用户名: 密码: 验证码:
烟草吸钾相关基因克隆与表达调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草钾素营养不但在烟叶生长、发育过程中影响烟叶的抗病性、抗逆性和适烤性,直接影响烟叶的香气质、香气量和燃烧性,还与烟气中焦油、苯并芘等有害物质含量有着密切的相关性,烟叶含钾量是烟叶重要的品质指标。调查表明我国烟叶含钾量显著低于美国、津巴布韦和巴西等国际优质烟叶,多年来,学者们曾尝试从增加钾肥施用量、改善施肥方法等方面提高烟叶含钾量,但收效甚微,烟叶含钾量过低一直是困扰我国烟区的重大技术难题。
     本研究克隆了拟南芥钾离子转运蛋白基因AtKup1、Na~+/H~+反向转运体基因AtNHX1和无机焦磷酸酶基因AVP2,分别构建高效植物表达载体,通过根癌农杆菌介导法转化烟草,分析了3类基因转化烟草幼根中5种内源吸钾相关基因(烟草钾通道、K~+转运蛋白、无机焦磷酸酶、细胞膜H~+泵和液泡膜H~+泵)转录水平,结果表明:在转AtKup1基因烟草幼根中,烟草K~+转运蛋白基因NtHAK1转录显著降低,细胞膜H~+-ATPase基因显著增加,其它基因转录没有显著变化;在过量表达AtNHX1基因的烟草幼根中,烟草钾离子转运蛋白基因NtHAK1的转录水平显著降低,H~+-ATPase基因NHA1和VAG1显著增加;而焦磷酸酶基因NVP1的转录稍有增加,钾通道基因NKT1转录变化不大;过量表达AVP2基因使烟草幼根中的烟草液泡膜H~+-ATPase基因VAG1和液泡膜H~+-PPase基因NVP1的转录水平降低,K~+转运体基因NtHAK1基因显著增加,而钾通道基因NKT1稍有增加,细胞质膜H~+-ATPase基因NHA1无显著变化。烟叶内在化学成分分析结果表明:三种基因的过量表达均可不同程度地增强烟株根系的吸钾能力,提高烟叶含钾量。
     为增强外源吸钾基因的表达活性,本研究采用DNA改组方法进行AtKup1基因的体外分子进化,建立AtKup1基因突变库,筛选吸钾活性增强的AtKup1基因的突变型,并导入烟草进行表达分析,获得吸钾能力显著提高的转化材料。通过对拟南芥等不同物种间的K~+转运蛋白基因KT/KUP/HAK、钾通道基因、质子泵(H~+-ATPase)基因和H~+转运无机焦磷酸酶基因的同源性比对分析,采用兼并引物PCR扩增和RACE方法分别获得了烟草4个吸钾相关基因的cDNA全序列(NrHAK1, NKC1, NVP1和NtHAK1),并将所获得的NrHAK1基因导入酿酒酵母钾吸收缺陷型菌株进行功能性研究,结果发现:NrHAK1基因可以使酵母钾吸收缺陷型菌株恢复吸钾能力。烟草不同组织的转录水平分析发现:NrHAK1基因在烟苗幼根转录量最大,证实该基因与烟草根系吸钾有关。
     应用荧光定量PCR原理,通过优化引物设计、qRT-PCR反应体系和反应条件,选择适宜的看家基因,建立了适于植物分子营养研究的mRNA定量方法,并利用这一方法研究了K~+、Ca2~+无机营养缺乏和Na~+、NH4~+高盐胁迫条件下,烟草K~+通道基因NKT1、K~+转运蛋白基因NtHAK1、无机焦磷酸酶基因NVP1、细胞质膜质子泵基因NHA1和液泡膜质子泵基因VAG1的转录水平。结果表明:K~+饥饿条件下,K~+转运蛋白基因NtHAK1基因转录量增加, V-PPase基因NVP1的转录降低;在缺钙条件下,钾通道基因NKT1、烟草K~+转运蛋白基NtHAK1,编码P-ATPase的G亚基VAG1基因和V-ATPase的NHA1基因转录显著下降;在高浓度Na~+胁迫条件下,植物根系钾离子转运蛋白基因NtHAK1、质膜质子泵P-H~+-ATPase基因NHA1和液泡膜质子泵V-H~+-ATPase基因VAG1转录显著增加,钾通道基因NKT1降低。试验还发现环境中高浓度的NH4~+使钾离子转运蛋白基因显著降低,V-ATPase基因NHA1和V-PPase基因NVP1均有所增加。
Except for affecting the disease resistance and stress responses in tobacco growing periods, the potassium nutrition has close relations with quantity and quality of flavor, burn capacity and the amount of harmful materials such as tar and benzopyrene. The potassium content in tobacco leavies is an important index for high quality tobacco leaf. Surveys have confirmed that potassium content of domestic tobacco leaf is much less than that of international high quality tobacco leavies from USA, Zimbabwe and Brazil. Researchers from home and abroad have done many studies to increase the potassium contents in tobacco leaf through raising fertilizer amounts or improving fertilization methods in recent years. But unfortunately, all the works have failed to increase the potassium of tobacco leavies. Low potassium content in tobacco leaf is an important technique problem which puzzled growers in domestic tobacco growing areas.
