用户名: 密码: 验证码:
氧化石墨烯表面功能化修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新兴碳材料,石墨烯具有独特的力学,光学,热学和电学性能,例如反常的量子霍尔效应,高的杨氏模量,高热导率和高比表面积等。正是由于石墨烯的这些优异的性能,它被广泛应用于制备各类功能性的纳米复合材料,在电子学,光学,催化等领域内具有广阔的应用前景。然而,石墨烯的工业化应用还存在诸多困难,规模化制备石墨烯便是主要的挑战之一。氧化石墨烯因与石墨烯在结构上非常类似而通常被当做制备石墨烯的前驱体,采用热处理或者化学还原氧化石墨烯的方式可以有效地规模化制备石墨烯,特别是通过化学方式修饰氧化石墨烯的途径众多,具有较高的学术研究价值。本论文主要对氧化石墨烯的表面修饰展开研究,主要研究内容包括:
     1)有机小分子对氧化石墨烯的表面改性。以三聚氰氯为原料合成了有机小分子2-氨基-4,6-双十二胺-1,3,5-三嗪(ADDT),合成产物ADDT的化学结构经傅里叶红外(FT-IR)谱和核磁共振谱1H NMR得以确定。随后对合成产物的热稳定性进行了研究,从热重分析(TGA)的结果来看,制备的ADDT相对于三聚氰胺来说具有更高的热稳定性,其分解温度范围与聚合物的分解温度范围有较大的重合。为了将ADDT以共价键的方式接枝在氧化石墨烯的表面,氧化石墨烯先与二氯亚砜反应,将表面的羧基转化为酰氯基,然后ADDT与酰氯化氧化石墨烯反应。产物GO-ADDT经FT-IR、X射线光电子能谱(XPS)和高分辨透射电镜(HRTEM)表征,确认ADDT通过酰胺键接枝在氧化石墨烯片的表面上,随后对GO-ADDT的热稳定性和溶解性进行了考察。从TGA的结果来看,接枝上ADDT之后,产物的热稳定有了明显提高,随着温度的升高其质量损失速率明显降低且GO-ADDT最后的残余量要明显高于氧化石墨。将产物GO-ADDT分散在氯仿和水的混合溶剂中,接枝后的产物表现出明显的疏水性,在氯仿中能很好的分散,这说明在改性之后,氧化石墨烯的表面由亲水转为疏水,这种变化将为GO-ADDT应用于非极性聚合物基复合材料打下基础。
     2)在温和的条件下,一步法同时还原银离子和氧化石墨烯制得石墨烯/纳米银复合材料。在实验中,以甲醛为还原剂,聚乙烯吡咯烷酮(PVP)为保护剂,经过7分钟反应即可制得石墨烯为基底的复合材料FAG;而PVP为还原剂与AgNO3作用则得到以氧化石墨烯为基底的复合材料PAG。利用HRTEM,扫描电镜(SEM)和XPS等表征手段对PAG和FAG两种复合材料进行了研究。XPS数据显示二者的基底不同,SEM和HRTEM照片显示基底上的含氧官能团对纳米银在基底的附着有着重要的影响。这种低温且快速的制备方式为规模化生产石墨烯/纳米银复合材料开辟了新的路线。
     3)为了更加方便地制备基底还原程度不一样的(氧化)石墨烯/纳米银复合材料,对2)的方法进行了改进,使用了绿色环保的试剂。加入葡萄糖,PVP和银氨溶液,通过改变反应温度制备了三种复合材料GSG-25(25oC),GSG-40(40oC)和GSG-60(60oC),并着重研究了GSG-25和GSG-60这两种基底含氧基团差别比较大的复合材料。XPS谱图证实GSG-25和GSG-60这两种复合材料基底上含氧官能团的含量差别较大;HRTEM照片显示了纳米银在不同基底上的分布状况,对比后发现GSG-25上负载的纳米银颗粒数目更多,存在相对较多的粒径大的纳米银颗粒;利用紫外-可见光吸收(UV-vis)光谱对不同反应时间得到的复合材料进行了考察;对基底上的含氧官能团与负载的纳米银之间的相互作用进行的研究,证实了纳米银颗粒与复合材料的基底之间是非共价键的结合方式;另外,对GSG-60制备过程中的还原组分进行了讨论;最后,考察了这两种复合材料GSG-25和GSG-60在表面增强拉曼散射方面(SERS)的性能。
As a new emerging carbon materials, graphene possessed distinctmechanical, optical, thermal and electrical properties, such as anomalousquantum Hall effect, high young modulus, high thermal conductivity andhigh specific surface area. Because of these excellent properties,graphene is widely applied for the preparation of various functionalnanocomposites and which obtained applications in the field ofelectronics, optics, catalysis and so on. However, there are manyobstacles in the industrial application of graphene and large-scaleproduction of graphene is one of the main challenges. Graphene oxide(GO) is usually treated as a precursor to graphene for its structuralsimilarity with graphene. By thermal or chemical way, GO can beconverted to graphene. Especially, the routes for the modification of GOin chemical way are numberous and worthy to be investigated. The mainwork in this paper was fucosed on the surface modification of grapheneoxide and graphene (oxide) functionalized with small organic molecule orsilver nanoparticles were prepared. The main contents of the paperinclude:
     1) Modification of graphene oxide with small organic molecule.2-amino-4,6-didodecylamino-1,3,5-triazine (ADDT) was firstlysynthesized from cyanuric chloride. Characterized by means of FT-IR and1HNMR, the chemical structure of ADDT was confirmed. Compared tomelamine, the thermal stability of ADDT is improved and thedecomposition temperature of ADDT matched well with that of thermoplastics. In order to modify GO by covalent bond, GO was firstlytreated by thionyl chloride and then reaction with ADDT. The obtainedproduction GO-ADDT was investigated by FT-IR, XPS and HRTEM.The results indicate that ADDT is covalently grafted onto the surface ofGO sheets by amide linkage. The thermal stability and solubility ofGO-ADDT was then discussed. According the data of TGA, the thermalstability of GO-ADDT is improved. With the increasing temperature, themass loss rate of GO-ADDT is significantly lower than that of GO. Whiledispersed in CHCl3/H2O mixture, GO-ADDT was all dispersed in CHCl3,implying the hydrophilic GO has been converted to hydrophobicGO-ADDT. And the shift will lay foundations for the application ofGO-ADDT in some nonpolar polymer-based composites.
