用户名: 密码: 验证码:
肌电图运动诱发实验对周期性麻痹的诊断价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肌电图运动诱发实验的正常值和影响因素研究
     ‘背景’
     国外许多研究证明肌电图运动诱发试验(ET)对周期性麻痹的有较高的辅助珍断作用。但是ET的正常值范围报道不一,而且正常人样本量不大。
     ‘目的’
     分析正常人ET的检测结果,确定ET的正常值及其影响因素。
     ‘方法’
     根据设定的年龄组、性别比例招募健康正常志愿者100例。所有受试者签署知情同意书并进行ET检测。ET检测,采用标准的尺神经复合肌肉动作电位(CMAP)测量,计算运动前后波幅的减低率。分析数据,如果符合正态分布,将根据均值和标准差计算正常值范围,见表12阴影标注的公式。影响因素分析:根据年龄段、性别及检测时间将受试者分组,比较各组间数据的差异性。身高、体重与数据进行相关性分析。
     ‘结果’
     (1)ET诱发了CMAP波幅的减低。
     (2)数据分析,箱图检测发现8例异常值。这8例数据的均值为-48.38%(-44%~-57%)。已经超出国外报道的所有正常值的范围(最低-40.9%),明显与正常人的数据不同。从临床角度可以将这些受试者排除在正常人范围外,故将其剔除,并补充招募8例正常受试者。
     (3)波幅减低率呈正态分布(P=0.0001),正常值范围为0~-33%。
     (4)波幅减低率在不同年龄、性别、检测时间组间差异无显著性(P>0.05,ANOVA-LSD检验):波幅减低率与身高和体重无相关性(r=-0.153,P=0.129;r=-0.152,P=0.131,相关分析-pearson检验)。
     ‘结论’
     (1)尺神经CMAP波幅减低率的正常值范围为0~-33%,>-33%为ET异常。
     (2)ET的结果不受性别、年龄、身高、体重及检测时间的影响。
     (3)正常人群中,ET结果存在变异,约为8%。
     第二部分肌电图运动诱发实验与临床诊断的比较研究
     ‘背景’
     国外许多研究证明肌电图运动诱发试验(ET)对周期性麻痹的有较高的辅助珍断作用,但是目前还没有基于临床的较大样本的诊断性实验研究。
     ‘目的’
     比较ET和临床诊断对原发性周期性麻痹的诊断特异性和敏感性,确定ET对周期性麻痹缓解期的临床诊断价值。
     ‘方法’前瞻性双盲性诊断试验
     1.研究对象:
     (1)入组标准
     2006年3月至2008年4月在北京协和医院就诊,符合以下标准的患者
     ①急性或发作性肢体无力;
     ②无力持续几分钟或几天;
     ③发作间期完全正常。
     (2)实验分组
     ①PPs(原发性周期性麻痹)组:原发性PPs
     ②TPP(甲亢性周期性麻痹)组:PPs合并甲亢
     ③second-PP组:除TPP外,其他继发性PPs
     ④对照组:①、②、③组外,其他入组患者
     2.研究方法:
     (1)所有入组患者签署知情同意书。记录临床表现、神经系统检查、发作时血钾水平、甲状腺功能检查、尿常规、血气分析、肾功能检查及ET检查。为了明确诊断,部分患者还需完善相关检查。
     (2)诊断性试验分析
     ①研究对象:PPs组和对照组。TPP和继发性PPs对ET和临床诊断结果有干扰,故不纳入诊断性试验分析。
     ②ET诊断:波幅减低率>-33%为ET异常,记录为ET检测阳性。
     ③临床诊断:典型PPs临床表现+发作时血钾异常,定义为临床诊断阳性。
     (3)各组ET和临床诊断结果比较均值比较:方差分析(ANOVA),LTD检验;阳性率比较:X~2检验。
     ‘结果’
     (1)随机入组患者共155例,PPs组68例,TPP组12例,Second-PP组3例,对照组72例。
     (2)诊断性试验分析:
     临床诊断:敏感度为66.18%,特异度为77.78%;
     ET诊断:敏感度为92.65%,特异度为91.67%。
     (3)波幅减低率:PPs组-57.76%,对照组-18.10%,TPP组-38.83%,Second-PP组-20.33%。PPs组波幅减低率与其他组有显著性差异(P=0.000,ANOVA-LTD检验).
     (4)临床诊断假阳性病例:对照组中临床诊断阳性患者12例,最后确诊为焦虑症。这些患者的ET检测结果均为阴性,起到很好的鉴别诊断作用。
     (5)ET假阳性病例:对照组中ET异常者有6例(8.3%),均无PPs典型临床表现,推测与正常人研究结果类似,为正常变异。
     (6)阳性率比较
     ET:PPs组92.6%,TPP组72.7%,对照组8.3%,Second-PP组0%。
     临床诊断:PPs组66.2%,TPP组33.3%,对照组19.4%,Second-PP组100%。
     ‘结论’
     (1)ET对PPs有助于明确诊断,排除假阳性诊断,是一种客观的辅助检查手段。
     (2)ET对PPs的诊断特异性和敏感性均达到90%以上,明显优于临床诊断。
     (3)ET阳性见于PPs、部分TPP,有利于这二种疾病的确定诊断。
     (4)ET可用于与焦虑症、继发性PPs及其他神经肌肉病的鉴别诊断。
     (5)ET存在假阳性,比例约为8%。
     第三部分肌电图运动诱发实验与基因诊断的比较研究
     ‘背景’
     家族性周期性麻痹为常染色体显性遗传病,基因诊断被认为是诊断的可靠方法。但是临床的原发性周期性麻痹(PPs)患者多为散发性,基因诊断的阳性率很低,基因诊断对临床的支持作用还有待研究。有报道称不同基因突变者肌电图运动诱发实验(ET)结果不同,某些突变者ET呈阴性。
     ‘目的’
     确定临床诊断的原发性周期性麻痹患者的基因突变情况。比较ET与基因诊断的符合度。
     ‘方法’
     1.研究对象:2006年3月至2008年4月在北京协和医院就诊的患者。
     (1)入组标准
     ①急性或发作性肢体无力;
     ②无力持续几分钟或几天;
     ③发作间期完全正常;
     ④同意进行PPs基因突变筛查者。
     (2)实验分组
     ①PPs组:原发性PPs
     ②对照组:其他入组患者
     (3)家系研究:具有家族遗传史的患者,取得其家族其他成员的血样,进行基因突变的研究。
     (4)正常受试-异常结果者研究:对正常人ET检测部分的8例异常值者,进行热点基因的筛查。
     2.研究方法:所有入组患者签署知情同意书,进行ET和基因热点突变(CACAN1S基因R528H和R1239H;SCN4A基因T704M和M1592V)筛查。比较PPs组和对照组患者ET和基因诊断的符合程度。
     ‘结果’
     (1)随机入组患者共155例,其中同意进行突变筛查的患者70例,作为最终入组患者。符合诊断标准者50例,对照组20例。有家族史者7例,收集家系5个,分别为家系A/B/C/D/E。
     (2)基因筛查结果:
     ①家系研究:家系A发现R528H突变,所有患者均有此突变,而家系中非患者无此突变。其他家系未见责任突变。
     ②PPs组和对照组研究:R528H突变1例(家系A先证者),R1239H突变0例,T704M突变0例,M1592V突变0例。
     ③正常受试-异常结果者研究:未见责任突变。
     (3)ET:PPs组阳性48例,对照组阳性2例,ET诊断阳性率96%。
     ‘结论’
     (1)典型家族性周期性麻痹患者(FPP),呈常染色体显性遗传,我们检测出家系A存在CACNAlS基因R528H突变;
     (2)非典型FPP,未发现热点突变;
     (3)散发性PPs患者突变阳性率极低,基因筛查目前不适合应用在临床诊断;
     (4)存在基因突变的患者的ET检测结果与其他PPs患者ET结果无差异;
     (5)ET是PPs客观的辅助检查手段;
     (6)基因筛查可能会对疑难病例的诊断和鉴别诊断有帮助。
Part 1. The reference range and influence factor of Electromyography Exercise Test
     'Background'