     Three genes including AtKup1 encoding the K~+ transporter, AtNHX1 encoding the Na~+/H~+ anti-porter and inorganic pyrophosphatase AVP2 have been cloned from Arabidopsis. The plant binary expression vectors of the 3 genes have been constructed and transformed into tobacco by the meditation of Agrobacterium tumefaciens. The transcript of 5 tobacco internal genes encoding K~+ channel, K~+ transporter, vacuole H~+-PPase, plasma H~+-ATPase and vacuole H~+-ATPase have been analyzed in transgenic tobacco plants. The results demonstrated that the transcript of NtHAK1 gene was reduced and that of NHA1 was increased significantly in the roots of the AtKup1 trans-formants. The transcript of NtHAK1 gene was also down regulated in the roots of AtNHX1 trans-formants, but the transcripts of NHA1 and VAG1 encoding H~+-ATPase were up regulated significantly and that of NVP1 encoding vacuole H~+-PPase was increased slightly. The transcript of VAG1 encoding H~+-ATPase and NVP1 encoding for vacuole H~+-PPase are down regulated and the transcript of NtHAK1 are up regulated significantly and that of K~+ channel NKT1 are increased slightly in the tobacco root over expressed of AVP2 gene. The chemical contents analysis of tobacco leaf indicated that the potassium uptake capacity of trans-formant roots were increased differently when the tobacco was genetically modified by the three genes above respectively and the potassium contents in the tobacco leaf were increased differently.
     PCR-based DNA shuffling was carried out for AtKup1 gene to recombinatorial molecular evolution in vivo. The AtKup1 mutations with high capacity of K~+ uptake were screened from recombination PCR fragments libraries and introduced into TRK1 and TRK2 defective yeast strain.
     By the bioinformatics analysis of genes encoding to K~+ high affinity transporter KT/HAK/KUP, potassium channel, H~+-ATPase and vacuole H~+-PPase from Arabidopsis and other species in NCBI. Four cDNA complete sequences incuding NrHAK1, NKC1, NVP1 and NtHAK1 were obtained through the methods of degenerate primers PCR and RACE, The nucleotide sequence have been deposited in the NCBI data base. Function characterization of NrHAK1 which was carried out by introduced it into the K~+ uptake genes TRK1 and TRK2 defective yeast strain demonstrated that NrHAK1 can complement yeast mutants defective in K~+ uptake. It was found that the mRNA of NrHAK1 was the most abundant in roots of Nicotiana rustica which suggest that NrHAK1 plays an important role in potassium uptaking of plant roots.
     The qRT-PCR technique which suit for mRNA measurements in the molecular nutrition studies was established by performing the optimized experiments of primer designation, PCR systems and condition as well as house keeping gene selection. Transcript of five genes related to the potassium uptake including K~+ channel, K~+ transporter, cytoplasm H~+-ATPase, H~+-PPase and vacuole H~+-ATPase under different nutrition and salts stress conditions were analyzed by using qRT-PCR methods. It was found that the transcript of NtHAK1 and NHA1 were significantly stimulated and that of NVP1 was reduced when the K~+ starvation exist in external solution. The results also confirmed that the transcript of K~+ channel gene NKT1, K~+ transporter gene NtHAK1, V-H~+-ATPase G unit gene VAG1 and P-H~+-ATPase gene NHA1 were down regulated when the tobacco was Ca2~+ starved. The transcript of K~+ transporter gene NtHAK1 was induced by excessive Na~+ salinity stress, but that was inhibited when tobacco plant exposed to the solution contained 5 mmol/L NH4~+.
引文
1左天觉.烟草生产、生理和生物化学.上海远东出版社.1993, 446
    2 J. R. Chaplin and B. L. Miner, et al. Production factors affecting chemical compounds of the tobacco leaf. Recent Advances of Tob Sci.1980, (6):3~63
    3曹志洪,胡国松.土壤钾和微量元素行为的调控与烟叶品质的关系.土壤.1993, 25(3):119~128
    4 J. L. Sims, M. Casy, J. E. Legget, et al. Effect of transplant water fertilization on growth and chemical composition of burley tobacco. Annual Report of the College of Agriculture and the K.Y. Agri. Exp. Stn. 1981, 59~60
    5胡国松等.我国主要产烟省烤烟元素组成和化学品质评价.中国烟草学报.1997, 3 (3) : 36~45
    6 L.V. Kochian and W. L. Lucas. Potassium transport in corn roots. Resolution of kinetics into saturable and linear component. Plant Physiol. 1982, 70: 1723~1731
    7 L.V. Kochian , J. E Shaff and W. J.Lucas. High affinity K+ uptake in maize roots. A lack of coppling with H+ efflux. Plant Physiol. 1989, 91: 1202~1211
    8 D. P. Schachdman and J. I. Schroeder. Structure and transport mecianism of a high affinity potassium uptake transporter from higher plants. Nature. 1994, 370: 655~658
    9 F.M.Maathuis and D.Sanders. Mechanism of high affinity potassium uptake in roots of Arabidopsis thaliana. Proc. Nat. Acad. Sci.1994,91: 9272~9276
