,2004,55:17–22.
    [73]Je J Y, Cho Y S, Kim S K. Characterization of (Aminoethyl) chitin/DNANanoparticle for Gene Delivery [J]. Biomacromolecules,2006,7:3448–3451.
    [74]Xie W, Xu P, Liu Q. Antioxidant activity of water-soluble chitosanderivatives [J]. Bioorg Med Chem Lett,2001,11:1699–1701.
    [75]Bautista Ba os S, Hernández López M, Bosquez Molina E. Effects ofchitosan and plant extracts on growth of Colletotrichum gloeosporioides,anthracnose levels and quality of papaya fruit [J]. Crop Prot,2003,22:1087–1092.
    [76]Tsai Dutta J, Tripathi S, Dutta, P K. Progress in antimicrobial activities ofchitin, chitosan and its oligosaccharides: a systematic study needs for foodapplications[J]. Food Science and Technology International,2012,18(1):3-34.
    [77]San Lang W, Shih I L, Wang C H. Production of antifungal compounds fromchitin by Bacillus subtilis [J]. Enzyme Microb Technol,2002,31:321–328.
    [78]Li B, Wang X, Chen R. Antibacterial activity of chitosan solution againstXanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima [J].Carbohydr Polym,2008,72:287–292.
    [79]Choi B K, Kim K Y, Yoo Y J. In vitro antimicrobial activity of achitooligosaccharide mixture against Actinobacillusactinomycetemcomitans and Streptococcus mutans [J]. Int J AntimicrobAgents,2001,18:553–557.
    [80]郑建仙.功能性低聚糖[M].北京:化学工业出版社,2004:236.
    [81]El Ghaouth A, Arul J, Asselin A. Antifungal activity of chitosan onpost-harvest pathogens: induction of morphological and cytologicalalterations in Rhizopus stolonifer [J]. Mycol Res,1992,96:769–779.
    [82]Young D H, Kohle H, Kauss H. Effect of Chitosan on MembranePermeability of Suspension-Cultured Glycine max and Phaseolus vulgarisCells [J]. Plant Physiol,1982,70:1449–1454.
    [83]De Smedt S C, Demeester J, Hennink W E. Cationic Polymer Based GeneDelivery Systems [J]. Pharm Res,2000,17:113–126.
    [84]Park Y K, Park Y H, Shin B A. Galactosylated chitosan-graft-dextran ashepatocyte-targeting DNA carrier [J]. J Controlled Release,2000,69:97–108.
    [85]Leong K W, Mao H Q, Truong Le V L. DNA-polycation nanospheres asnon-viral gene delivery vehicles [J]. J Controlled Release,1998,53:183–193.
    [86]Erbacher P, Zou S, Bettinger T. Chitosan-Based Vector/DNA Complexesfor Gene Delivery: Biophysical Characteristics and Transfection Ability [J].Pharm Res,1998,15:1332–1339.
    [87]Begin A, Van Calsteren M R. Antimicrobial films produced from chitosan[J]. Int J Biol Macromol,1999,26:63–67.
    [88]Ouattara B, Simard R E, Piette G. Inhibition of surface spoilage bacteria inprocessed meats by application of antimicrobial films prepared withchitosan [J]. Int J Food Microbiol,2000,62:139–148.
    [89]Dutta P K, Tripathi S, Mehrotra G K. Perspectives for chitosan basedantimicrobial films in food applications [J]. Food Chem,2009,114:1173–1182.
    [90]Day R B, Okada M, Ito Y. Binding site for chitin oligosaccharides in thesoybean plasma membrane [J]. Plant Physiol,2001,126:1162–1173.
    [91]De Jong A J, Heidstra R, Spaink H P. Rhizobium LipooligosaccharidesRescue a Carrot Somatic Embryo Mutant [J]. Plant Cell,1993,5:615–620.
    [92]Felix G, Baureithel K, Boller T. Desensitization of the perception system forchitin fragments in tomato cells [J]. Plant Physiol,1998,117:643–650.
    [93]Minami E, Kouchi H, Carlson R W. Cooperative action of lipo-chitinnodulation signals on the induction of the early nodulin, ENOD2, in soybeanroots [J]. Mol Plant Microbe Interact,1996,9:574–583.
    [94]Ito Y, Kaku H, Shibuya N. Identification of a high-affinity binding proteinfor N-acetylchitooligosaccharide elicitor in the plasma membrane ofsuspension-cultured rice cells by affinity labeling [J]. Plant J,1997,12:347–356.
