用户名: 密码: 验证码:
不同土岩比复合介质地表沉陷规律及预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的开采沉陷观测实践表明,不同的表土层厚度、基岩厚度、或者表土层和基岩层的厚度比(或称土岩比)开采条件下,煤矿开采岩层及地表沉陷规律表现不尽相同,地表移动变形量的大小也不同,对地面造成的损害差异性较大。本文在总结已有研究成果的基础之上,选择具备了不同土岩比地质特征的大型煤炭企业潞安集团司马矿区、屯留矿区和五阳矿区作为实验基地,通过现场调研、地表移动变形观测、相似材料物理模拟、计算机数值模拟、地面现场实测和理论预测、理论分析等大量工作,系统研究了土岩比复合介质煤矿开采条件下岩层及地表移动变形规律,提出了基于土岩比参数的地表变形预测方法。
     论文的创新点如下:
     (1)根据岩层移动的理论研究和分析,提出了基岩和松散层厚度分级标准,将基岩层分为薄基岩和厚基岩,将松散层也区分为薄松散和厚松散层。
     (2)根据各煤矿开采区的地质体特征进行了分区研究,将不同的开采地质条件分为厚表土薄基岩(司马煤矿)、厚表土厚基岩(屯留煤矿)和薄表土厚基岩(五阳煤矿)三个模式。
     (3)首次引入土岩比参数,分析了不同土岩比开采条件下预测方法研究,对常规的概率积分方法进行了改进,建立了基于土岩比特征参数的概率积分法预测预计模型。
     取得了以下主要成果与结论:
     (1)按照松散层厚度和基岩厚度的不同,根据潞安矿区的开采特点,将矿区分为不同土岩复合介质的三种类型:①薄表土厚基岩②厚表土薄基岩③厚表土厚基岩,通过对具有典型特征矿区的开采沉陷观测站观测结果表明:基岩厚度决定了地表塌陷的程度及地表破坏的延续时间,在中硬覆岩情况下,基岩层厚度越薄,地表移动破坏的时间越短;采深采厚一定时松散层厚度决定了地表的影响范围及破坏程度;
     (2)开采沉陷角量参数和概率积分预测基本参数与松散层和基岩层厚度比密切相关,现场观测结果表明,随松散层厚度的增加,其下沉系数偏大,边界角及拐点偏移距较小,而基岩层厚度,则表示出较为相反的特性,因此可以说明在一定的开采深度条件下地表移动变形参数与土岩比(松散层厚度与基岩厚度比)密切相关。
     (3)通过相似材料和数值模拟分析,揭示了基岩和松散层间的变形耦合关系。当基岩薄、松散层厚时,基岩内部难以形成阻止松散层大幅沉降的控制层,且松散层作为载荷紧压基岩层,整个上覆岩土体表现为松散层紧密基岩层,整体跟随的一体模式。当基岩较厚时才能在自身内部形成承载结构,控制松散层对基岩的载荷破断作用。
     (4)基岩与松散层岩移机理上存在差异,基岩移动变形主要因地下开采向上传播引起的,而松散层由采动影响引起其自身压缩造成的;厚松散层内部测点的移动轨迹表明松散层随基岩层呈整体移动特性,开采影响下近似为垂直向上传播。基岩面移动盆地最大下沉值小于松散层地表的最大下沉值,基岩面移动盆地移动边界明显小于松散层地表下沉盆地边界,且收敛性存在显著差异。
     (5)首次提出土岩比参量,将土岩比参量引入概率积分法,提出了基于土岩比特征的概率积分实用预计方法,针对不同土岩比地质特征进行计算检验,经对司马、屯留和五阳等矿实测结果和预测结果对比分析表明,具有较好的吻合性。
A large number of mining subsidence observation practices show that subsidence regularity of coal mining rock strata and the surface does not have the same performance, the surface movement deformation values are also different and the surface damage causes larger difference under different mining conditions due to loose thickness, bedrock thickness, or thickness ratios of loose and bedrock.