    10 A. A. Very, H. Sentenac. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev. Plant Bio. 2003, 54: 575~603
    11 A. D. Glass. Regulation of K+ influx in barley roots: Evidence for direct control by internal K+. Aust. J. plant Physiol., 1977, 4 (2): 313~318
    12 D. P. Schachtman, J. I. Schroeder, W. J. Lucas et al. Expression of a inward rectifying potassium channel by the Arabidopsis KAT cDNA. Science.1992, 258 :1652~1658
    13 E. Epstein, D. W. Rains and O. E. Elzam. Resolution of dual mechanisms of potassium absorption by barley roots Proc. Natl. Acad. Sci. 1963, 49 :684~692
    14 M. Fernando, J. Kulpa, M.Y. Siddiqi, et al. Potassium-dependent changes in the expression of membrane-associated proteins in barley roots: I. Correlations with K+(86Rb+) influx and root K+ concentration. Plant Physiol. 1990, 92: 1128~1132
    15 R. E. Hirsch, B. D. Lewis, E. P. Spalding, et al. A role for the AKT1potassium channel in plant nutrition. Science.1998, 280: 918~921
    16 G. E. Santa-Maria, C. H. Danna, C. Czibener. High-affinity potassium transport in barley roots: ammonium-sensitive and -insensitive pathways. Plant Physio. 2000, 123: 297~306
    17 W. Gassmann, and J.Schroeder. Inward-Rectifying K+ Channels in Root Hairs of Wheat, Plant Physiol.1994, 105: 1399~1408
    18 J. I. Schroeder, J. M. Ward and W. Gassmann. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annual Review of Biophysics and Biomolecular Structure. 1994,23:441~471
    19 P. M. Hasegawa and R. A. Bressan. Plant cellular and molecular responses to high salinity Annual Review of Plant Physiology and Plant Molecular Biology. 2000, 51: 463~499
    20 D. P. Briskin and M.C.Gawienowski. Role of the plasma membrane H+-ATPase in K+ transport Plant Physiol logy.1996, 111(4):1199~1207
    21 J. A. Ramirez, V. Vacata, J. H. McCusker, et al. ATP-sensitive K+ channels in the plasma membrane H+-ATPase mutant of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci.1989, 86: 7866~7870
    22 M. P. Apse, G. S. Aharon, W. A. Snedden, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 1999, 285: 1256~1258
    23 L. Reinhold, A. Kaplan. Membrane transport of sugars and amino acids. Annu Rev Plant Physiol. 1984,36: 45~83
    24 M. Maeshima, S. Yoshida. Purification and properties of vacuolar memberance proton translocating inorganic pyrophosphatase from mung bean. Bio. Chem. 1989, 264: 20068~20073
    25 Y. M. Drozdowicz, P. A. Rea. Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends in Plant Science. 2001, 6: 206~211
    26 J. M. Davies, R.J. Poole, P.A. et al. Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase.PNAS. 1992, 89: 11701
    27 R. Colombo, R.Cerana. Enhanced activity of tonoplast pyrophosphatase in NaCl-grown cells of Daucus carota. Journal of Plant Physiology. 1993,142, 226~229
    28 L. Zingarelli, P. Anzani, P. Lado. Enhanced K+-stimulated pyrophosphatase activity in NaCl-adapted cells of Acer pseudoplatanus. Physiologia Plantarum.1994, 91: 510~516
    29 H. Sze, J.Ward, and S. Lai. Vacuolar H+-translocating ATPase from plants: structure, function, and isoforms. J. Bioenerg. Biomemb. 1992,24: 371~381
    30 F. Gaymard, F. Pilot, B. Lacombe, et al. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell. 1998, 94: 647~655 - 108 -
    31 T. B. Wang, W. Gassmann and J. Schroeder et al. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol. 1998, 118: 651~659
    32 E. J. Kim. AtKUP1: An Arabidopsis gene encoding high affinity potassium transport activity. The Plant cell.1998, 10 (1) :51~62
    33 H. H. Fu. AtKUP1: A dual-affinity K+ transporter from Arabidopsis.The Plant cell .1998,10 (1) :63~73
    34 R. Nass, K. W. Cunningham and R. Rao. Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase. Insights into mechanisms of sodium tolerance. J. Biol. Chem. 1997, 272: 26145~26152
    35 J. A. Anderson, S. S. Huprikar, L.V. Kochian et al.Function expression of a probable A rabi dopsis thaliana potassium channel in Saccharomycex cerevisiae Proc. Natl. Acad.Sci. 1992, 89 :3736~3740
    36 H. Sentenac, N. Bonneaud, M. Minet et al. Cloning and expression in yeast of a plant potassium ion transport system Science. 1992, 256: 663~665
    37 D. Lagarde, M. Basset, M. Lepetit et al.Tissue specific expression of Arabidopsis AKT1 gene is consisting with a role in K+ nutrition. Plant J. 1996, 9: 195~203
    38 B. Hille. Ionic channel of exciteable membranes, J. Gen Physiol. 1995, 50: 1287~1302
    39 S. K. Aggarwal, R. Mackinnon. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron. 1996,16: 1169~1177
    40 H. P. Larsson, O. S. Baker, D. S. Dhillon, et al. Transmembrane movement of the Shaker K+ channel S4. Neuron. 1996, 16: 387~397
    41 R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, et al. Structural conservation in prokaryotic and eukaryotic potassium channels. Science. 1998, 280 (5360): 106~109