    [95]Okada M, Matsumura M, Shibuya N. Identification of a high-affinitybinding protein for N-acetylchitooligosaccharide elicitor in theplasmamembrane from rice leaf and root cells [J]. J Plant Physiol,2001,158:121–124.
    [96]Koev S T, Powers M A, Park J J. Chitosan as a functional interface betweenbiology and Microsystems [C]. In Bio Micro and Nanosystems Conference,2006, BMN '06,15-18January2006:82.
    [97]Cheng J C, Pisano A P. Photolithographic Process for Integration of theBiopolymer Chitosan into Micro/Nanostructures [J]. J MicroelectromechSyst,2008,17:402–409.
    [98]Park I, Cheng J, Pisano A P. Low temperature, low pressure nanoimprintingof chitosan as a biomaterial for bionanotechnology applications [J]. ApplPhys Lett,2007,90:093902–093903.
    [99]Wang B, Tian C, Wang L. Chitosan: a green carbon source for the synthesisof graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungstencarbide composites [J]. Nanotechnology,2010,21:025606.
    [100] Gopalan N K, Dufresne A. Crab Shell Chitin Whisker ReinforcedNatural Rubber Nanocomposites [C]. Processing and Swelling BehaviorBiomacromolecules,2003,4:657–665.
    [101] Wang W, Shi X, Guo J et al. Rencent progress of chitin-basedmaterials[J],2011,(1):1-11.
    [102] Yamazaki S, Takegawa A, Kaneko Y. An acidic cellulose-chitin hybridgel as novel electrolyte for an electric double layer capacitor [J].Electrochem Commun,2009,11:68–70.
    [103] Franco L d O, Maia R d C C, Porto A L F. Heavy metal biosorption bychitin and chitosan isolated from Cunninghamella elegans (IFM46109)[J].Braz J Microbiol,2004,35:243–247.
    [104] Jianlong W, Xinmin Z, Decai D. Bioadsorption of lead(II) from aqueoussolution by fungal biomass of Aspergillus niger [J]. J Biotechnol,2001,87:273–277.
    [105] Sakaguchi T, Horikoshi T, Nakajima A. Adsorption of Uranium byChitin Phosphate and Chitosan Phosphate [J]. Agric Biol Chem,1981,45:2191–2195.
    [106] Hakim L, Sabarudin A, Oshita K. Synthesis of chitosan-based resinsmodified with tris (2-aminoethyl) amine moiety and its application tocollection/concentration and determination of trace mercury by inductivelycoupled plasma atomic emission spectrometry [J]. Talanta,2008,76:1256–1260.
    [107] Hakim L, Sabarudin A, Oshita K. Synthesis of cross-linked chitosanfunctionalized with threonine moiety and its application to on-linecollection/concentration and determination of Mo, V and Cu [J]. Talanta,2008,74:977–985.
    [108] Oshita K, Seo K, Sabarudin A. Synthesis of chitosan resin possessing aphenylarsonic acid moiety for collection/concentration of uranium and itsdetermination by ICP-AES [J]. Anal Bioanal Chem,2008,390:1927–1932.
    [109] Hosoba M, Oshita K, Katarina R K. Synthesis of novel chitosan resinpossessing histidine moiety and its application to the determination of tracesilver by ICP-AES coupled with triplet automated-pretreatment system [J].Anal Chim Acta,2009,639:51–56.
    [110] Hakim L, Sabarudin A, Oshima M. Synthesis of novel chitosan resinderivatized with serine diacetic acid moiety and its application to on-linecollection/concentration of trace elements and their determination usinginductively coupled plasma-atomic emission spectrometry [J]. Anal ChimActa,2007,588:73–81.
    [111] Peiselt da Silva K M, Pais da silva M I. Copper sorption from diesel oilon chitin and chitosan polymers [J]. Colloids Surf A,2004,237:15–21.
    [112] Aksu Z m. Application of biosorption for the removal of organicpollutants: a review [J]. Process Biochem,2005,40:997–1026.
    [113] WeiCooper A, Zhong C, Kinoshita Y. self-assenbled chitn nanofibertemplates for artificial neural networks[J]. Journal of Materials Chemistry,2012,22(7):3105-3109.
    [114] Zia K M, Zuber M, Barikani M. Surface characteristics of chitin-basedshape memory polyurethane elastomers [J]. Colloids Surf B Biointerfaces,2009,72:248–252.
    [115] Zhang G, Wang H, Shi J. Identification and characterization ofinsect-specific proteins by genome data analysis [J]. BMC Genomics,2007,8:93.
    [116] Ieropoulos I, Melhuish C, Greenman J. Energy autonomy in robotsthrough Microbial Fuel Cells [DB/OL]. In CiteSeerX-Scientific LiteratureDigital Library and Search Engine, The Pennsylvania State University, USA,2004.