     The diagnosis of primary periodic paralysis is usually based on clinical impressions, the presence of a family history of the disease, changes in serum potassium level during attacks, and the response to treatment. However in some cases, the diagnosis remains in doubt. Electromyography Exercise Test has been reported to be useful in conforming the linicl suspicion. But there is still no study of the practice parameterand reference range on a large number of healthy subjects.
     'Objective'
     To explor the changes of ET in healthy subjects and determine the practice parameterand the reference range of ET. To identify the influence factors in ET.
     'Methods'
     100 healthy subjects which were spicially designed by age and gender were recruited in the study. Standardized protocols to ET were applied on them. The ulner nerve CMAP amplitude change rate were the study parameters. The refernce range was defined as the mean±a standard deviations. The subjects were grouped according to age, gender and test time. Statistical analysis compared the parameters between groups. The correlation between amplitude change rate and height and weight were analysised.
     'Results'
     ET induced a decrease of CMAP amplitude during 60 min after exercise. CMAP amplited decreased percentage was the test parameter. There was 8 outliers in data. Another 8 healthy volunteers were recruited in the study. The data was normal distribution (Kolmogorov-Smirnov test, P=0.614) and the reference range was 0-33%. There were no significantly diffirence between groups of age, gender and test time (P>0.05, ANOVA-LSD test) in CMAP amplited decreased percentage. There were no significant correlation between amplited decreased percentage and hight (r=-0.153, P=0.129, Pearson test) and weight(r=-0.152, P=0.131, Pearson test).
     'Conclusion'
     CMAP amplited decreased percentage was determined to be the test parameter, and the reference range was 0-33%. Outside this range ,values were considered abnormal. There were no influence of age, gender, height, weight and test time on ET. There were some abnormal results of ET in healthy subjects and the rate was about 8%.
     Part 2. Electromyography Exercise Test and Clinical diagnostic study on primary periodic paralysis
     'Background'
     The diagnosis of primary periodic paralysis is usually based on clinical evidence, including clinical impressions, the presence of a family history of the disease, changes in serum potassium level during attacks, and the response to treatment. Electromyography Exercise Test has been reported to be useful in the identification of patients with periodic paralysis. But there is still no prospective diagnostic study tocompare the value of ET with clinical diagnosis.
     'Objective'
     To explore the sensitivity and the specificity of ET in the diagnosis of primaryperiodic paralysis. To compare with clinical diagnosis and determined the value of ET.
     ' Methods'
     The patients were recruited at Peking Union Medical College Hospital from march 2006 to April 2008 which had those manifestations: (1) acute or episodic paralytic attack of the extremities; (2) paralytic attack lasting from hours to days; (3) complete recovery. All patients were screened according to a protocol consisting of a complete medical history, a full neurological examination, a serum potassium level test during attacks and asymptomatic phase, Standardized protocols to ET. The patients were divided into 4 groups, those were the PPs, the controls, the TPP and the Second-PP. To compare the sensitivity and the specificity of ET with clinical diagnosis in diagnosis of primary periodic paralysis.
     'Results'