    42 L.Y. Jan Structural elements involved in specific K+ channel functions. Annu Rev Physiol. 1998, 54:535~555
    43 S. J. Ahn, R. Shin, and D. P. Schachtman, Expression of KT/KUP Genes in Arabidopsis and the role of root hairs in K+ uptake Plant Physiology.2004,134(3): 1135~1145
    44 B. Reintanz, A. Szyroki, N.Ivashikina. AtKC1, a silent Arabidopsis potassium channelα-subunit modulates root hair K+ influx. Proceedings of the National Academy of Sciences. USA. 2002,99:4079~4084
    45 P. Dietrich, I. Dreyer, P. Wiesner, et al. Cation sensitivity and kinetics of guard-cell potassium channels differ among species. Planta. 1998, 205: 277~287
    46 F. Rubio,W. Gassmann,J.I. Schroeder. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 1995, 270(5242): 1660 ~ 1663
    47 T. B. Wang, W. Gassmann and J. Schroeder, et al. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol. 1998, 118: 651~659
    48 R. F. Gaber, C.A. Styles and G. R. Fink. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol. 1988, 8: 2848~2859
    49 C.H. Ko, R.F. Gaber. TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol.1991, 11(8): 4266~4273
    50 C.H. Ko, A. M. Buckley, R.F. Gaber. TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics. 1990,125(2):305~12
    51 P. M?ser, M. Gierth and J.I. Schroeder. Molecular mechanisms of potassium and sodium uptake in plants, Plant and Soil .2004, 247(1):43~54
    52 M. Schleyer, E.P. Bakker. Nucleotide sequence and 3'-end deletion studies indicate that the K+-uptake protein Kup from Escherichia coli is composed of a hydrophobic core linked to a large and partially essential hydrophilic C-terminus. J. Bacterio. 1993,175: 6925~6931
    53 M. A. Banuelos, R. D. Klein, S. J.Alexander-Bowman. A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrative capacity. EMBO J. 1995, 14: 3021~3027
    54 P. Armengaud, R. Breitling, and A. Amtmann. The potassium dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiology. 2004, 136(1): 2556~2576
    55 M. Gierth, P. Maser and J. I. Schroeder. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiology. 2005,137(3):1105~1114
    56 F. Rubio, G. E. Santa-María, A. Rodríguez-Navarro. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant.2000, 109: 34~43
    57 M. E. Senn, F. Rubio, M. A. Ba?uelos et al. Comparative functional features of plant potassium HvHAK1 and HvHAK2 Transporters, J. Biol. Chem. 2001, 276(48): 44563~44569
    58 M. A. Ba?uelos, B. Garciadeblas, B. Cubero, et al. Inventory and functional characterization of the HAK potassium transporters of rice, Plant Physiol. 2002, 130: 784~795
    59 A. Rodriguez-Navarro and F. Rubio High-affinity potassium and sodium transport systems in plants J. Exp. Bot. 2006, 57(5): 1149 ~1160
    60 R. Gaxiola, I. F. Larrinoa, J. M. Villalba et al. A novel and conserved salt induced protein is an important determinant of salt tolerance in yeast. EMBO J. 1992, 11(9): 3157~3164
    61 M. P. Apse, G. S. Aharon and W. A.Snedden, et al. Salt tolerance conferred by over-expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999, 285: 1256~1258
    62 J. Z. Zhang, R. A. Creelman, J. K. Zhu. From laboratory to field. using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol. 2004, 135: 615~621
    63 A. Fukuda, A. Nakamura, A.Tagin et al. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol. 2004, 45:146~159
    64 F. Brini, M. Hanin, I. Mezghani, et al. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J. Exp. Bot. 2007, 251,1~8
    65 T. Yamaguchi, M. P. Apse, H. Shi , et al. Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. PNAS.2003,100(2):12510~12515
    66 T.Yamaguchi, S. F. Tanaka, Y. Inagaki, et al. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant and Cell Physiology. 2001, 42 (5): 451~461
    67 O. Kinclova-Zimmermannova, M. Zavrel and H. Sychrova. Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters, J. Biol Che.2005, 280(34): 30638~30647
    68 R. Lathti. Cloning and characterization of gene encoding inorganic pyrophosphatase of Escherichia coli. J. Bacteriology. 1988, 170(2): 5901~5907
    69 V. Sarafian, Y. Kim, Molecular cloning and sequence of cDNA encoding the pyrophosphate energized vacuolar memberance proton pump of Arabidopsis thaliana Proc. Nat. Acad. Sci. USA,1992, 89: 1775~1779
    70 Y. Kim, E. J. Kim, Isolation and characterization of cDNAs encodingthe vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiol. 1994,106:375~382
    71 S.H. Hung, S.J. Chiu, L.Y. Lin, et al. Vacuolar H+-pyrophosphatase cDNA (Accession No. U31467 ) from etiolated mung bean seedlings. Plant Physiology. 1995,109:1125
    72 J. Lerchl, S. K?nig, R. Zrenner, et al. Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast-bound proton-translocating inorganic pyrophosphatase in tobacco. Plant Molecular Biology. 1995, 29: 833~840.