     2) Under mild conditions, graphene/silver composites was preparedby simultaneous reduction of graphene oxide and silver ions in a rapidand one-step way. In the experiment, FAG was prepared by usingformaldehyde as the reducing agent and PVP as the protect agent; WhilePAG was prepared by using PVP as reducing agent individually. The twocomposites were investigated by HRTEM, SEM and XPS. The datas fromXPS spectra show different substrates between PAG and FAG. Theimages of SEM and HRTEM indicate that the oxygen-containing groupshave an effect on the growth of silver nanocrystal. Low-temperature andshort reaction time make the approach a promising alternative for thepreparation of silver–graphene nanocomposites.
     3) In order to prepared graphene (oxide)/silver composites withvarious degrees of reduction in a more convenient way, an improvingmethod is developed. By the addition of glucose,PVP and silver-ammoniasolution, GSG-25(25oC),GSG-40(40oC) and GSG-60(60oC) areprepared under different reaction temperatures. The investigation was mainly focused on GSG-25and GSG-60. The XPS spectra confirm thecontent of oxygen-containing groups between GSG-25and GSG-60isdifferent. The distribution of silver nanoparticles on the substrates wasexhibited in HRTEM images. It is clear that there are many more silvernanoparticles on GSG-25including some particles in relatively large size.The composites under different reaction times were investigated byUV-vis spectra; The interaction between silver nanoparticles andsubstrates was investigated, and the results confirmed it is nonconvalentway; In addtion, the redox components for the preparation of GSG-60were discussed; At last, the surface enhanced raman scattering (SERS)between GSG-25and GSG-60was investigated.
引文
[1] GeimAK, Novoselov KS. The rise of graphene[J]. Nature Materials,2007,6(3):183-191.
    [2] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric FieldEffect inAtomically Thin Carbon Films[J]. Science,2004,306(5696):666-669.
    [3] Castro Neto A, Guinea F, Peres NMR. Drawing conclusions from graphene[J]. Physics World,006,19(11):33-37.
    [4] Rao CNR, Biswas K, Subrahmanyam KS, Govindaraj A. Graphene, the new nanocarbon[J].Journal of Materials Chemistry,2009,19(17):2457-2469.
    [5] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength ofmonolayer graphene[J]. Science,2008,321(5887):385-388.
    [6] Ranjbartoreh AR, Wang B, Shen X, Wang G. Advanced mechanical properties of graphenepaper[J]. Journal ofApplied Physics,2011,109(1).
    [7] Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, et al. Room-temperaturequantum hall effect in graphene[J]. Science,2007,315(5817):1379-1379.
    [8] Heersche HB, Jarillo-Herrero P, Oostinga JB, Vandersypen LMK, Morpurgo AF. Bipolarsupercurrent in graphene[J]. Nature,2007,446(7131):56-59.
    [9] Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: Past, presentand future[J]. Progress in Materials Science,2011,56(8):1178-1271.
    [10] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and Graphene Oxide: Synthesis,Properties, and Applications[J]. Advanced Materials,2010,22(35):3906-3924.
    [11] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermalconductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907.
    [12] Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, et al. Extremely highthermal conductivity of graphene: Prospects for thermal management applications innanoelectronic circuits[J]. Applied Physics Letters,2008,92(15).
    [13] Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, et al. Fine structureconstant defines visual transparency of graphene[J]. Science,2008,320(5881):1308-1308.
    [14] Kravets VG, Grigorenko AN, Nair RR, Blake P, Anissimova S, Novoselov KS, et al.Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption[J].Physical Review B,2010,81(15):155413.
    [15] Chae SJ, Güne F, Kim KK, Kim ES, Han GH, Kim SM, et al. Synthesis of Large-AreaGraphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: WrinkleFormation[J]. Advanced Materials,2009,21(22):2328-2333.
    [16] Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, et al. Roll-to-roll production of30-inchgraphene films for transparent electrodes[J]. Nat Nano,2010,5(8):574-578.
    [17] Virojanadara C, Syv jarvi M, Yakimova R, Johansson LI, Zakharov AA, Balasubramanian T.Homogeneous large-area graphene layer growth on6H-SiC(0001)[J]. Physical Review B,2008,78(24):245403.
    [18] Tung VC, Allen MJ, Yang Y, Kaner RB. High-throughput solution processing of large-scalegraphene[J]. Nat Nano,2009,4(1):25-29.
    [19] Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide[J]. ChemicalSociety Reviews,2010,39(1):228.
    [20] Hummers WS, Offeman RE. Preparation of Graphitic Oxide[J]. Journal of the AmericanChemical Society,1958,80(6):1339-1339.