     In this paper, based on the summarization of existing research results, sima mining area, tunliu mining area and wuyang mining area which belong to the large coal enterprise luan group are selected as experimental bases having geological features on different thickness ratios of loose and bedrock. Through lots of work such as field investigation, surface movement deformation observation, similar material physical simulation, computer numerical simulation, ground field measurement and theoretical prediction, theoretical analysis and so on, the rock strata and surface movement-deformation regularity caused by coal mining under the mining condition of composite mediums with different thickness ratios of loose and bedrock are studied and mining subsidence prediction method is presented based on thickness ratios of loose and bedrock coefficient, providing the theory basis for the prevention and recovery of coal mining damage.
     Innovations in the paper are as follows:(1) According to the theoretical analysis of rock strata movement, classification standards of thickness on loose and bedrock are proposed, dividing bedrock into thin bedrock and thick bedrock and also dividing loose into thin loose and thick loose.
     (2) According to geological mining features of mining areas in Luan, zoning study is conducted to mining conditions and different mining geological conditions are divided into three kinds:thick loose and thin bedrock (sima coal mine), thick loose and thick bedrock (tunliu coal mine), thin loose and thick bedrock (wuyang coal mine).
     (3) Parameters on thickness ratios of loose and bedrock are introduced for the first time. Forecasting methods on different thickness ratios of loose and bedrock soil are analyzed. The conventional probability integral method is improved. The prediction model of probability integral method containing parameters on thickness ratios of loose and bedrock is established.
     The main achievements and conclusions are obtained as follows:
     (1) According to different thickness of loose and bedrock and mining characteristics of Luan group, mining areas are divided into three types on different composite mediums with loose and bedrock:①thin loose and thick bedrock②thick loose and thin bedrock③thick loose and thick bedrock, observations through to mining subsidence observing stations in typical feature mining areas show that:Bedrock thickness determines the duration of surface damage and the degree of surface subsidence. As medium-hard overburden rocks, the thinner of bedrock thickness, the shorter of surface movement destruction of the time; when mining depth and mining thickness are constant, loose thickness determines influence scope and destroy degree of the surface. With the increase of loose thickness, surface influence scope becomes larger, the curvature of surface horizontal deformation has also increased;
     (2) No matter what basic parameters or angle parameters of mining subsidence probability integral, the changes of value are closely related to thickness of loose and bedrock. The observation results show:loose thickness is thicker, subsidence coefficient is larger, and boundary angle and inflexion offset are smaller, while bedrock thickness shows opposite characteristics. So when mining depth is constant, surface movement deformation parameters and thickness ratios of loose and bedrock have close relationship.
     (3) Through similar material and numerical simulation analysis, it reveals the coupling deformation relationship between bedrock and loose. Since thin bedrock and thick loose, it is hard to form control layer for stopping loose substantial subsidence inside the bedrock, and loose as loads compresses bedrock, the whole overlying bedrock and loose shows integration model on loose compressed and closely followed bedrock. When the bedrock is thicker, bearing structure is shaped inside itself which controls loose role in load breakage of bedrock.
     (4) Rock strata movement mechanism on bedrock and loose are different, bedrock movement deformation mainly causes by spread upward through underground mining, loose movement deformation causes by its own compression through mining influence; Observation points trajectory inside the thick loose shows that bedrock with loose appears whole moving characteristic, mining influence be approximated into vertical upwards spread. The different between subsidence basins of loose and bedrock under mining influence shows:the mining degree of bedrock is higher than surface mining degree of loose, the maximum subsidence value of bedrock movement basin is lower than it of loose surface, the moving boundary of bedrock movement basin is obviously smaller than it of loose surface subsidence basin and there is significant difference in convergence.
     (5) Parameters on thickness ratios of loose and bedrock are proposed for the first time and introduced into probability integral method. The probability integral prediction method based on characteristics of thickness ratios of loose and bedrock is put forward. In view of characteristics on different thickness ratios of loose and bedrock, measured and prediction results are well coincident which are compared and analyzed by sima, tunliu and wangzhuang, ect.
引文
[1]杨逾,刘文生,冯国才.中国可持续发展观的灾害学分析[J].辽宁工程技术大学学报(社会科学版),2005,7(2):140-142.
    [2]何国清,杨伦,凌赓娣等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1994.
    [3]煤炭科学研究院北京开采研究所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [4]煤炭科学研究总院唐山分院.煤矿地表移动与“三下”(建筑物下、水体下、铁路下)采煤讲义[M],1982.