    73 E. Martinoia, M. Maeshima, and H. E. Neuhaus, Vacuolar transporters andtheir essential role in plant metabolism. J. Exp. Bot. 2007, 58, 83~102
    74 M. Maeshima, Vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta. 2000,1465: 37~51
    75 Y. M. Drozdowicz J. C. Kissinger, AVP2 a sequence divergent, K+ insensitive H+- translocating inorganic pyrophosphatase from Arabidopsis. Plant Physiol. 2000, 123: 353~362
    76 C. Maruyama, Y. Tanaka, K. Takeyasu et al. Structural studies of the vacuolar H+-pyrophosphatase: sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide. Plant and Cell Physiology. 1998, 39: 1045~1053
    77 D. P. Briskin and J. B. Hanson. How does the plant plasma membrane H -ATPase pump protons? +J. Exp. Bot. 1992, 43: 269~289
    78 M.Yolanda. Drozdowicz, J. C. Kissinger, and P. A. Rea. AVP2, a sequence-divergent, K+-insensitive H+-translocating inorganic pyrophosphatase from Arabidopsis, Plant Physiol. 2000, 123(1): 353~362
    79 R. A. Gaxiola, G. R. Fink. Genetic manipulation of vacuolar proton pumps and transporters, plant physiology.2002,129967~129973
    80 M. Sagermann, T.H. Stevens, B.W. Matthews. Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA.2001,98: 7134~7139
    81 A. D. M. Glass, J. Dunlop. The influence of potassium content on the kinetics of potassium influx into excised ryegrass and barley roots. Planta, 1978, 141: 117~119
    82 S. W. Clarkson, J. B. Hanson. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol, 1980, 31: 239~298
    83 M. P. Jose, and R. Serranno, Structure of a plasma membrane H+-ATPase gene from the plant Arabidopsis thaliana.The Journal Chemostry.1989, 264(15): 8557~8562
    84 I. Domgall, D.Venzke, U. Luttge et al. Three-dimensional map of a plant V-ATPase based on electron microscopy, J. Biol. Chem. 2002, 277(15): 13115~13121
    85 K.Venema, F. J.Quintero and J.M.Pardo, et al. The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted Liposomes. J. Biol. Chem. 2002, 277(4): 2413~2418
    86 T. Rufty, W. Jackson, C. Raper. Inhibition of nitrate assimilation in roots in the presence of ammonium: the moderating influence of potassium. Journal of Experimental Botany. 1982(33): 1122~1137
    87 S. Lutts, J. M. Kinet, J. Bouharmont. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing insalinity resistance. Plant Growth Regul. 1996, 19: 207~218
    88 A. Fukuda, K. Chiba and Y. Tanaka et al. Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. Journal of Experimental Botany. 2004,55: 585~594
    89 M.A. Martinez-Cordero, V. Martinez, F. Rubio. High-affinity K+ uptake in pepper plants.Journal of Experimental Botany. 2005,56(416):1553~1562
    90 B. S. Wang, U. Lüttge and R. Ratajczak. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. Journal of Experimental Botany. 2001,52( 365): 2355~2365
    91 F. Yan, Y. Zhu, C. Müller, et al. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol. 2002,129: 50~63
    92 M. Y. Siddiqi and A. D. M. Glass. A model for the regulation of K influx, and tissue potassium concentrations by negative feedback effects upon plasma lemma influx. Plant Physiology.+1986, 81: 1 ~ 7
    93 J. Rettig, S. H. Heinemann, F. Wunder et al. Inactivation proper ties of voltage-gated K+ channel altered by presence ofβ-subunit. Nature. 1994, 369: 289~294
    94 E. P. Spalding, R. E. Hirsch, D. R. Lewis, et al. Potassium uptake supporting plant growth in the absence of AKT1 channel activity. inhibition by ammonium and stimulation by sodium. J. Gen. Physiol. 1999, 113: 909~918
    95 P. H. Buschmann, R. Vaidyanathan, W. Gassmann, et al. Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells ,Plant Physiol, 2000, 122,1387~1398
    96 Y. W. Cao, J. M. Ward and B. Walter. Multiple genes, tissue specificity, and expression dependent modulation contribute to the functional diversity of potassium channel in Arabidopsis thaliana Plant Physiol. 1995, 109(3): 1093
    97 F. J. M. Maathuis and A. Aatmann. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Annals of Botany. 1999, 84: 123~133
    98 G. B.Collins, and P. D. Legg, Genetic control of chemical constituents in tobacco. Recent advances in the chemical composition of tobacco and tobacco smoke. Proc. Am. Chem. Soc. Symp. 1977, New Orleans, 290~327