    [117] Giribet G, Okusu A, Lindgren A R. Evidence for a clade composed ofmolluscs with serially repeated structures: monoplacophorans are related tochitons [J]. Proc Natl Acad Sci USA,2006,103:7723–7728.
    [118] Evvyernie D, Yamazaki S, Morimoto K. Identification andcharacterization of Clostridium paraputrificum M-21, a chitinolytic,mesophilic and hydrogen-producing bacterium [J]. J Biosci Bioeng,2000,89:596–601.
    [119] Morimoto K, Kimura T, Sakka K. Overexpression of a hydrogenasegene in Clostridium paraputrificum to enhance hydrogen gas production [J].FEMS Microbiol Lett,2005,246:229–234.
    [120] Austin P R, Brine C J, Castle J E. Chitin: New facets of research [J].Science,1981,212:749–753.
    [121] Hayes M, Carney B, Slater J. Mining marine shellfish wastes forbioactive molecules: chitin and chitosan--Part A: extraction methods [J].Biotechnol J,2008,3:871–877.
    [122] Kurita K. Chitin and chitosan: functional biopolymers from marinecrustaceans [J]. Mar Biotechnol (NY),2006,8:203–226.
    [123] Synowiecki J, Al Khateeb N A. Production, properties, and some newapplications of chitin and its derivatives [J]. Crit RevFood Sci Nutr,2003,43:145–171.
    [124] Tharanathan R N, Kittur F S. Chitin--the undisputed biomolecule ofgreat potential [J]. Crit Rev Food Sci Nutr,2003,43:61–87.
    [125] Hawtin R E, Arnold K, Ayres M D. Identification and preliminarycharacterization of a chitinase gene in the Autographa californica nuclearpolyhedrosis virus genome [J]. Virology,1995,212:673–685.
    [126] Chigaleichik A G, Pirieva D A, Rydkin S S. Chitinase from Serratiamarcescens BKM B-851[J]. Prikl Biokhim Mikrobiol,1976,12:581–586.
    [127] Kuranda M J, Robbins P W. Chitinase is required for cell separationduring growth of Saccharomyces cerevisiae [J]. J Biol Chem,1991,266:19758–19767.
    [128] Sakuda S, Isogai A, Matsumoto S. Search for microbial insect growthregulators. II. Allosamidin, a novel insect chitinase inhibitor [J]. JAntibiot(Tokyo),1987,40:296–300.
    [129] Kasprzewska A. Plant chitinases--regulation and function [J]. Cell MolBiol Lett,2003,8:809–824.
    [130] Nakazaki T, Tsukiyama T, Okumoto Y. Distribution, structure,organ-specific expression, and phylogenic analysis of thepathogenesis-related protein-3chitinase gene family in rice (Oryza sativa L.)[J]. Genome,2006,49:619–630.
    [131] Bussink A P, Speijer D, Aerts J M. Evolution of mammalianchitinase(-like) members of family18glycosyl hydrolases [J]. Genetics,2007,177:959–970.
    [132] Cohen-Kupiec R, Chet I. The molecular biology of chitin digestion [J].Curr Opin Biotechnol,1998,9:270–277.
    [133] Coulson A F. A proposed structure for 'family18' chitinases. A possiblefunction for narbonin [J]. FEBS Lett,1994,354:41–44.
    [134] Itoh Y, Kawase T, Nikaidou N. Functional analysis of the chitin-bindingdomain of family19chitinase from streptomyces griseus HUT6037:substrate-binding affinity and cis-dominant increase of antifungal function[J]. Biosci Biotechnol Biochem,2002,66:1084–1092.
    [135] Funkhouser J D, Aronson N N Jr. Chitinase family GH18: evolutionaryinsights from the genomic history of a diverse protein family [J]. BMC EvolBiol,2007,7:96.
    [136] Sendai Y, Abe H, Kikuchi M. Purification and molecular cloning ofbovine oviduct-specific glycoprotein [J]. Biol Reprod,1994,50:927–934.
    [137] Hu B, Trinh K, Figueira W F. Isolation and sequence of a novel humanchondrocyte protein related to mammalian members of the chitinase proteinfamily [J]. J Biol Chem,1996,271:19415–19420.
    [138] Hakala B E, White C, Recklies A D. Human cartilage gp-39, a majorsecretory product of articular chondrocytes and synovial cells, is amammalian member of a chitinase protein family [J]. J Biol Chem,1993,268:25803–25810.