    [5]克拉茨H.采动损害与防护[M].马伟民,王金庄,王绍林,译.北京:煤炭工业出版社,1984.
    [6]布克林斯基B.A.矿山岩层与地表移动[M].王金庄,洪渡,译.北京:煤炭工业出版社,1989.
    [7]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设及压煤开采规程.北京:煤炭工业出版社,2000.
    [8]刘义新.厚松散层下深部开采覆岩破坏及地表移动规律研究[D].北京:中国矿业大学(北京),2010.
    [9]太原理工大学.矿区土地沉陷规律及土壤质量的影响与评价[R],太原:山西省科技重大专项(2006031099-01),2011.
    [10]姜德义,任松,刘新荣等.某建筑物下煤层开采可行性分析[J].矿山压力与顶板管理,2000,3(3).
    [11]赵洪亮.高强度开采覆岩与地表移动规律及控制技术研究[D].北京:中国矿业大学(北京),2007.
    [12]刘书贤.急倾斜多煤层开采地表移动规律模拟研究[D].北京:煤炭科学研究总院,2005.
    [13]黄平路.构造应力型矿山地下开采引起岩层移动规律的研究[D].武汉:中国科学院武汉岩十力学研究所,2008.
    [14]扬帆.急倾斜煤层采动覆岩移动模式及机理研究[D].阜新:辽宁工程技术大学,2006.
    [15]张玉卓.煤矿地表沉陷的预测与控制—世纪之交的回顾与展望[C].煤炭学会第五届青年科技学术研讨会论文集,北京:煤炭工业出版社,1998.
    [16]前苏联C.F.阿威尔辛著.煤矿地下开采的岩层移动[M].北京:煤炭工业出版社,1959.
    [17]赴波兰考察团.波兰采空区地面建筑[M].北京:科学技术文献出版社,1979.
    [18]M.鲍莱茨基M.胡戴克著.于振海,刘天泉译.矿山岩体力学[M].北京:煤炭工业出版社,1985.
    [19]Salamon, M.D.G. Elastic analysis of displaeements and stresses induced by the mining of seam or roof dePosis[J]. J.S.Afr, Inst.Metall.1963, Vol.63.
    [20]MD.G沙拉蒙.地下工程的岩石力学[M].北京:冶金工业出版社,1982.
    [21]Brauncr. Subsidenceduetou: ldergroundmining[M].BureauofMines, USA,1973.
    [22]邹友峰,邓喀中,马伟民.矿山开采沉陷工程.徐州:中国矿业大学出版社,2003.
    [23]ChoisD.S., DahiH.D., Measurement and Prediction of mine subsidence over room and Pillar in three dimension, Proeeedings Workshop on subsidence due to underound mining, S.S.Peng, ed, West Viinia University, Morgantown, WV,1981,34-37.
    [24]SiriwarddaneHJ.,'A numerical procedure for prediction of subsidence caused by long wall mining, Proeeedings Fifth Conference on Numerical Methods in Geomeehanies, T.Kawamoto and Y.lehikawa, eds, A.A.Balkema, Boston,1985,1595-1602.
    [25]Klatesch, H. Mining Subsidence Engineering SPringerVerlag[M]. Berlin,1983.
    [26]彼图霍夫.埋藏条件复杂的煤层开采时岩层的移动,北京:矿山测量,1984.
    [27]ConroyPJ., GyannatyJ.H., Themid-continent field:result of a subsidence monitoring Program, surface mining environmental monitoring and reclamation handbook, Sendlain L, Elsevier, NewYork,1983:681-708
    [28]殷作如.开滦矿区岩层移动及厚松散层地表移动规律研究[D].北京:中国矿业大学(北京),2007.
    [29]克拉茨H.采动损害与防护[M].马伟民,王金庄,王绍林,译.北京:煤炭工业出版社,1984.
    [30]KarmisM., GoodmanG., Subsidence Predietion techniques for long-wall and room and Pillar Panels in application, the society of mining engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers, Ine.,1984,541-553.
    [31]Hedley DGF, Grant F.Stope-and-Pillar design for the Elliot Lake Uranium Mines.Bull Can Inst MinMetall,1972(65):37-44.