     There were 155 patients in this study, 68 in PPs group and 72 in control group, 12 in TPP, 3 in Second-PP. The clinical diagnosis confirmed that 45 patients had been got the PPs, while ET confirmed 63 patients. The sensitivity of ET is 92.65% , higher than the clinical diagnosis whose is 66.18%. The clinical diagnosis had 16 false positive results more than ET. The specificity of ET is 91.67% and clinical diagnosis is 77.78%. Table 1 shows the results of clinical diagnosis and ET
     The CMAP amplitude decreased percentage of PPs group was significant larger than other groups(P=0.000, ANOVA-LTD检验). There were 12 patients in control group diagnosed PPs by clinical while they were anxiety disorder. All these patients had positive ET test results. There also were 6 patients had positive ET but had no clinical characters, the rate was 8.3%. It is probably the abnormal results of ET like those in healthy subject's tests.
     'Conclusion'
     ET had higher sensitivity and specificity than clinical diagnosis which we usually use.
     ET is useful in conforming the diagnosis of the primary periodic paralysis.
     ET can help to exclude the diagnosis of PPs especially to patients with anxiety disorder.
     ET had false positive result and the result of ET must be analysis with clinical characters.
     Part3. Electromyography Exercise Test and Genetics study on primary periodic paralysis
     'Background'
     The family periodic paralysis (FPP) is autosomal dominantly inherited. Molecular genetic testing identifies disease-causing mutations in CACNA1S or SCN4A in 80% of individuals meeting clinical diagnostic criteria. But most of the patients in clinical practice are Sporadical periodic paralyses (SPP). What is the mutation rate of thosepatients? Whether there are some conflicts between ET and genetic analysis.
     'Objective'
     To explore the mutation rate of sporadical PPs patients. To compare with moleculargenetic testing and determined the value of ET.
     'Methods'
     The patients were recruited at Peking Union Medical College Hospital from March 2006 to April 2008 which had those manifestations: (1) acute or episodic paralytic attack of the extremities; (2) paralytic attack lasting from hours to days; (3) complete recovery; (4) obtained the consent of genetic testing by blood. All patients were screened exons 11 and 30 of CACNA1S and exons 13 and 24 of SCN4A in order to find the Targeted mutation(R528H和R1239H , T704M, M1592V). All patients had the examination of ET. The patients were assigned to two groups, PPs and control. To compare the results of ET with genetic diagnosis in PPs. 5 patients had family history of PPs, some of the family members agreed to screen the mutations. We also screened mutations on the 8 healthy subjects who had abnormal ET results.
     ' Results'
     There were 155 patients in this study, 70 patients agree to the genetic testing, 50 in PPs group and 20 in control group. We found 5 families and 24 individuals were screened the mutations. The molecular genetic testing only found 1 patient had the R528H mutation in CACNA1S gene. That patient had a positive family history. We found that other 5 patients in his family also had the same mutation, while other 5 healthy members found nothing. The result of ET in the two group was 48 positive (96%) in PPs and 18 negative (90%) in controls.
     'Conclusion'
     The molecular genetic testing had little uses in clinical diagnosis of PPs. The probably reason may be that the patients were mostly sporadic cases. ET is useful in clinical diagnosis of the primary periodic paralysis.
引文
1. Links TP, Zwarts MJ, Wilmink JT, et al. Permanent muscle weakness in familial hypokalaemic periodic paralysis. Clinical, radiological and pathological aspects.Brain 1990; 113: 1873-89.
    