    99 D.R. Hoagland and W.C. Snyder, Nutrition of strawberry plants under controlled conditions. Proc. Am. Soc. Hort. Sci. 1933,30:288~296
    100 B. Plesse, M.C. Criqui and P.Genschik. Effects of the polyubiquitin gene Ubi. U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol. 2001, 45(6):655~667
    101 S. Ohta, S. Mita, T. Hattori et al. Construction and expression in tobacco of aα-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol .1990;31(6): 805~814
    102 G. C. Allen, S. Spiker and W. F. Thompson. Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol. Biol.2000,43: 361~376
    103萨姆布鲁克J.拉塞尔D.W. [美]著,黄培堂译.分子克隆.第三版,科学出版社, 2006:168
    104 F. J. Mergulhao, A. G. Kelly, G. A. Monteiro et al. Troubleshooting in gene splicing by overlap extension: a step-wise method. Mol Biotechnol. 1999,12(3): 285~287
    105 D. Gietz, A.S. Jean, R.A. Woods et al. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992,20:1425
    106 F. Sherman. Getting started with yeast. Methods Enzymol, 1991,194:3~21
    107 K. Robzyk, Y. Kassir. A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucl Acids Res. 1992, 20: 3790
    108 S.J. Doeer, J.F. Miller and C.W. Ragsdale. High efficiency transformation of E.coli by high voltage electroporation. Nucleic Acids Research. 1988, 16(13): 6127~6145
    109 F. Calero, N. Gomez, J. Arino, J. Ramos. TRK1 and TRK2 define the major K+ transport system in fission yeast. J Bacteriol. 2000,182(2):394~399
    110 R. Deblaere, B. Bytebier, H. D. Greve, et al. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic. Acid Research .1985, 13: 4777~4788
    111 R. A. Jefferson, T. A. Kavanagh and M.W. Bevan. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987, 6(13): 3901~3907
    112郭兆奎,万秀清,魏继承,于艳华.适于PCR分析的烤后烟叶的DNA提取方法研究.中国烟草科学. 1999, 4: 5~8
    113 J. Kyte and R.F. Doolittle. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.1982, 157, 105~132
    114 R. Chenna, H. Sugawara, T. Koike, et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003, 31(13): 3497~3500
    115 F. Ausubel, R. Brent, R. E. Kingston. Short protocols in molecular biology, 3rd ed. Canada: John Wiley & Sons. 1995, 2-9~2-10
    116 B. Michelet and M.Boutry. The plasma membrane H+-ATPase, a highly regulated enzyme with multiple physiological functions. Plant Physiol. 1995,108:1~6
    117 R. H. Peng, X. M. Huang, X. Li, et al. Construction of a plant binary expression vector containing intron kanamycin gene and transformation in Nicotiana tabacum. Acta Phytophysiologica Sinica. 2001, 27(1):55~60
    118 K. Venema, A.Belver et al. A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. J. Biol. Chem. 2003, 278: 22453~22459
    119 F. Gao, Q. Gao, X. Duan, et al. Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobaccosalt tolerance. J. Exp. Bot. 2006, 57: 3259~3270
    120 W. P. Stemmer. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl. Acad. Sci. USA. 1994, 91 (22) :10747~10751
    121 W. P. Stemmer. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994, 370: 389~391
    122 I. Matsumura and A. D. Ellington. DNA shuffling brightens prospects for GFP. Nat. Biotechnol.1996,14 (3): 366
    123 A.Crameri, E. A. Whitehorn and W. P. Stemmer. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 1996,14:315~319
    124 A. Crameri, G. Dawes, W. P. Stemmer. Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat. Biotechnol. 1997, 15: 436~438
    125熊爱生,姚泉洪,彭日荷等.通过DNA改组技术获得高活性β-葡萄糖苷酸酶.中国生物化学与分子生物学报. 2003, 19 (2):162~167
    126沈国妙,姚泉洪,张铭等.利用DNA改组技术改造aacC1基因启动子活性的研究.微生物学报. 2004, 44(1): 58~61
    127郭兆奎,杨谦,姚泉洪等.转拟南芥AtKup1基因高含钾量烟草获得.中国生物工程杂志. 2006, 25(12): 24~28
    128 M. B. Jamie, D. Brian, and D. A. Ellington. Anticipatory evolution and DNA shuffling. Genome Biol. 2002, 3(8): 1021.1~4
    129 V. Abécassis, D. Pompon, and G. Truan. High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2 Nucleic Acids Res. 2000, 28(20): 88e.
    130 E. M. Carpenter, J. M. Goddard, A. P. Davis, et al. Targeted disruption of Hoxd-10 affects mouse hind limb development, Development.1997, 124(22): 4505~4514
    131 Rodriguez-Navarro A Potassium transport in fungi and plants Biochim Biophys Acta. 2000, 1469(1): 1~30
    132 J. Ramos, R. Alijo, R. Haro, et al. TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. J. Bacteriol, 1994, 176: 249~252.