    [32]Von kinnelnann MR, HydeB, Madgwiek RJ.The use of computer applications at BCL Limited in Planning Pillar extraction and design of mining layouts, In: BrownET, HudsonJA, editors.Proeeedings of ISRM SymPosiumr Design and Performance of Undergroud Exeavations.London:British Geoteehnieal Soeiety,1984.53-56.
    [33]崔希民等.开采沉陷引起的含水层失水对地表下沉的影响[J].煤田地质与勘探,2000,28(5):47-48.
    [34]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
    [35]北京开采所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [36]何国清,马伟民,王金庄.威布尔型影响函数在地表移动的计算中的应用[J].北京:中国矿业学院学报,1982.
    [37]周国拴、崔继宪等.建筑物下采煤[M].北京:煤炭工业出版社,1983.
    [38]何万龙.山区地表移动规律及变形预计[J].太原:山西矿业学院学报,1985.
    [39]白矛、刘天泉.条带法开采中条带尺寸的研究[J].北京:煤炭学报,1983.
    [40]李增琪.使用富氏积分变换计算开挖引起的地表移动[J].北京:煤炭学报,1983.
    [41]张玉卓、仲惟林等.岩层移动的错位理论解与边界元法计算[J].北京:煤炭学报,1987.
    [42]张玉卓、仲惟林等.断层影响下地表移动的统计和数值模拟研究[J].北京:煤炭学报,1987.
    [43]谢和平、陈至达.非线性大变形有限元分析及在岩层移动中应用[J].北京:中国矿业大学学报,1988.2.
    [44]刘文生.条带法开采采留宽度合理尺寸研究[D].阜新:阜新矿业学院硕士论文,1988.
    [45]杨硕等.水平移动曲面的力学预测法[J].北京:煤炭学报,1995.2.
    [46]王泳嘉.离散元法及其在岩石力学中的应用[J].金属矿山,1992.3.
    [47]吴立新 王金庄.著建(构)筑物下压煤条带开采理论与实践[M].徐州:中国矿业大学出版社,1994.
    [48]麻凤海.岩层移动的时空过程[D].沈阳:东北大学博士学位论文,1996.
    [49]唐春安等.岩层移动过程的数值模拟新方法[J].阜新:阜新矿业学院学报,1997.3.
    [50]郭增长.极不充分开采地表移动预计方法及建筑物深部压煤开采技术的研究[D].北京:中国矿业大学(北京)研究生部,2000.
    [51]戴华阳.基于倾角变化的开采沉陷模型及其GIS可视化应用研究[D].北京:中国矿业大学(北京)研究生部,2000.
    [52]柴华彬,邹友峰,郭文兵.用模糊模式识别确定开采沉陷预计参数[J].北京:煤炭学报,2005,30(6):701-704.
    [53]朱刘娟,陈俊杰,邹友峰.深部开采条件下岩层移动角确定研究.北京:煤炭工程,2006,2:45-47.
    [54]胡青峰,崔希民,李春意等.基于Broyend算法的概率积分法预计参数求取方法研究明.湖南科技大学学报(自然科学版),2009,24(1):5-8.
    [55]黄乐亭.开采沉陷力学的研究与发展[J].北京:煤炭科学技术,2003,3 1(2):54-56
    [56]李永树,王金庄,陈勇.开采沉陷地区地表水平移动机理[J].煤,1996,5(1):27-29
    [57]崔希明,杨硕.开采沉陷的流变模型探讨[J].北京:中国矿业,1996,5(24):52-55
    [58]靖洪文,许国安.地下工程破裂岩体位移规律数值分析[J].武汉:岩石力学与工程学报,2003,22(8):1281-1286.
    [59]钱鸣高,缪协兴.岩层控制中的关键层理论研究[J].北京:煤炭学报,1996,21(3):225-230.
    [60].许家林,钱鸣高.岩层控制关键层理论的应用研究与实践[J].北京:中国矿业,2001,10(6):54-56.
    [61]刘文生,范学理.覆岩离层产生机理及离层充填控制地表沉陷技术的工程实施[J].北京:煤矿开采,2002,7(3):53-55.
    [62]徐乃中,张玉卓.岩离层注浆减缓地表沉陷的动态力学模型[J].西安:西安科技学院学报.2000,20(增):35-38.