    [139] Johansen J S, Olee T, Price P A. Regulation of YKL-40production byhuman articular chondrocytes [J]. Arthritis Rheum,2001,44:826–837.
    [140] Kirkpatrick R B, Emery J G, Connor J R. Induction and Expression ofHuman Cartilage Glycoprotein39in Rheumatoid Inflammatory andPeripheral Blood Monocyte-Derived Macrophages [J]. Exp Cell Res,1997,237:46–54.
    [141] Chang N C A, Hung S I, Hwa K Y. A Macrophage Protein, Ym1,Transiently Expressed during Inflammation Is a Novel Mammalian Lectin[J]. J Biol Chem,2001,276:17497–17506.
    [142] Webb D C, McKenzie A N J, Foster P S. Expression of the Ym2Lectin-binding Protein Is Dependent on Interleukin (IL)-4and IL-13SignalTransduction [J]. J Biol Chem,2001,276:41969–41976.
    [143] Owhashi M, Arita H, Hayai N. Identification of a Novel EosinophilChemotactic Cytokine (ECF-L) as a Chitinase Family Protein [J]. J BiolChem,2000,275:1279–1286.
    [144] Lee C G, Hartl D, Lee G R. Role of breast regression protein39(BRP-39)/chitinase3-like-1in Th2and IL-13-induced tissue responses andapoptosis [J]. J Exp Med,2009,206:1149–1166.
    [145] Shackelton L M, Mann D M, Millis A J T. Identification of a38-kDaHeparin-binding Glycoprotein (gp38k) in Differentiating Vascular SmoothMuscle Cells as a Member of a Group of Proteins Associated with TissueRemodeling [J]. J Biol Chem,1995,270:13076–13083.
    [146] Verhage H G, Mavrogianis P A, O'Day-Bowman M B. Characteristicsof an oviductal glycoprotein and its potential role in the fertilization process[J]. Biol Reprod,1998,58:1098–1101.
    [147] Johansen J S. Studies on serum YKL-40as a biomarker in diseases withinflammation, tissue remodelling, fibroses and cancer [J]. Dan Med Bull,2006,53:172–209.
    [148] Boot R G, Renkema G H, Strijland A. Cloning of a cDNA encodingchitotriosidase, a human chitinase produced by macrophages [J]. J BiolChem,1995,270:26252–26256.
    [149] Renkema G H, Boot R G, Muijsers A O. Purification andCharacterization of Human Chitotriosidase, a Novel Member of theChitinase Family of Proteins [J]. J Biol Chem,1995,270:2198–2202.
    [150] Krykbaev R, Fitz L J, Reddy P S. Evolutionary and biochemicaldifferences between human and monkey acidic mammalian chitinases [J].Gene,2010,452:63–71.
    [151] Boot R G, Blommaart E F C, Swart E. Identification of a Novel AcidicMammalian Chitinase Distinct from Chitotriosidase [J]. J Biol Chem,2001,276:6770–6778.
    [152] Watabe R M, Song M, Lausser Z. Chitinase enzyme activity in CSF is apowerful biomarker of Alzheimer disease [J]. Neurology,2012,78(8):569-577.
    [153] Kolstad G, Synstad B, Eijsink V G. Structure of the D140N mutant ofchitinase B from Serratia marcescens at1.45A resolution [J]. ActaCrystallogr D Biol Crystallogr,2002,58:377–379.
    [154] Vaaje-Kolstad G, Houston D R, Rao F V. Structure of the D142Nmutant of the family18chitinase ChiB from Serratia marcescens and itscomplex with allosamidin [J]. Biochim Biophys Acta,2004,1696:103–111.
    [155] van Aalten D M, Synstad B, Brurberg M B. Structure of a two-domainchitotriosidase from Serratia marcescens at1.9-A resolution[J]. Proc NatlAcad Sci USA,2000,97:5842–5847.
    [156] Ferrandon S, Sterzenbach T, Mersha F B. A single surface tryptophan inthe chitin-binding domain from Bacillus circulans chitinase A1plays apivotal role in binding chitin and can be modified to create an elutableaffinity tag [J]. Biochim Biophys Acta,2003,1621:31–40.
    [157] Hardt M, Laine R A. Mutation of active site residues in thechitin-binding domain ChBDChiA1from chitinase A1of Bacillus circulansalters substrate specificity: use of a green fluorescent protein binding assay[J]. Arch Biochem Biophys,2004,426:286–297.
    [158] Jee J G, Ikegami T, Hashimoto M. Solution structure of the fibronectintype III domain from Bacillus circulans WL-12chitinase A1[J]. J BiolChem,2002,277:1388–1397.