    [21] Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions inorganic solvents[J]. Langmuir,2008,24(19):10560-10564.
    [22] Worsley KA, Ramesh P, Mandal SK, Niyogi S, Itkis ME, Haddon RC. Soluble graphene derivedfrom graphite fluoride[J]. Chemical Physics Letters,2007,445(1-3):51-56.
    [23] Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC. Solution propertiesof graphite and graphene[J]. J AmChem Soc,2006,128(24):7720-7721.
    [24] Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Synthesis and exfoliation of isocyanate-treatedgraphene oxide nanoplatelets[J]. Carbon,2006,44(15):3342-3347.
    [25] Zhang D-D, Zu S-Z, Han B-H. Inorganic-organic hybrid porous materials based on graphiteoxide sheets[J]. Carbon,2009,47(13):2993-3000.
    [26] Tang X-Z, Li W, Yu Z-Z, Rafiee MA, Rafiee J, Yavari F, et al. Enhanced thermal stability ingraphene oxide covalently functionalized with2-amino-4,6-didodecylamino-1,3,5-triazine[J].Carbon,2011,49(4):1258-1265.
    [27] Wang G, Wang B, Park J, Yang J, Shen X, Yao J. Synthesis of enhanced hydrophilic andhydrophobic graphene oxide nanosheets by a solvothermal method[J]. Carbon,2009,47(1):68-72.
    [28] Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, et al. A Graphene Hybrid Material CovalentlyFunctionalized with Porphyrin: Synthesis and Optical Limiting Property[J]. Advanced Materials,2009,21(12):1275-1279.
    [29] Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS. Stable aqueous dispersionsof graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence ofpoly(sodium4-styrenesulfonate)[J]. J Mater Chem,2006,16(2):155-158.
    [30] Bai H, Xu Y, Zhao L, Li C, Shi G. Non-covalent functionalization of graphene sheets bysulfonated polyaniline[J]. Chemical Communications,2009(13):1667-1669.
    [31] Chunder A, Liu J, Zhai L. Reduced Graphene Oxide/Poly(3-hexylthiophene) SupramolecularComposites[J]. Macromolecular Rapid Communications,2010,31(4):380-384.
    [32] Qi X, Pu K-Y, Zhou X, Li H, Liu B, Boey F, et al. Conjugated-Polyelectrolyte-FunctionalizedReduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents[J]. Small,2010,6(5):663-669.
    [33] Hao R, Qian W, Zhang L, Hou Y. Aqueous dispersions of TCNQ-anion-stabilized graphenesheets[J]. Chemical Communications,2008(48):6576-6578.
    [34] Chunder A, Pal T, Khondaker SI, Zhai L. Reduced Graphene Oxide/Copper PhthalocyanineComposite and Its Optoelectrical Properties[J]. Journal of Physical Chemistry C,2010,114(35):15129-15135.
    [35] Geng J, Jung H-T. Porphyrin Functionalized Graphene Sheets in Aqueous Suspensions: Fromthe Preparation of Graphene Sheets to Highly Conductive Graphene Films[J]. Journal ofPhysical Chemistry C,2010,114(18):8227-8234.
    [36] Wojcik A, Kamat PV. Reduced Graphene Oxide and Porphyrin. An Interactive Affair in2-D[J].Acs Nano,2010,4(11):6697-6706.
    [37] Su Q, Pang S, Alijani V, Li C, Feng X, Muellen K. Composites of Graphene with LargeAromatic Molecules[J]. Advanced Materials,2009,21(31):3191-3195.
    [38] Yang Q, Pan X, Huang F, Li K. Fabrication of High-Concentration and Stable AqueousSuspensions of Graphene Nanosheets by Noncovalent Functionalization with Lignin andCellulose Derivatives[J]. Journal of Physical Chemistry C,2010,114(9):3811-3816.
    [39] Lu C-H, Yang H-H, Zhu C-L, Chen X, Chen G-N. A Graphene Platform for SensingBiomolecules[J].Angewandte Chemie-International Edition,2009,48(26):4785-4787.
    [40] Liu J, Li Y, Li Y, Li J, Deng Z. Noncovalent DNA decorations of graphene oxide and reducedgraphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly[J]. JMater Chem,2010,20(5):900-906.
    [41] Cao Y, Yang T, Feng J, Wu P. Decoration of graphene oxide sheets with luminescent rare-earthcomplexes[J]. Carbon,2011,49(4):1502-1504.
    [42] Pei S, Cheng H-M. The reduction of graphene oxide[J]. Carbon,2011.
    [43] Zhou Y, Bao QL, Tang LAL, Zhong YL, Loh KP. Hydrothermal Dehydration for the "Green"Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable OpticalLimiting Properties[J]. Chem Mater,2009,21(13):2950-2956.
    [44] Fan XB, Peng WC, Li Y, Li XY, Wang SL, Zhang GL, et al. Deoxygenation of ExfoliatedGraphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation[J]. AdvMater,2008,20(23):4490-4493.
    [45] Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al.Functionalized single graphene sheets derived from splitting graphite oxide[J]. J Phys Chem B,2006,110(17):8535-8539.
    [46] Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, et al. Evolution of Electrical,Chemical, and Structural Properties of Transparent and Conducting Chemically DerivedGraphene Thin Films[J]. Adv Funct Mater,2009,19(16):2577-2583.
    [47] Gao W, Alemany LB, Ci LJ, Ajayan PM. New insights into the structure and reduction ofgraphite oxide[J]. Nat Chem,2009,1(5):403-408.