    133 A. Bertl, H. Bihler, J. D. Reid, et al. Physiological characterization of the yeast plasma membrane outward rectifying K+ channel, DUK1 (TOK1), in situ. J. Membr Biol. 1998,162: 67~80
    134 H. Bihler, R. F. Gaber, C. L. Slayman, et al. The presumed potassium carrier Trk2p in Saccharomyces cerevisiae determines an H+-dependent, K+-independent current. FEBS Lett. 1999, 447(1):115~120
    135 R. Madrid, M. J. Gomez, J. Ramos, et al.. Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highlyhyperpolarized membrane potential. J Biol. Chem. 1998, 273(24): 14838~ 14844
    136 J. Frans, M. Maathuis, V. Filatov, et al. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. The Plant Journal. 2003,35:675~692
    137 C. Domene, M. S. Sansom. Potassium channel, ions, and water: simulation studies based on the high resolution X-ray structure of KcsA. Biophys J. 2003, 85(5): 2787~800
    138 S. Rigas, G. Debrosses, K.Haralampidis, et al. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell. 2001, 13: 139~151
    139 K. Langer, P. Ache, D. Geiger, et al. Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis. The Plant Journal. 2002,32 (6):997~1009
    140 H. Su, D. Golldack, M. Katsuhara, et al. Expression and stress-dependent induction of potassium channel transcripts in the common ice plant Plant Physiol. 2001,125: 604~614
    141 F.J. Quintero, M.R. Blatt. A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett 1997, 415: 206~211
    142 G. Pilot, F. Gaymard, K. Mouline, et al. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Molecular Biology.2003, 51( 5):773~787
    143 G. Pilot, B. Lacombe, F. Gaymard, et al. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. Biol. Chem. 2001,276( 5):3215~3221
    144 M.A. Banuelos, B. Garciadeblas, B. Cubero, et al. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiology. 2002,130:784~795
    145 Y. H. Wang, D. Garvin, L. Kochian. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Plant Physiol. 2002, 130:1361~1370
    146 D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, et al. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science.1998, 280: 69~77
    147 S. Bernèche and B. Roux. Energetics of ion conduction through the K+ channel. Nature. 2001, 414(6859): 73~78
    148 A. Mats,L. Eriksson and B. Roux. Modeling the structure of agitoxin in complex with the Shaker K+ channel: A computational approach based on experimental distance restraints extracted from thermodynamic mutant. Cycles Biophys J. 2002, 83(5): 2595~2609
    149 Z. Lu, A. M. Klem, and Y. Ramu. Ion conduction pore is conserved amongpotassium channels. Nature. 2001, 413: 809~813
    150 F. Khalili-Araghi, E. Tajkhorshid, and K. Schulten. Dynamics of K+ ion conduction through Kv1.2. Biophys. J. 2006, 91(6): L72~L74
    151 W. Treptow, B. Maigret, C. Chipot, et al. Coupled motions between pore and voltage-sensor domains: A model for shaker B, a voltage-gated potassium channel. Biophys. J. 2004, 87(4): 2365 ~2379
    152 W. Finch-Savage,C.Cadman, P.Toorop, et al. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. The Plant Journal. 2007, 51(1):60~78
    153 W. D. Bradford, L. Cahoon, S.R. Freel, et al. An inexpensive gel electrophoresis-based polymerase chain reaction method for quantifying mRNA levels. Cell Biol. Educ. 2005, 4(2): 157~168
    154 S. Swillens, J.C. Goffard, Y. Marechal, et al. Instant evaluation of the absolute initial number of cDNA copies from a single real-time PCR curve. Nucleic Acids Research. 2004, 32(6): e53
    155 J.W.Zou, M.X.Sun, H.Y. Yang. Single-embryo RT-PCR assay to study gene expression dynamics during embryogenesis in Arabidopsis thaliana. Plant Mol Biol Rep. 2002, 20: 19~26
    156 G.R.Cramer, A.Ergül, J.Grimplet, et al. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics. 2007,7( 2):111~134
    157 J. Grimplet,L. G. Deluc,R. L. Tillett, et al. Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics. 2007, 187(8): 2~66
    158 P. S. Thomas. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl Acad. Sci. USA, 1980, 77: 5201~5205
    159 D.A. Rappolee, C.A. Brenner, R. Schultz et al. Developmental expression of PDGF, TGF-alpha, and TGF-beta genes in preimplantation mouse embryos. Science. 1988, 241: 1823~1825
    160 F. R. Vale, W.A. Jackson and R. J. Volk. Potassium influx into maize root systems: Influence of root potassium concentration and ambient ammonium. Plant Physiology. 1987, 84: 1416~1420
    161 F. Ferre. Quantitative or semi-quantitative PCR: reality versus myth. PCR Meth. Applicat,1992, 2: 1~9
    162 M. Becker-Andréand K. Hahlbrock. Absolute mRNA quantification using the polymerase chain reaction. A novel approach by a PCR aided transcript titration assay. Nucl. Acids Res. 1989,17:9437~9446
    163 A. M. Wang, M. V. Doyle and D. F. Mark. Quantitation of mRNA by the polymerase chain reaction. Proc. Natl Acad. Sci. USA.1989, 86: 9717~9721
    164 M. Steiger, C. Demolliere, L. Ahlborn-Laake, et al. Competitive polymerase chain reaction assay for quantitation of HIV-1 DNA and RNA.J. Virol. Methods. 1991,34:149~160
    165 S. N. Peirson, J. N. Butler and R.G. Foster. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res. 2003, 31:e73
    166 M. B. Eisen and P. O. Brown. DNA arrays for analysis of gene expression. Meth. Enzymol.1999,303:174~205
    167 M. Seki, M. Narusaka, J. Ishida, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002,31: 279~292
    168 R. Higuchi, C. Fockler, G. Dollinger et al. Kinetic PCR: Real-time monitoring of DNA amplification reactions. Biotechnology. 1993, 11: 1026~1030
    169 Y. Oono, M. Seki, T. Nanjo, et al. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray monitoring expression profiles of Arabidopsis. The Plant Journal. 2003, 34:868~887
    170 T. B. Morrison, J. J. Weis and C. Wittwer. Quantification of low-copy transcripts by continuous SYBR green I monitoring during amplification. BioTechniques. 1998, 24: 954~962
    171 C. T. Wittwer, M. G. Herrmann, A. A. Moss, et al. Continuous florescence monitoring of rapid cycle DNA amplification. BioTechniques.1997, 22: 130~138
    172 S. Fronhoffs, G. Totzke, S. Stier, et al. A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction. Mol. Cell Probes. 2002, 16: 99~110
    173 C. Li, H.W. Wong. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA. 2001,98: 31~36
    174 S. A. Bustin. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 2000,25:169~193
    175 S.A. Bustin. Quantifiction of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology. 2002, 29: 23~29
    176 P.Y. Muller, H. Janovjak, A. R. Miserez, et al. Processing of gene ex-pression data generated by quantitative real-time RT-PCR. BioTechniques. 2002, 32: 1372~1379
    177 J. Aerts, W. Wynendaele, R. Paridaens, et al. A real-time quantitative reverse transcriptase polymerase chain reaction (RT–PCR) to detect breast carcinoma cells in peripheral blood. Annals of Oncology. 2001, 12(1): 39~46
    178 R. Ramos-Payan, M. Aguilar-Medina, S. Estrada-Parra, et al. Quantification of cytokine gene expression using an economical real-timepolymerase chain reaction method based on SYBR Green I. Scand. J. Immunol. 2003, 57: 439~445
    179 W. Liu, and D. A. Saint. Validation of a quantitative method for real time PCR kinetics. Biochem. Biophys. Res. Commun. 2002, 294:347~353.