    [159] Watanabe T, Uchida M, Kobori K. Site-directed mutagenesis of theAsp-197and Asp-202residues in chitinase A1of Bacillus circulans WL-12[J]. Biosci Biotechnol Biochem,1994,58:2283–2285.
    [160] Watanabe T, Ariga Y, Sato U. Aromatic residues within thesubstrate-binding cleft of Bacillus circulans chitinase A1are essential forhydrolysis of crystalline chitin [J]. Biochem J2003,376:237–244.
    [161] Watanabe T, Kobori K, Miyashita K. Identification of glutamic acid204and aspartic acid200in chitinase A1of Bacillus circulans WL-12asessential residues for chitinase activity [J]. J Biol Chem,1993,268:18567–18572.
    [162] Songsiriritthigul C, Pantoom S. Crystal structures of Vibrio harveyichitinase A complexed with chitooligosaccharides: implications for thecatalytic mechanism [J]. J Struct Biol,2008,162:491–499.
    [163] Suginta W, Songsiriritthigul C, Kobdaj A. Mutations of Trp275andTrp397altered the binding selectivity of Vibrio carchariae chitinase A [J].Biochim Biophys Acta,2007,1770:1151–1160.
    [164] Suginta W, Vongsuwan A, Songsiriritthigul C. Enzymatic properties ofwild-type and active site mutants of chitinase A from Vibrio carchariae, asrevealed by HPLC-MS [J]. FEBS J,2005,272:3376–3386.
    [165] Bhattacharya D, Nagpure A, Gupta R K. Bacterial chitinases: propertiesand potential [J]. Crit Rev Biotechnol,2007,27:21–28.
    [166] Karasuda S, Tanaka S, Kajihara H. Plant chitinase as a possiblebiocontrol agent for use instead of chemical fungicides [J]. BiosciBiotechnol Biochem,2003,67:221–224.
    [167] Songsiriritthigul C, Lapboonrueng S, Pechsrichuang P. Expression andcharacterization of Bacillus licheniformis chitinase (ChiA), suitable forbioconversion of chitin waste [J]. Bioresour Technol,2010,101:4096–4103.
    [168] Hayes M, Carney B, Slater J. Mining marine shellfish wastes forbioactive molecules: chitin and chitosan--Part B: applications [J].Biotechnol J,2008,3:878–889.
    [169] Dahiya N, Tewari R, Hoondal G S. Biotechnological aspects ofchitinolytic enzymes: a review [J]. Appl Microbiol Biotechnol,2006,71:773–782.
    [170] Patil R S, Ghormade V V, Deshpande M V. Chitinolytic enzymes: anexploration [J]. Enzyme Microb Technol,2000,26:473–483.
    [171] Mostafa S A, Mahmoud M S, Mohamed Z K. Cloning and molecularcharacterization of chitinase from Bacillus licheniformis MS-3[J]. J GenAppl Microbiol,2009,55:241–246.
    [172]胡仕凤,高必达,陈捷,等.木霉几丁质酶及其基因的研究进展[J].中国生物防治,2008,24(4):369-375.
    [173] Howard M B, Ekborg N A, Weiner R M. Detection and characterizationof chitinases and other chitin-modifying enzymes [J]. J Ind MicrobiolBiotechnol,2003,30:627–635.
    [174] Tsujibo H, Kubota T, Yamamoto M. Characterization of chitinase genesfrom an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131[J]. ApplEnviron Microbiol,2003,69:894–900.
    [175]李静,刘建军,赵祥颖.微生物几丁质酶的研究概况[J].山东食品发酵,2006,(1):6-8.
    [176]杨学敏.微生物几丁质酶的研究和应用[J].漳州职业技术学院学报,2005,7(1):7-11.
    [177] http://www.ncbi.nlm.nih.gov/gene
    [178]李丽,杨雪松,刘红全,等.微生物几丁质酶的特性及其应用的研究进展[J].广西民族大学学报(自然科学版),2011,17(1):92-94.
    [179]华子春,郑伟娟译.酶的凝胶电泳检测手册[M].北京:化学工业出版社,2008:359-362.
    [180]李春霞,佟永薇,侯世洁.微生物几丁质酶的研究进展[J].食品研究与开发,2008,29(8):155-157.
    [181] Sakuda S. Structure of allceamidins, ovel insect chitinase inhibitors,produced by Actinomycetes [J]. Agric boil chem,1987,51:3251-3259.
    [182] Hammond-Kosack K E, Harrison K, Jones J D. Developmentallyregulated cell death on expression of the fungal avirulence gene Avr9intomato seedlings carrying the disease-resistance gene Cf-9[J]. Proc NatlAcad Sci USA,1994,91:10445-10449.