    [63]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003
    [64]英国煤炭局.地面沉陷工程师手册[M].北京:煤炭工业出版社,1980
    [65]王金庄,邢安仕,吴立新.矿山开采沉陷及其损害防治[M].北京:煤炭工业出版社,1995
    [66]余学义,张恩强.开采损害学[M].北京:煤炭工业出版社,2004.
    [67]吴侃,葛家新.开采沉陷预计一体化方法[M].徐州:中国矿业大学出版社,1998.
    [68]吴侃,周鸣.矿区沉陷预测预报系统[M].徐州:中国矿业大学出版社,1999.
    [69]沙武斯托维奇.地下开采对地表的影响[M].林国夏译.北京:煤炭工业出版社,1959
    [70]Berry DS. An elastic treatment of ground movement due to mining---I Isotropic ground.J Mech Phy Solids.1960,8:280-292.
    [71]白矛,刘天泉,仲惟林.用力学方法研究岩层和地表移动[J].北京:煤炭学报,1982(3):27-28.
    [72]高明中,余忠林.急倾斜煤层开采对地表沉陷影响的数值模拟[J].北京:煤炭学报,2003(6):578-582.
    [73]苏美德,赵忠明,李德海等.灰色系统理论模型在矿山开采沉陷中的应用[J].西部探矿工程,2003,(4):82-83.
    [74]麻凤海,杨帆.采矿地表沉陷的神经网络预测[J].北京:中国地质灾害与防治学报,2001,12(3):84-87.
    [75]麻凤海,王泳嘉,范学理.利用神经网络预测开采引起地表沉陷[J].阜新:阜新矿业学院学报(自然科学版),1995,14(3):46-49.
    [76]王坚,岳广余.自适应GM(1,1)模型进行地表沉降预报[J].北京:北京测绘,2003,(1):40-42.
    [77]张东明,尹光志,代高飞.地表下沉的分形特征及其预测[J].成都:成都理工大学学报(自然科学版),2003,30(1):92-95.
    [78]董春胜,等.改进的BP神经网络预测地表沉陷[J].阜新:辽宁工程技术大学学报(自然科学版),2001,20(5):722-723.
    [79]高明中,余忠林.煤矿开采沉陷预测的数值模拟[J].合肥:安徽理工大学学报(自然科学版),2003,23(1):11-17.
    [80]唐又弛,曹再学,朱建军.有限元法在开采沉陷中的应用[J].阜新:辽宁工程技术大学学报,2003,22(2):176-178.
    [81]袁灯平,马金荣,董止筑.利用ANSYS进行开采沉陷模拟分析[J].济南:济南大学学报(自然科学版),2001,15(4):336-338.
    [82]余学义.采动区地表剩余变形对高等级公路影响预计分析[J].西安公路交通大学学报,2001,21(4):9-12.
    [83]余学义,施文刚.地表剩余沉陷的预计方法[J].西安:西安矿业学院学报,1996,16(1): 1-4.
    [84]吴侃,靳建明.时序分析在开采沉陷动态参数预计中的应用[J].徐州:中国矿业大学学报,2000,29(4):413-415.
    [85]邹友峰.地表下沉系数计算方法研究[J].岩土工程学报,1997,19(3):109-112.
    [86]吴侃,靳建明,戴仔强.概率积分法预计下沉量的改进[J].阜新:辽宁工程技术大学学报,2003,22(1):19-22.
    [87]徐乃忠,戴华阳.厚松散层条件下开采沉陷规律及控制研究现状[J].煤矿安全,2008(11):53-55.
    [88]李德海,陈祥恩,李东升.厚松散层下开采地表移动预计及基岩参数分析[J].矿山压力与顶板管理,2002,(1):90-92.
    [89]陈祥恩.厚松散层薄基岩下开采地表移动特征[J].煤炭工程,2001,(8):11-13.
    [90]赵启峰,孟祥瑞,赵光明等.厚松散层下开采沉陷预测模型的研究及应用[J].中国煤炭,2008,34(2):36-43.
    [91]陈思祥,李德海,勾攀峰.巨厚松散层下开采及地表移动[M].徐州:中国矿业大学出版社,2001.9:222-223.
    [92]王金庄.开采沉陷若干理论与技术问题研究[J].唐山:矿山测量,2003(3):1-5.