    [48] Robertson J, O’Reilly EP. Electronic and atomic structure of amorphous carbon[J]. PhysicalReview B,1987,35(6):2946-2957.
    [49] Wu ZS, Ren WC, Gao LB, Liu BL, Jiang CB, Cheng HM. Synthesis of high-quality graphenewith a pre-determined number of layers[J]. Carbon,2009,47(2):493-499.
    [50] McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheetfunctionalized graphene by oxidation and thermal expansion of graphite[J]. Chem Mater,2007,19(18):4396-4404.
    [51] Wu ZS, Ren WC, Gao LB, Zhao JP, Chen ZP, Liu BL, et al. Synthesis of Graphene Sheets withHigh Electrical Conductivity and Good Thermal Stability by Hydrogen Arc DischargeExfoliation[J].Acs Nano,2009,3(2):411-417.
    [52] Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R. Raman spectra ofgraphite oxide and functionalized graphene sheets[J]. Nano Lett,2008,8(1):36-41.
    [53] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis ofgraphene oxide films after heat and chemical treatments by X-ray photoelectron andMicro-Raman spectroscopy[J]. Carbon,2009,47(1):145-152.
    [54] Wang X, Zhi LJ, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solarcells[J]. Nano Lett,2008,8(1):323-327.
    [55] Pan DY, Zhang JC, Li Z, Wu MH. Hydrothermal Route for Cutting Graphene Sheets intoBlue-Luminescent Graphene Quantum Dots[J]. Adv Mater,2010,22(6):734-738.
    [56] Kotov NA, Dékány I, Fendler JH. Ultrathin graphite oxide–polyelectrolyte composites preparedby self-assembly: Transition between conductive and non-conductive states[J]. Adv Mater,1996,8(8):637-641.
    [57] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis ofgraphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
    [58] Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al. Electronictransport properties of individual chemically reduced graphene oxide sheets[J]. Nano Lett,2007,7(11):3499-3503.
    [59] Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphenenanosheets[J]. Nat Nanotechnol,2008,3(2):101-105.
    [60] Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P,Martinez-Alonso A, et al. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction ofGraphene Oxide Suspensions[J]. J Phys Chem C,2010,114(14):6426-6432.
    [61] Zhu YW, Cai WW, Piner RD, Velamakanni A, Ruoff RS. Transparent self-assembled films ofreduced graphene oxide platelets[J]. Appl Phys Lett,2009,95(10).
    [62] Robinson JT, Zalalutdinov M, Baldwin JW, Snow ES, Wei ZQ, Sheehan P, et al. Wafer-scaleReduced Graphene Oxide Films for Nanomechanical Devices[J]. Nano Lett,2008,8(10):3441-3445.
    [63] Gilje S, Han S, Wang M, Wang KL, Kaner RB. A chemical route to graphene for deviceapplications[J]. Nano Lett,2007,7(11):3394-3398.
    [64] Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electricallyconductive, and biocompatible graphene paper[J].Adv Mater,2008,20(18):3557-3561.
    [65] He QY, Sudibya HG, Yin ZY, Wu SX, Li H, Boey F, et al. Centimeter-Long and Large-ScaleMicropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications[J]. AcsNano,2010,4(6):3201-3208.
    [66] Zhou XZ, Huang X, Qi XY, Wu SX, Xue C, Boey FYC, et al. In Situ Synthesis of MetalNanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces[J]. JPhys Chem C,2009,113(25):10842-10846.
    [67] Qi XY, Pu KY, Li H, Zhou XZ, Wu SX, Fan QL, et al. Amphiphilic Graphene Composites[J].Angew Chem Int Edit,2010,49(49):9426-9429.
    [68] Yin ZY, Wu SX, Zhou XZ, Huang X, Zhang QC, Boey F, et al. Electrochemical Deposition ofZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells[J].Small,2010,6(2):307-312.
    [69] Qi XY, Pu KY, Zhou XZ, Li H, Liu B, Boey F, et al. Conjugated-Polyelectrolyte-FunctionalizedReduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents[J]. Small,2010,6(5):663-669.
    [70] He QY, Wu SX, Gao S, Cao XH, Yin ZY, Li H, et al. Transparent, Flexible, All-ReducedGraphene Oxide Thin Film Transistors[J]. Acs Nano,2011,5(6):5038-5044.
    [71] Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al.Graphene-based composite materials[J]. Nature,2006,442(7100):282-286.
    [72] Pei SF, Zhao JP, Du JH, Ren WC, Cheng HM. Direct reduction of graphene oxide films intohighly conductive and flexible graphene films by hydrohalic acids[J]. Carbon,2010,48(15):4466-4474.
    [73] Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization[J]. NatCommun,2010,1.
    [74] Williams G, Seger B, Kamat PV. TiO2-Graphene Nanocomposites. UV-Assisted PhotocatalyticReduction of Graphene Oxide[J]. Acs Nano,2008,2(7):1487-1491.
    [75] Wang Z, Zhou X, Zhang J, Boey F, Zhang H. Direct Electrochemical Reduction of Single-LayerGraphene Oxide and Subsequent Functionalization with Glucose Oxidase[J]. The Journal ofPhysical Chemistry C,2009,113(32):14071-14075.
    [76] An SJ, Zhu Y, Lee SH, Stoller MD, Emilsson T, Park S, et al. Thin Film Fabrication andSimultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by ElectrophoreticDeposition[J]. The Journal of Physical Chemistry Letters,2010,1(8):1259-1263.