    [183]陈凌,刘玉峰.几丁质酶在抗真菌感染中的研究现状及展望[J].国外医学预防诊断治疗用生物制品分册,2005,28(5):208-210.
    [184] Lan HY, Tian YC, Wang CH, et al. Studies of transgenic tobacco plantsexpressing beta-1,3-glucanase and chitinase genes and their potential forfungal resistance [J]. Yi Chuan Xue Bao,2000,27:70-77.
    [185]欧阳石文,谢丙炎,赵开军,等.转几丁质酶基因研究进展[J].生物技术通报,2001,(3):28-31.
    [186] Down RE, Ford L, Bedford SJ, et al. Influence of plant development andenvironment on transgene expression in potato and consequences for insectresistance [J]. Transgenic Res,2001,10:223-236.
    [187] Wu JH, Zhang XL, Luo XL, et al. Transgenic cotton plants of chitinaseand glucanase genes and their performance of resistance to Verticilliumdahliea [J]. Yi Chuan Xue Bao,2004,31:183-188.
    [188] Lorito M, Woo SL, Garcia I, et al. Genes from mycoparasitic fungi as asource for improving plant resistance to fungal pathogens [J]. Proc NatlAcad Sci USA,1998,95:7860-7865.
    [189]王治伟,刘志敏.微生物几丁质酶研究进展[J].生物技术通讯,2006,17(3):439-442.
    [190] Araki Y, Ito E. A pathway of chitosan formation in Mucor rouxii.Enzymatic deacetylation of chitin [J]. Eur J Biochem,1975,55:71-78.
    [191] Araki Y. A Pathway of Chitosan Formation in Mucor rouxii EnzymaticDeacetylation of Chitin [J]. Eur J Biochem,1975,55:71-78.
    [192] Iason Tsigos, Vassilis, Bouriotis. Purification and Characterization ofChitin Deacetylase from Colletotrichum lindemuthianum [J].The AmericanSociety for Biochemistry and Molecular Biology,1995.
    [193] Gao Xiao dong, Tetsumoto and Onodera K. Purification andCharacterization of Chitin Deacetylase from Absidia Coerulea [J]. JBiochem(Tokyo),1995,117:257—263.
    [194] Alfonso C, Nuero O M, Santamaria F, et al. Purification of a Heat-StableChitin Deacetylase from Aspergillusnidulans and its Role in Cell WallDegradation [J]. Curr Microbiol,1995,30:49-54.
    [195] Srinivasan V R. Biotransformation of chitin to chitosan [P]. US5739015(C12P1904)14Apr,1998.
    [196] Amorim RV S, Ledinghanl W M, Fukushima K, et al. Screening ofchitin deacetylase from Mucoralean strains(Zygomycetes)and itsrelationship to cell growth rate [J]. J Ind Microbiol Biotechnol,2005,32:19-23.
    [197]蔡俊,杜予民,杨建红,等.甲壳素脱乙酰酶产生菌的筛选及产酶条件[J].武汉大学学报,2005,51(4):485-488.
    [198]蒋云霞,周培根,李艳,等.几种霉菌产甲壳素脱乙酰酶活力比较及部分酶学性质[J].上海水产大学学报,2006,15(2):211-215.
    [199]刘丽萍,刘建军,赵祥颖,等.一种简易、高效产几丁质脱乙酰酶菌种的筛选方法[J].食品与发酵工业,2008,34(1):65-68.
    [200] Kafetzopoulos, A Martinou, V Bouriotis. Bioconversion of chitin tochitosan: purification and characterization of chitin deacetylase from Mucorrouxii [J]. PNAS,199390(7):2564-2568.
    [201] Christine D, Dietrich K. Enhancement of chitin deacetylase activity inmucor rouxii and absidia coreluea with chitin and its detection with a non‐radioactive substrate [J]. Food Biotech,1994,8(1):67-74.
    [202] Tsigo s I, Bouriotis V. Purification and Characterization of ChitinDeacetylase from Colletotrichum lindemuthianum [J]. J Biol Chem,1995,270(44):26286-26291.
    [203] Yabuki M, Uchiyama A, Suzuki K, et al. Purification and properties ofchitosanase from Bacillus circulans MH-K1[J]. Journal of General andApplied Microbiology,1988,34:255-270.
    [204] ArakiY E Ito. Methods Enzymol [J].1988,161:510-512.
    [205] Laurel L D, Bartnicki Garcia S. The co-ordination of chitosan andchitin synthesis in Mucor rouxii [J]. Journal of Genetic Microbiology,1984,130:2095-2102.