    2.Miller TM, Dias da Silva MR, Miller HA, Kwiecinski H, Mendell JR, Tawil R,McManis P, Griggs RC, Angelini C, Servidei S, et al. Correlating phenotype and genotype in the periodic paralyses. Neurology. 2004. 63:1647-55.
    
    3. Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 2001; 105:511-9.
    
    4. Chinnery PF, Walls TJ, Hanna MG, et al. Normokalemic periodic paralysis revisited: does it exist? Ann Neurol 2002; 52: 251-2.
    
    5. Venance SL, Cannon SC, Fialho D, et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain. 2006 Jan;129(Pt 1):8-17.
    
    6. Engel AG, Lambert EH, Rosevear JW, et al. Clinical and electromyographic studies in a patient with primary hypokalemic periodic paralysis. Am J Med 1965; 38:626-40.
    
    7. McManis PG, Lambert EH, Daube JR. The exercise test in periodic paralysis.Muscle Nerve, 1986, 9:704-710.
    
    8. Fournier E, Arzel M, Sternberg D, et al. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann Neurol, 2004, 56: 650-661.
    
    9. Lehmann-Horn F, Rudel R, Ricker K. Non-dystrophic myotonias and periodic paralyses. A European Neuromuscular Center Workshop held 4-6 October 1992, Ulm, Germany. Neuromuscul Disord. 1993. 3:161-8.
    
    10. Jurkat-Rott K, Muller-Hocker J, Pongratz D, et al. Diseases associated with ion channel and ion transporter defects: Dyskalemic episodic weakness. In: Karpati G (ed) Structural and Molecular Basis of Skeletal Muscle Diseases. ISN Neuropath Press, pp 95-8. 2002.
    
    11. Lehmann-Horn F, Jurkat-Rott K, Ru¨del R. Periodic paralysis; understanding channelopathies. Curr Neurol Neurosci Rep 2002;2: 61-9.
    12. Cannon SC, Brown RH Jr, Corey DP. A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation. Neuron 1991; 6:619-26.
    13.Lehmann-Horn F, Iaizzo PA, Hart H, Franke C. Altered gating and conductance of Na+ channels in hyperkalemic periodic paralysis. Pflugers Arch 1991; 418: 297-99.
    