    [77] Ramesha GK, Sampath S. Electrochemical Reduction of Oriented Graphene Oxide Films: An inSitu Raman Spectroelectrochemical Study[J]. J Phys Chem C,2009,113(19):7985-7989.
    [78] Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, et al. Controlled Synthesis of Large-Area andPatterned Electrochemically Reduced Graphene Oxide Films[J]. Chemistry–A EuropeanJournal,2009,15(25):6116-6120.
    [79] Wang HL, Robinson JT, Li XL, Dai HJ. Solvothermal Reduction of Chemically ExfoliatedGraphene Sheets[J]. J AmChem Soc,2009,131(29):9910-9911.
    [80] Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS, et al. A One-Step, SolvothermalReduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents[J].Acs Nano,2010,4(7):3845-3852.
    [81] Demazeau G. Solvothermal processes: a route to the stabilization of new materials[J]. J MaterChem,1999,9(1):15-18.
    [82] Sun XM, Li YD. Colloidal carbon spheres and their core/shell structures with noble-metalnanoparticles[J]. Angew Chem Int Edit,2004,43(5):597-601.
    [83] Zhang L-W, Fu H-B, Zhu Y-F. Efficient TiO2Photocatalysts from Surface Hybridization ofTiO2Particles with Graphite-like Carbon[J]. Adv Funct Mater,2008,18(15):2180-2189.
    [84] Luo L-B, Yu S-H, Qian H-S, Zhou T. Large-Scale Fabrication of Flexible Silver/Cross-LinkedPoly(vinyl alcohol) Coaxial Nanocables by a Facile Solution Approach[J]. J Am Chem Soc,2005,127(9):2822-2823.
    [85] Kim MC, Hwang GS, Ruoff RS. Epoxide reduction with hydrazine on graphene: A firstprinciples study[J]. Journal of Chemical Physics,2009,131(6).
    [86] Gao X, Jang J, Nagase S. Hydrazine and Thermal Reduction of Graphene Oxide: ReactionMechanisms, Product Structures, and Reaction Design[J]. The Journal of Physical Chemistry C,2009,114(2):832-842.
    [87] Chen S, Zhu J, Wu X, Han Q, Wang X. Graphene Oxide MnO2Nanocomposites forSupercapacitors[J]. Acs Nano,2010,4(5):2822-2830.
    [88] Yu D, Dai L. Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors[J].The Journal of Physical Chemistry Letters,2009,1(2):467-470.
    [89] Jeong HK, Lee YP, Jin MH, Kim ES, Bae JJ, Lee YH. Thermal stability of graphite oxide[J].Chem Phys Lett,2009,470(4-6):255-258.
    [90] Pike GE, Seager CH. Percolation and conductivity: A computer study. I[J]. Physical Review B,1974,10(4):1421-1434.
    [91] Boukhvalov DW, Katsnelson MI. Modeling of graphite oxide[J]. J Am Chem Soc,2008,130(32):10697-10701.
    [92] Dimitrakakis GK, Tylianakis E, Froudakis GE. Pillared Graphene: A New3-D NetworkNanostructure for Enhanced Hydrogen Storage[J]. Nano Lett,2008,8(10):3166-3170.
    [93] Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution duringthe reduction of chemically derived graphene oxide[J]. Nat Chem,2010,2(7):581-587.
    [94] Zhang Y, Li H, Pan L, Lu T, Sun Z. Capacitive behavior of graphene-ZnO composite film forsupercapacitors[J]. Journal of Electroanalytical Chemistry,2009,634(1):68-71.
    [95] Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, et al. A Facile One-step Method to ProduceGraphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials[J].Advanced Materials,2010,22(1):103-106.
    [96] Paek S-M, Yoo E, Honma I. Enhanced Cyclic Performance and Lithium Storage Capacity ofSnO(2)/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated FlexibleStructure[J]. Nano Letters,2009,9(1):72-75.
    [97] Yoo E, Kim J, Hosono E, Zhou H-s, Kudo T, Honma I. Large reversible Li storage of graphenenanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters,2008,8(8):2277-2282.
    [98] Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, et al. Li Storage Properties of DisorderedGraphene Nanosheets[J]. Chemistry of Materials,2009,21(14):3136-3142.
    [99] Liang Y, Wang H, Casalongue HS, Chen Z, Dai H. TiO(2) Nanocrystals Grown on Graphene asAdvanced Photocatalytic Hybrid Materials[J]. Nano Research,2010,3(10):701-705.
    [100] Li Y, Fan X, Qi J, Ji J, Wang S, Zhang G, et al. Palladium nanoparticle-graphene hybrids asactive catalysts for the Suzuki reaction[J]. Nano Research,2010,3(6):429-437.
    [101] Pasricha R, Gupta S, Srivastava AK. A Facile and Novel Synthesis of Ag-Graphene-BasedNanocomposites[J]. Small,2009,5(20):2253-2259.
    [102] Xu C, Wang X, Zhu J. Graphene Metal Particle Nanocomposites[J]. The Journal of PhysicalChemistry C,2008,112(50):19841-19845.
    [103] Hassan MAH, Abdelsayed V, Khder AERS, AbouZeid KM, Terner J, El-Shall MS, et al.Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organicmedia[J]. Journal of Materials Chemistry,2009,19(23):3832-3837.
    [104] Liu J, Fu S, Yuan B, Li Y, Deng Z. Toward a Universal “Adhesive Nanosheet” for the Assemblyof Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of GrapheneOxide[J]. Journal of the American Chemical Society,2010,132(21):7279-7281.