    [93]王金庄,李永树,周雄等. 巨厚松散层下采煤地表移动规律研究[J].北京:煤炭学报,1997,22(1):18-21.
    [94]麻凤海,范学理,王永嘉.巨系统复合介质岩层移动模型及工程应用[J].武汉:岩石力学与工程学报,1997,(6):536-543.
    [95]李永树,王金庄.厚冲积层条件下开采沉陷地区地表裂隙形成机理[J].河北煤炭,1996,(2):8-9.
    [96]李永树,王金庄.厚冲积层条件下开采沉陷盆形态分析[J].测绘工程,1999,8(2):43-45.
    [97]李永树,王金庄,周雄.PTS采动沉陷模型研究[J].河北煤炭建筑工程学院学报,1998(3):32-39.
    [98]常占强,王金庄.厚松散层弯曲下沉空间问题研究[J].矿山测量,2003(3):36-39.
    [99]李永树,于金庄,陈勇.复合岩层采动沉陷理论研究[J].河北煤炭建筑工程学院学报,1996(2):27-34.
    [100]吴侃,靳建明,戴仔强等.开采沉陷在土体中传递的实验研究[J].北京:煤炭学报,2002,27(6):601-603.
    [101]吴侃,黄珍珍,王欣.矿山开采沉陷的完备预测模型[J].北京:煤矿开采,2006,11(4):4-6.
    [102]隋旺华.开采沉陷土体变形工程地质研究[M].徐州:中国矿业大学出版社,1999.
    [103]李凤明.厚冲积层矿区地表移动参数的特点及数值模拟[J].阜新:辽宁工程技术大学学报(自然科学版),2001,20(4):535-537.
    [104]李凤明,梁京华.厚冲积层矿区地表移动参数的特点及数值模拟[J].北京:煤炭科学与技术,1996,24(3):29-33.
    [105]李凤明.厚冲积层采矿条件岩层移动角量参数特点[J].北京:煤矿开采,1996(3):28-30.
    [106]余华中,李德海,李明全.厚松散层放顶煤开采条件下地表移动参数研究[J].焦作工学院学报,2003,22(6):413-416.
    [107]郝延景,吴立新,胡金星.厚松散层条件下地表移动变形预计理论研究[J].矿山测量,2000,(2):15-18.
    [108]宋常胜,赵忠明,李洪波等.巨厚松散层下条带开采地表沉陷机理及岩层移动模型的探讨[J].焦作工学院学报(自然科学版),2003,22(3):161-164.
    [109]栾元重,佟文亮,莫技.地表岩移参数与采深、冲积层厚度关系[J].矿山压力及顶板管理,2001(1):61-64.
    [110]方新秋,黄汉富,金桃等.厚表土薄基岩煤层开采覆岩运动规律[J].岩石力学与工程学报,2008(6).81-84.
    [111]刘继岩,新建矿井厚黄土层条件下覆岩动态破坏规律研究[D].北京:中国矿业大学(北京)博土论文,2010.04.
    [112]李春意,覆岩与地表移动变形演化规律的预测理论及实验研究[D].北京:中国矿业大学(北京)博士论文,2010.04.
    [113]胡青峰,特厚煤层高效开采覆岩与地表移动规律及预测方法研究[D].北京:中国矿业大学(北京)博士论文,2011.04.
    [114]刘义新,厚松散层下深部开采覆岩破坏及地表移动规律研究中国矿业大学(北京)博十论2010-04.
    [115]朱志强,厚松散层下条带开采地表下沉规律研究[D].山东科技大学硕士论文,2008.05.
    [116]郝兵元,厚黄土薄基岩煤层开采岩移及十壤质量变异规律的研究[D].太原:太原理工大学博十论文,2009.05
    [117]杜开元,厚松散层大采深条件下地表变形规律研究及数据处理[S].太原理工大学硕十论文,2010.05
    [118]冯国瑞,任亚峰,王鲜霞等.自家庄煤矿垮落法残采区上行开采相似模拟实验研究[J].煤炭学报,2011(4)
    [119]崔磊,寺河矿二号井15号煤层坚便顶板采场矿压控制研究[S].太原理工大学硕十论文,2011.05
    [120]余华中,李德海,李明金.厚松散层下开采预计的概率积分法修止模型[J].焦作工学院学报(自然科学版)
    [121]张文志,开采沉陷预计参数与角量参数综合分析的相似理论法研究[D].河南理工大学博十论文,2011.04.