    14. Ruff RL, Cannon SC. Defective slow inactivation of sodium channels contributes to familial periodic paralysis. Neurology 2000; 54: 2190-2.
    
    15. Jurkat-Rott K, Mitrovic N, Hang C, Kouzmekine A, Iaizzo P, Herzog J, et al.Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci USA 2000;97: 9549-54.
    
    16. Tawil R, McDermott MP, Brown R Jr, Shapiro BC, Ptacek LJ, McManis PG, et al.Randomized trials of dichlorphenamide in the periodic paralyses. Working Group on Periodic Paralysis. Ann Neurol 2000; 47: 46-53.
    
    17. Torres CF, Griggs RC, Moxley RT, Bender AN. Hypokalemic periodic paralysis exacerbated by acetazolamide. Neurology 1981; 31: 1423-8.
    
    18. Venance SL, Jurkat-Rott K, Lehmann-Horn F, Tawil R. SCN4A-associated hypokalemic periodic paralysis merits a trial of acetazolamide. Neurology 2004; 63:1977.
    
    19.Vicart S, Steinberg D, Fournier E, Ochsner F, Laforet P, Kuntzer T, et al. New mutations of SCN4A cause a potassium-sensitive normokalemic periodic paralysis.Neurology 2004; 63: 2120-7.
    
    20. Tricarico D, Barbieri M, Mele A, Carbonara G, Camerino DC. Carbonic anhydrase inhibitors are specific openers of skeletal muscle BK channel of K+-deficient rats.FASEB J 2004; 18:760-1.
    
    21. Tengan CH, Antunes AC, Gabbai AA, et al. The exercise test as a monitor of disease status in hypokalaemic periodic paralysis. J Neurol Neurosurg Psychiatry,2004, 75: 497-499.
    
    22. Kuntzer T, Flocard F, Vial C, et al. Exercise test in muscle channelopathies and
    ??other muscle disorders. Muscle Nerve, 2000,23: 1089-1094.
    
    23. Arimura Y, Arimura K, Suwazono S, et al. Predictive value of the prolonged exercise test in hypokalemic paralytic attack. Muscle Nerve, 1995, 18: 472-474.
    
    24. Subramony SH, Wee AS. Exercise and rest in hyperkalemic periodic paralysis. Neurology, 1986, 36: 173-177.
    
    25. Streib EW. AAEE minimonograph #27: differential diagnosis of myotonic syndromes. Muscle Nerve, 1987, 10: 603-615.
    
    26. Streib EW, Sun SF, Yarkowski T. Transient paresis in myotonic syndromes: a simplified electrophysiological approach. Muscle Nerve 1982;5:719-723.
    
    27. Rudel R, Lehmann-Horn F, Ricker K, et al. Hypokalemic periodic paralysis: in vitro investigation of muscle fiber membrane parameters. Muscle Nerve 1984;7:110-120
    
    28.丁则昱,崔丽英.《运动诱发试验对周期性麻痹18例的诊断价值》.中华神经 科杂志,2007,(4):242-245.
    
    29. Fontaine, B.; Vale-Santos, J.; Jurkat-Rott, K., et al. Mapping of the hypokalaemic periodic paralysis (HypoPP) locus to chromosome 1q31-32 in three European families. Nature Genet. 1994,6: 267-272.
    
    30.韩红梅,尹长城.《Ryanodine受体和内源性调节蛋白的相互作用》.细胞生 物学杂志.2003,25(5):261-264.
    
    31. Ptacek, L. J.; Tawil, R.; Griggs, R. C, et al. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell. 1994,77(6): 863-868.
    
    32. Jurkat-Rott, K.; Guimaraes, J.; Saudubray, J.-M. , et al.Genetic heterogeneity in hypokalemic periodic paralysis (hypoPP). Hum. Genet. 1994 (94) : 551-556.
    
    33. Elbaz A, Vale-Santos J, Jurkat-Rott K, et al. Hypokalemic periodic paralysis and the dihydropyridine receptor (CACNL1A3): genotype/phenotype correlations for two predominant mutations and evidence for the absence of a founder effect in 16 Caucasian families. Am J Hum Genet. 1995. 56:374-80.
    