    [105] Wang HL, Robinson JT, Diankov G, Dai HJ. Nanocrystal Growth on Graphene with VariousDegrees of Oxidation[J]. J Am Chem Soc,2010,132(10):3270-3721.
    [106] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, et al. Co3O4nanocrystals on graphene as asynergistic catalyst for oxygen reduction reaction[J]. Nature Materials,2011,10(10):780-786.
    [107] Guo S, Dong S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, andenergy and analytical applications[J]. Chemical Society Reviews,2011,40(5):2644-2672.
    [108] Lee DH, Kim JE, Han TH, Hwang JW, Jeon S, Choi S-Y, et al. Versatile Carbon Hybrid FilmsComposed of Vertical Carbon Nanotubes Grown on Mechanically Compliant Graphene Films[J].Adv Mater,2010,22(11):1247-1252.
    [109] Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, et al. A Three-Dimensional CarbonNanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors[J]. AdvMater,2010,22(33):3723-3728.
    [110] Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, et al. A Facile One-step Method to ProduceGraphene–CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials[J]. AdvMater,2010,22(1):103-106.
    [111] Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM. Layered Graphene/Quantum Dots forPhotovoltaic Devices[J]. Angewandte Chemie International Edition,2010,49(17):3014-3017.
    [1] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al.Preparation and characterization of graphene oxide paper[J]. Nature,2007,448(7152):457-460.
    [2] Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: The New Two-DimensionalNanomaterial[J]. Angewandte Chemie International Edition,2009,48(42):7752-7777.
    [3] Allen MJ, Tung VC, Kaner RB. Honeycomb Carbon: A Review of Graphene[J]. ChemicalReviews,2010,110(1):132-145.
    [4] Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction ofgraphite oxide[J]. Nat Chem,2009,1(5):403-408.
    [5] He H, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide[J]. ChemicalPhysics Letters,1998,287(1–2):53-56.
    [6] Lerf A, He H, Forster M, Klinowski J. Structure of Graphite Oxide Revisited‖[J]. The Journalof Physical Chemistry B,1998,102(23):4477-4482.
    [7] Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al.Graphene-based composite materials[J]. Nature,2006,442(7100):282-286.
    [8] Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, et al. Solution Properties ofSingle-Walled Carbon Nanotubes[J]. Science,1998,282(5386):95-98.
    [9] Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, et al. Fullerene Pipes[J]. Science,1998,280(5367):1253-1256.
    [10] Balasubramanian K, Burghard M. Chemically Functionalized Carbon Nanotubes[J]. Small,2005,1(2):180-192.
    [11] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of Carbon Nanotubes[J]. ChemicalReviews,2006,106(3):1105-1136.
    [12] Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Synthesis and exfoliation of isocyanate-treatedgraphene oxide nanoplatelets[J]. Carbon,2006,44(15):3342-3347.
    [13] Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC. SolutionProperties of Graphite and Graphene[J]. Journal of the American Chemical Society,2006,128(24):7720-7721.
    [14] Liu Z, Robinson JT, Sun X, Dai H. PEGylated Nanographene Oxide for Delivery ofWater-Insoluble Cancer Drugs[J]. Journal of the American Chemical Society,2008,130(33):10876-10877.
    [15] Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, et al. FlammabilityProperties of Polymer Layered-Silicate Nanocomposites. Polypropylene and PolystyreneNanocomposites [J]. Chemistry of Materials,2000,12(7):1866-1873.
    [16] Dasari A, Yu Z-Z, Mai Y-W, Liu S. Flame retardancy of highly filled polyamide6/claynanocomposites[J]. Nanotechnology,2007,18(44).
    [17] Jang BN, Wilkie CA. The effect of clay on the thermal degradation of polyamide6in polyamide6/clay nanocomposites[J]. Polymer,2005,46(10):3264-3274.
    [18] Zhu J, Uhl FM, Morgan AB, Wilkie CA. Studies on the Mechanism by Which the Formation ofNanocomposites Enhances Thermal Stability [J]. Chemistry of Materials,2001,13(12):4649-4654.
    [19] Uhl FM, Yao Q, Nakajima H, Manias E, Wilkie CA. Expandable graphite/polyamide-6nanocomposites[J]. Polymer Degradation and Stability,2005,89(1):70-84.
    [20] Uhl FM, Wilkie CA. Polystyrene/graphite nanocomposites: effect on thermal stability[J].Polymer Degradation and Stability,2002,76(1):111-122.
    [21] Uhl FM, Wilkie CA. Preparation of nanocomposites from styrene and modified graphiteoxides[J]. Polymer Degradation and Stability,2004,84(2):215-226.
    [22] Zhang R, Hu Y, Xu JY, Fan WC, Chen ZY, Wang QN. Preparation and combustion properties offlame retardant styrene-butyl acrylate copolymer/graphite oxide nanocomposites[J].Macromolecular Materials and Engineering,2004,289(4):355-359.
    [23] Zhang R, Hu Y, Xu J, Fan W, Chen Z. Flammability and thermal stability studies ofstyrene–butyl acrylate copolymer/graphite oxide nanocomposite[J]. Polymer Degradation andStability,2004,85(1):583-588.
    [24] Wang J, Han Z. The combustion behavior of polyacrylate ester/graphite oxide composites[J].Polymers for Advanced Technologies,2006,17(4):335-340.
    [25] Higginbotham AL, Lomeda JR, Morgan AB, Tour JM. Graphite Oxide Flame-RetardantPolymer Nanocomposites[J].Acs Applied Materials&Interfaces,2009,1(10):2256-2261.