    [206] Laurel L D, Bartnicki Garcia S. Chitosan synthesis by the tandem actionof chitin synthetase and chitin eacetylase from Mucor rouxii [J].Biochemistry,1984,23:1065-1073.
    [207] Tokuyasu K, Ono H, Hayashi K, et al. Reverse hydrolysis reaction ofchitin deacetylase and enzymatic synthesis of b-D-GlcNAc-(14)-GlcN fromchitobiose [J].Carbohydr Res,1999,322(1-2):26-31.
    [208] Tsigos I, Zydowicz N, Martinou A, et al. Mode of action of chitindeacetylase from Mucor rouxii on N-acetylchitooligosaccharides [J]. Eur JBiochem,1999,261(3):698-705.
    [209] Jeraj N, Kunic B, Lenasi H, et al. Purification and molecularcharacterization of chitin deacetylase fromRhizopus nigri-cans [J]. Enzymeand Microbial Technology,2006,39:1294.
    [210] Simunek J, Tishchenko G, Rozhetsky K, et al. Chitinolytic enzymesfrom Clostridium a minovalericum: ActivityScreening and Purification [J].Folia Microbiol,2004,49(2):194.
    [211] Martinou A, Kafetzopoulos D, Bouriotis V. Chitin deacetylase byenzymatic means: monitoring of deacetylation process [J]. Carbohydr Res,1995,273(2):235-242.
    [212] Iason T, Vassilis B. Purification and Characterization of chitinDeaeetylase from Colletotrichum lindemuthianum [J].Biological Chem,1995,270(44):26286-2629.
    [213] Ride J P, Drysdale R B. A Rapid Method for the Chemical Estimation ofFilamentous Fungi in Plant Tissue [J].Physiol Plant Pathol,1972,2:7-15.
    [214] Tokuyasu K,Ono H,Hayashi K,et a1.Reverse hydrolysis reaction ofchitin deacetylase and enzymatic synthesis of-D-GlcNAc-(1-4)-GlcN fromchitobiose [J]. Carbohydr Res,1999,322(1-2):26-31.
    [215] Srinivasan V R. Biotransformation of chitin to chitosan [P].US,5739015(C12P19/04)14Apr.1998.
    [216]刘丽萍.几丁质脱乙酰酶产生菌的筛选[D].泰安:山东农业大学,2007.
    [217] Martinou A, Kafetzopoulos D, Bouriotis V. Isolation of chitindeacetylase from mucor rouxii by immunoaffinity chromatography [J].Journal of Chromato graphy,1993,644:35-41.
    [218]朱峰,卢卫红.线性滴定法同时测定壳聚糖的脱乙酰度及表观离解常数[J].佛山科学技术学院学报,1999,17(1):52-57.
    [219] M Rinaudo. Chitin and chitosan: Properties and applications [J]. ProgPolym Sci,2009,31(7):603–632.
    [220] M Laila, G B Olfa, J Kemel. Extraction and Characterization of Chitin,Chitosan, and Protein Hydrolysates Prepared from Shrimp Waste byTreatment with Crude Protease from Bacillus cereus SV1[J]. Appl BiochemBiotechnol,2010,162(2):345–357.
    [221] M S Rao, K A Nyein, T S Trung, et al. Optimum parameters forproduction of chitin and chitosan from squilla (S. empusa)[J]. J Appl PolymSci,2007,103(6):3694–3700.
    [222] R L Lavall, O B G Assis, S P J Campana. β-Chitin from the pens ofLoligo sp.: Extraction and characterization [J]. Bioresource Technol,2007,98(13):2465–2472.
    [223] K S Theruvathil, S Sethumadhavan, T M Paruthapara. Study on theproduction of chitin and chitosan from shrimp shell by using Bacillus subtilisfermentation [J]. Carbohydr Res,2007,342(16):2423-2429.
    [224] L M Zhao, W S Xia, H F Zhao. Cost model for chitin production alkaliwastewater recovery by couple-membrane filtration [J]. Desalin Water Treat,2011,28(1-3):202–210.
    [225] Y Xu, C Gallert, J Winter. Chitin purification from shrimp wastes bymicrobial deproteination and decalcification [J]. Appl Microbiol Biotechnol,2008,79(4):687–697.
    [226] J K Yang, I L Shih, Y M Tzeng. Production and purification of proteasefrom a Bacillus subtilis that can deproteinize crustacean wastes Enzyme [J].Microb Technol,2000,26(5-6):406–413.