    34. Boerman, R. H.; Ophoff, R. A.; Links, T. P. , et al.Mutation in DHP receptor alpha-1 subunit (CACLN1A3) (sic) gene in a Dutch family with hypokalemic periodic paralysis. J. Med. Genet. 1995 (32) : 44-47.
    
    35. Bulman, D. E.; Scoggan, K. A.; van Oene, M. D. , et al. A novel sodium channel mutation in a family with hypokalemic periodic paralysis. Neurology, 1999, 53:1932-1936.
    
    36. Jurkat-Rott, K.; Mitrovic, N.; Hang, C., et al. Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc. Nat. Acad. Sci. 2000, 97: 9549-9554.
    
    37. Bendahhou S, Cummins TR, Griggs RC, et al. Sodium channel inactivation defects are associated with acetazolamide-exacerbated hypokalemic periodic paralysis. Ann Neurol. 2001. 50:417-20.
    
    38.Kim SH, Kim UK, Chae JJ, et al. Identification of mutations including de novo mutations in Korean patients with hypokalaemic periodic paralysis. Nephrol Dial Transplant. 2001. 16:939-44.
    39.Sugiura Y, Aoki T, Sugiyama Y, et al. Temperature-sensitive sodium channelopathy with heat-induced myotonia and cold-induced paralysis. Neurology. 2000.54:2179-81.
    40. Davies NP, Eunson LH, Samuel M, Hanna MG. Sodium channel gene mutations in hypokalemic periodic paralysis: an uncommon cause in the UK. Neurology.2001.57:1323-5.
    41.Sternberg D, Maisonobe T, Jurkat-Rott K, Nicole S, Launay E, Chauveau D, et al.Hypokalaemic periodic paralysis type 2 caused by mutations at codon 672 in the muscle sodium channel gene SCN4A. Brain. 2001. 124:1091-9.
    42. Fontaine B, Khurana TS, Hoffman EP, Bruns GA, Haines JL, Trofatter JA,Hanson MP, Rich J, McFarlane H, Yasek DM, et al. Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha-subunit gene. Science. 1990.250:1000-2.
    43.Ptacek LJ, George AL Jr, Griggs RC, Tawil R, Kallen RG, Barchi RL, Robertson M, Leppert MF. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell. 1991. 67:1021-7.
    44.Feero WG, Wang J, Barany F, et al. Hyperkalemic periodic paralysis: rapid
    ??molecular diagnosis and relationship of genotype to phenotype in 12 families. Neurology, 1993,43: 668-673.
    
    45.第二章神经传导.见:汤晓芙主编.《临床肌电图学》.第一版.北京:北京医 科大学 中国协和医科大学联合出版社,1995.29-62.
    
    46. Jackson CE, Barohn RJ. Improvement of the exercise test after therapy in thyrotoxic periodic paralysis. Muscle Nerve, 1992, 15:1069-1071.
    
    47.刘续保.诊断试验的研究与评价.见:王家良主编. 《临床流行病学》.第2 版.北京:人民卫生出版社,2004.152-168
    
    48.郭秀海《周期性麻痹的临床及相关基因突变研究》中国人民解放军军医进修 学院.2004年.博士论文.导师:朱克吴卫平
    
    49.柯青.《原发性低钾型周期性麻痹的离子通道基因突变及临床研究》中国人民 解放军军医进修学院.2006年.博士论文.导师:朱克吴卫平
    
    50.高秀贤,汤晓芙. 《神经电生理在高血钾型周期性麻痹应用的研究》.中国 神经免疫学和神经病学杂志.1994,1:46-48
    
    51. Abbott GW, Butler MH, Bendahhou S, Dalakas MC, Ptacek LJ, Goldstein SA. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell. 2001. 104:217-31.
    
    52. Sternberg D, Tabti N, Fournier E, Hainque B, Fontaine B. Lack of association of the potassium channel-associated peptide MiRP2-R83H variant with periodic paralysis. Neurology. 2003. 61:857-9.
    
    53. Jurkat-Rott K, Lehmann-Horn F. Periodic paralysis mutation MiRP2-R83H in controls: Interpretations and general recommendation. Neurology. 2004. 62:1012-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700