    [26] Dasari A, Yu Z-Z, Mai Y-W, Cai G, Song H. Roles of graphite oxide, clay and POSS during thecombustion of polyamide6[J]. Polymer,2009,50(6):1577-1587.
    [27] Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P. New prospects in flameretardant polymer materials: From fundamentals to nanocomposites[J]. Materials Science&Engineering R-Reports,2009,63(3):100-125.
    [28] Awad WH, Wilkie CA. Investigation of the thermal degradation of polyurea: The effect ofammonium polyphosphate and expandable graphite[J]. Polymer,2010,51(11):2277-2285.
    [29] Lin T, Bajpai V, Ji T, Dai L. Chemistry of Carbon Nanotubes[J]. Australian Journal of Chemistry,2003,56(7):635-651.
    [30] Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al.Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide[J]. The Journalof Physical Chemistry B,2006,110(17):8535-8539.
    [31] Bann B, Miller SA. Melamine And Derivatives Of Melamine[J]. Chemical Reviews,1958,58(1):131-172.
    [32] Yuan YC, Rong MZ, Zhang MQ. Preparation and characterization of microencapsulatedpolythiol[J]. Polymer,2008,49(10):2531-2541.
    [33] Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD. Graphene Oxide Dispersions inOrganic Solvents[J]. Langmuir,2008,24(19):10560-10564.
    [34] Park S, An J, Piner RD, Jung I, Yang D, Velamakanni A, et al. Aqueous Suspension andCharacterization of Chemically Modified Graphene Sheets[J]. Chemistry of Materials,2008,20(21):6592-6594.
    [35] Jeong H-K, Noh H-J, Kim J-Y, Jin MH, Park CY, Lee YH. X-ray absorption spectroscopy ofgraphite oxide[J]. EPL(Europhysics Letters),2008,82(6):67004.
    [36] Ramanathan T, Fisher FT, Ruoff RS, Brinson LC. Amino-Functionalized Carbon Nanotubes forBinding to Polymers and Biological Systems[J]. Chemistry of Materials,2005,17(6):1290-1295.
    [37] Meng H, Sui GX, Fang PF, Yang R. Effects of acid-and diamine-modified MWNTs on themechanical properties and crystallization behavior of polyamide6[J]. Polymer,2008,49(2):610-620.
    [38] Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, et al. Evolution of Electrical,Chemical, and Structural Properties of Transparent and Conducting Chemically DerivedGraphene Thin Films[J]. Advanced Functional Materials,2009,19(16):2577-2583.
    [39] McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheetfunctionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry ofMaterials,2007,19(18):4396-4404.
    [40] Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions ofgraphene nanosheets[J]. Nature Nanotechnology,2008,3(2):101-105.
    [1] Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I. Enhanced ElectrocatalyticActivity of Pt Subnanoclusters on Graphene Nanosheet Surface[J]. Nano Lett,2009,9(6):2255-2259.
    [2] WangY, Shi ZQ, HuangY, Ma YF, Wang CY, Chen MM, et al. Supercapacitor Devices Basedon Graphene Materials[J]. J Phys Chem C,2009,113(30):13103-13107.
    [3] Allen MJ, Tung VC, Kaner RB. Honeycomb Carbon: A Review of Graphene[J]. Chem Rev,2010,110(1):132-145.
    [4] Wang HL, Robinson JT, Diankov G, Dai HJ. Nanocrystal Growth on Graphene with VariousDegrees of Oxidation[J]. J Am Chem Soc,2010,132(10):3270-3271.
    [5] Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Gracio J. SurfaceModification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moietiesat Graphene Surface on Gold Nucleation and Growth[J]. Chem Mater,2009,21(20):4796-4802.
    [6] Yin BS, Ma HY, Wang SY, Chen SH. Electrochemical synthesis of silver nanoparticles underprotection of poly(N-vinylpyrrolidone)[J]. J Phys Chem B,2003,107(34):8898-8904.
    [7] SunYG, Xia YN. Large-scale synthesis of uniformsilver nanowires through a soft, self-seeding,polyol process[J]. Adv Mater,2002,14(11):833-837.
    [8] Wang HS, Qiao XL, Chen JG, Wang XJ, Ding SY. Mechanisms of PVPin the preparation ofsilver nanoparticles[J]. Mater Chem Phys,2005,94(2-3):449-453.
    [9] Wu C, Mosher BP, Lyons K, Zeng T. ReducingAbility and Mechanism for Polyvinylpyrrolidone(PVP) in Silver Nanoparticles Synthesis[J]. J Nanosci Nanotechno,2010,10(4):2342-2347.
    [10] SunYG, YinYD, Mayers BT, Herricks T, Xia YN. Uniform silver nanowires synthesis byreducingAgNO3with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone)[J].Chem Mater,2002,14(11):4736-4745.
    [11] Chen DP, Qiao XL, Qiu XL, Tan FT, Chen JG, Jiang RZ. Effect of silver nanostructures on theresistivity of electrically conductive adhesives composed of silver flakes[J]. J Mater Sci-MaterEl,2010,21(5):486-490.
    [12] Chiang HW, Chung CL, Chen LC, Li Y, Wong CP, Fu SL. Processing and shape effects on silverpaste electrically conductive adhesives (ECAs)[J]. J Adhes Sci Technol,2005,19(7):565-578.
    [13] MichaelsAM, Jiang, Brus L. Ag Nanocrystal Junctions as the Site for Surface-Enhanced RamanScattering of Single Rhodamine6G Molecules[J]. The Journal of Physical Chemistry B,2000,104(50):11965-11971.