    [122]Baochen Liu, Junsheng Yang, Jiasheng Zhang. Ground movemengt and deformation due to dewatering and open pit excavation [Z].1996,41-44.
    [123]Wenbing Xie, Kazhong Deng, Jianyuan Da. The pre-calculation model of ground subsidence under thick water-bearing strata. Minging Science and Technology[Z].1996,341-399.
    [124]GRAYR.E, Minging subsidence-past, present, future[J]. International Journal of Minging and Geological and Engineering,1990,8:400-408.
    [125]S Peng Syd. Surface Subsidence Engineering[M]. Littleton, Colorado:Soeiety for Mining, Metallurgy, and Explo-ration Inc,1992.
    [126]Bauer, E Gunther. MOVEMENTS ASSOCIATED WIRH RHE CONSTRUCTION OF A DEEP EXCAVATION:Proceedings of the 3rd International Conferencem1985[C]. Pentech Press.
    [127]Campo Juan J.McDermott Inc, Sanzgiri Sunil M, Moore Gordon H.Offshore platform foundation design and special strural provisions for significant soil subsidence:Proceedings of the Second International Offshore and Polar Engineering Conference,1992[C].
    [128]Osmanagic M.Univ Of Tuzla, Stevic M., Jasarevic I. APPLICATION OF THE FINITE ELEMENT METHOD IN DEFINING SOIL SUBSIDENCE DEFORMATIONS CAUSED BY SALTLEACHING.[Z].A.A.Balkema,1982,479-486.
    [129]Numerical Methods in Geomechanics Edmonton 1982:Proceedings of the 4th International Conference, Edmonton, Alberta[C].
    [130]Irwin Ross W. SUBSIDENCE OF CULTIVATED OR GANIC SOIL IN ONTARIO[J]. ASCE J Irrig Drain Div,1977,103(2):197-205.
    [131]CE Xin-hui, YU Guang-yun. Influence of under ground mining on ground surface and railway bridgeunder thick alluvium[J]. Journal of China University of Mining & Technology,2006,16(1): 97-100.
    [132]Savkov L.V. Ground movement induced by open-cut and underground mining[J]. Journal of Mining Science,1966,2(6).
    [133]Selby A.R. Tunnelling in soils-ground movements, and damage to buildings in Workington, UK[J]. Geotechnical and Geological Engineering,1999,17:3-4.
    [134]Shu D.M., Bhattacharyya A.K. Prediction of sub-surface subsidence movements due to underground coal mining[J]. Geotechnical and Geological Engineering,1993,11(4).
    [135]Holzer Thomas L, Johnson A.Ivan. Land subsidence caused by ground water withdrawal in urban areas[J]. GeoJournal.1985,11(3).
    [136]Xuye Shuang, Shenshui Long, Caizheng Yin. The state of land subsidence and prediction approaches due to groundwater withdrawal in China[J]. Natural Hazards,2008,45(1).
    [137]Amin Ammar, Bankher Khalid. Causes of Land S ubsidence in the Kingdom of Saudi Arabia[J]. Natural Hazards,1997,16(1).
    [138]Brady B.H.G., Brown E.T. Mining-induced surface subsidence[J]. Rock Mechanics for underground mining,2004:484-517.
    [139]Shahriar K, Amoushahi S, Arabzadeh M. Prediction of surface subsidence due to inclined very shallow coal seam mining using FDM:Coal Operators Conference 2009, Wollongong, Australia, 2009[C].
    [140]Inc Itasca Consulting Group. FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), Version3.3, User's Manual.
    [141]B.A.布克林斯基.矿山岩层与地表移动[M].王金庄,洪镀译.北京:煤炭工业出版社,1984.
    [142]M.鲍来茨基,M.d胡戴克.矿山岩体力学[M].于振海,刘天泉泽.北京:煤炭工业出版社,1985.
    [143]高明中.关键层破断与厚松散层地表沉陷耦合关系研究[J].合肥:安徽理工大学学报(自然科学版),2004,24(3):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700