    [227] G B Olfa, H Noomen, J Kemel. Shrimp waste fermentation withPseudomonas aeruginosa A2: Optimization of chitin extraction conditionsthrough Plackett–Burman and response surface methodology approaches [J].Int J Biol Macromol,2011,48(4):596–602.
    [228] W J Jung, G H Jo, J H Kuk, et al. Extraction of chitin from red crab shellwaste by cofermentation with Lactobacillus paracasei subsp toleransKCTC-3074and Serratia marcescens FS-3[J]. Appl Microbiol Biotechnol,2006,71(2):234–237.
    [229]姜成林,徐丽林.微生物资源开发利用[M].北京:中国轻工业出版社,2001.
    [230] Di Pietro A, Lorito M, Rlayes C K, et a1.Endochitinase from Gliladiumvirens:Solation, Characterization and Synergistic Antifungal Activity inCombination with Gliotoxin Phytopathology,1993,83:308-312.
    [231]钱存柔,黄仪秀.微生物学实验教程(第二版)[M].北京:北京大学出版社,2008:275.
    [232] Rodriguez K, Godoy Q, Morgan J, et a1. The determination of soilchitinase activity:Conditions for assay and ecological studies [J]. Plant andSoil,1983,75(1):95-106.
    [233]宋宏新,李敏康.现代生物化学实验技术教程[M].陕西:陕西人民出版社,2002:142-144.
    [234] Antonio Romaguera, Utrich Menge, Roland Breves, et al. Chitinases ofStreptomyces olivaceoviridis and significance of processing for multiplicity[J]. Journal of Bacteriology,1992,174(11):3450-3454.
    [235]徐丽华,李文均,刘志恒,等.放线菌系统学-原理、方法及实践[M].北京:科学出版社,2007:119.
    [236]肖湘,周樱,王风平,等.高效几丁质降解菌CB101的分离、鉴定及其几丁质酶系的研究[J].海洋学报,2003,25(1):138-142.
    [237]张明,胡晓,万津瑜,等.高产几丁质酶的枯草芽孢杆菌诱变育种及发酵条件研究[J].中国农学通报,2010,26(11):279-283.
    [238]陶勇,龙章富,金虹,等.均匀设计法对产生几丁质酶细菌C4发酵条件的优化[J].生物技术,2004(6):44-46.
    [239]孙胜利,喻子牛,贾新成,等.影响灰褐链霉菌51001产碱性几丁质酶的因素[J].中国病毒学-杀虫微生物专刊,2000,15:258.
    [240]彭志英.食品酶学导论[M].北京:中国轻工业出版社.2002(1):31-37.
    [241]谢池楚,陈月华,蔡峻,等.Bt几丁质酶的基础表达及诱导合成的多态现象[J].生物工程学报,2010,26(11):1532-1538.
    [242]谢池楚,贾海云,陈月华.细菌几丁质酶基因的表达调控[J].遗传,2011,33(10):1029-1038.
    [243] Kalil S J, Maugeri F, Rodrigues M I. Response surface analysis andsimulation as a tool for bioprocess design and optimization [J]. ProcessBiochemistry,2000,35:539-550.
    [244]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版杜,2001:22-28.
    [245]甄伟,杜立新,曹伟平,等.球孢白僵菌HFW-05几丁质酶基因的克隆与序列分析[J].华北农学报,2010,25(1):36-39.
    [246]王海东,刘韫滔,林伯坤,等.汕头海域几丁质酶产生菌的筛选及其几丁质酶编码基因的研究[J].应用与环境生物学报,2009,15(4):511-514.
    [247]黄乾生,谢晓兰,陈清西,等.几丁质酶的结构特征与功能[J].厦门大学学报(自然科学版),2008,47(2):232-235.
    [248]刘丽,赵祥颖,田延军.甲壳素脱乙酰酶的研究及应用进展[J].山东食品发酵,2009,(4):23-25.
    [249]闵婷,倪孟祥.几丁质脱乙酰酶(CDA)的研究进展[J].药物生物技术,2011,18(1):89-94.
    [250]刘建军,赵祥颖,刘丽萍,等.几丁质脱乙酰酶(CDA)的研究进展[J].山东食品发酵,2007,(4):40-46
    [251]涂绍勇,杨爱华,陈燕,等.产壳聚糖酶菌株发酵条件的优化及酶解条件的研究[J].食品科技,2010,35(6):21-21.
    [252]周德庆.微生物学教程(第二版)[M].北京:高等教育出版社,2002:82-86.
    [253] Ke Liang B. Chang Tsai G. Heterogeneous N-deacetylation of chitin inalkaline solution [J]. Carbohydrate Research,1997,303:327-332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700