    [14] SunYG, Wiederrecht GP. Surfactantless synthesis of silver nanoplates and their application inSERS[J]. Small,2007,3(11):1964-1975.
    [15] Yamashita M, Suganuma K. Degradation mechanism ofAg-epoxy conductive adhesive/Sn-Pbplating interface by heat exposure[J]. J Electron Mater,2002,31(6):551-556.
    [16] Cao ZW, Fu HB, Kang LT, Huang LW, Zhai TY, Ma Y, et al. Rapid room-temperature synthesisof silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR[J].J Mater Chem,2008,18(23):2673-2678.
    [17] Jin RC, CaoYW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG. Photoinduced conversion ofsilver nanospheres to nanoprisms[J]. Science,2001,294(5548):1901-1903.
    [18] Fan ZJ, Wang K, Wei T, Yan J, Song LP, Shao B.An environmentally friendly and efficient routefor the reduction of graphene oxide by aluminum powder[J]. Carbon,2010,48(5):1686-1689.
    [19] McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheetfunctionalized graphene by oxidation and thermal expansion of graphite[J]. Chem Mater,2007,19(18):4396-4404.
    [20] Zhu CZ, Guo SJ, FangYX, Dong SJ. Reducing Sugar: New Functional Molecules for the GreenSynthesis of Graphene Nanosheets[J].Acs Nano,2010,4(4):2429-2437.
    [21] Park S,An JH, Piner RD, Jung I, Yang DX, Velamakanni A, et al. Aqueous Suspension andCharacterization of Chemically Modified Graphene Sheets[J]. Chem Mater,2008,20(21):6592-6594.
    [22] Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS. Stable aqueous dispersionsof graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence ofpoly(sodium4-styrenesulfonate)[J]. J Mater Chem,2006,16(2):155-158.
    [23] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al.Preparation and characterization of graphene oxide paper[J]. Nature,2007,448(7152):457-460.
    [24] LerfA, He H, Forster M, Klinowski J. Structure of Graphite Oxide Revisited‖[J]. The Journalof Physical Chemistry B,1998,102(23):4477-4482.
    [25] He H, Klinowski J, Forster M, Lerf A. Anew structural model for graphite oxide[J]. ChemicalPhysics Letters,1998,287(1–2):53-56.
    [1] Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: Past, presentand future[J]. Progress in Materials Science,2011,56(8):1178-1271.
    [2] Guo S, Dong S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, andenergy and analytical applications[J]. Chemical Society Reviews,2011,40(5):2644-2672.
    [3] Wang HL, Robinson JT, Diankov G, Dai HJ. Nanocrystal Growth on Graphene with VariousDegrees of Oxidation[J]. J Am Chem Soc,2010,132(10):3270-3721.
    [4] Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Gracio J. SurfaceModification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moietiesat Graphene Surface on Gold Nucleation and Growth[J]. Chem Mater,2009,21(20):4796-4802.
    [5] Loh KP, Bao QL, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform foroptical applications[J]. Nat Chem,2010,2(12):1015-1024.
    [6] Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, et al. Controlling the Synthesisand Assembly of Silver Nanostructures for Plasmonic Applications[J]. Chem Rev,2011,111(6):3669-3712.
    [7] Tang XZ, Cao ZW, Zhang HB, Liu J, Yu ZZ. Growth of silver nanocrystals on graphene bysimultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-stepapproach[J]. Chem Commun,2011,47(11):3084-3086.
    [8] Liu J, Fu S, Yuan B, Li Y, Deng Z. Toward a Universal “Adhesive Nanosheet” for the Assemblyof Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of GrapheneOxide[J]. J Am Chem Soc,2010,132(21):7279-7281.
    [9] Hu ZA, Wang HW, Chang YQ, Chen YL, Wu HY, Zhang ZY, et al. Design and synthesis ofNiCo(2)O(4)-reduced graphene oxide composites for high performance supercapacitors[J]. JMater Chem,2011,21(28):10504-10511.
    [10] Chung JS, Viet HP, Tran VC, Hur SH, Oh E, Kim EJ, et al. Chemical functionalization ofgraphene sheets by solvothermal reduction of a graphene oxide suspension inN-methyl-2-pyrrolidone[J]. J Mater Chem,2011,21(10):3371-3377.
    [11] He FA, Fan JT, Song F, Zhang LM, Chan HLW. Fabrication of hybrids based on graphene andmetal nanoparticles by in situ and self-assembled methods[J]. Nanoscale,2011,3(3):1182-1188.
    [12] Dong SJ, Zhu CZ, Guo SJ, Fang YX. Reducing Sugar: New Functional Molecules for the GreenSynthesis of Graphene Nanosheets[J].Acs Nano,2010,4(4):2429-2437.
    [13] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, et al. Co3O4nanocrystals on graphene as asynergistic catalyst for oxygen reduction reaction[J]. Nature Materials,2011,10(10):780-786.
    [14] Lightcap IV, Kosel TH, Kamat PV. Anchoring Semiconductor and Metal Nanoparticles on aTwo-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced GrapheneOxide[J]. Nano Lett,2010,10(2):577-583.
    [15] Yu X, Cai H, Zhang W, Li X, Pan N, Luo Y, et al. Tuning Chemical Enhancement of SERS byControlling the Chemical Reduction of Graphene Oxide Nanosheets[J]. Acs Nano,2011,5(2):952-958.
    [16] Cao ZW, Fu HB, Kang LT, Huang LW, Zhai TY, Ma Y, et al. Rapid room-temperature synthesisof silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR[J].J Mater Chem,2008,18(23):2673-2678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700