    180 K. J. Livak and T. D. Schmittgen. Analysis of related gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001, 25: 402~408
    181 Mannhalter, C.D.Koizar and G. Mitterbauer. Evaluation of RNA isolation methods and reference genes for RT-PCR analyses of rare target RNA. Clin. Chem. Lab. Med. 2000, 38:171~177
    182 M. W. Pfaffl, A. Tichopad, C. Prgomet et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Best keeper-excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004,26:509~515
    183 R. A. Volkov, I. I. Panchuk, F. Sch?ffl. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. Journal of Experimental Botany. 2003, 54(391): 2343~2349
    184 E. Deindl, K. Boengler, N. Royen et al. Differential expression of GAPDH andβ-actin in growing collateral arteries. Molecular and Cellular Biochemistry. 2002, 236(1-2): 139~146
    185 N. Nicot, J. F. Hausman, L. Hoffmann et al. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany. 2005,56(421):2907~2914
    186 B. R. Kim, H. Y. Nam, S. U. Kim, et al. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett. 2003, 25: 1869~1872
    187 J. H. Marino, P. Cook and K. S. Miller. Accurate and statistically verified quantification of relative mRNA abundances using SYBR Green I and real-time RT-PCR. J. Immunol. Methods. 2003, 283:291~306
    188 J. Vandesompele, K. De Preter, F. Pattyn, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3: 1~34
    189 A.Tichopad, M. Dilger, G. Schwarz, et al. Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 2003, 31:e122
    190 A. Tichopad, A. Didier and M. W. Pfaffl. Inhibition of real-time RT-PCR quantification due to tissue-specific contaminants. Mol. Cell Probes. 2004, 18: 45~50
    191 R. H. Lekanne Deprez, A. C. Fijnvandraat, et al. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depend on cDNA synthesis conditions. Anal. Biochem. 2002, 307: 63~69
    192 E. Malinen, A. Kassinen, T. Rinttila, et al. Comparison of real-time PCR with SYBR Green I or 5′-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology. 2003, 149: 269~277
    193 J. Vandesompele, A. De Paepe and F. Speleman. Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR green I real-time RT-PCR. Anal. Biochem. 2002, 303:95~98
    194 D. Y. Wu, L. Ugozzoli, B. K. Pal, et al. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol. 1991, 10: 233~238
    195 H. Bjarnadottir, J. J. Jonsson. A rapid real-time qRT-PCR assay for ovineβ-actin mRNA. Journal of Biotechnology. 2005,117: 173~182
    196 R. Ratajczak. Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta. 2000, 1465:17~36
    197 P. Marschner and D.E. Crowley. Iron stress and pyoverdin production by a fluorescent pseudomonad in the rhizosphere of white lupine (Lupinus albus L.) and barley (Hordeum vulgare L.). Appl. Envir. Microbiol. 1997, 63: 277~281
    198 M. R. Sussman. Shaking Arabidopsis thaliana. Science. 1992, 256: 619
    199 M. W. John and J. Schroeder. Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure. The Plant Cell. 1994, 6: 669~683
    200 T. Yamaguchi, G. S. Aharon, J. B. Sottosanto, et al. Vacuolar Na+/H+antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+ and pH-dependent manner. PNAS. 2005,102:16107-16112
    201 A.Reddahi, A. Sgaouri, N.E.Mourabit et al. Stimulation of potassium uptake by abscisic acid in potato tuber tissues. relation with H+ and Ca2+ fluxes. Biologia Plantarum. 1999, 42(4): 575-581
    202 M. A. Kader, S. Lindberg,T. Seidel, et al. Sodium sensing induces different changes in free cytosolic calcium concentration and pH in salt-tolerant and -sensitive rice (Oryza sativa) cultivars. Physiologia Plantarum. 2007,130(1): 99~111
    203 F. J. M. Maathuis, The role of monovalent cation transporters in plant responses to salinity. J. Exp. Bot. 2006,57:1137~1147
    204 R.C.Smith, E. Epstein. Ion absorption by shoot tissue: kinetics of potassium and rubidium absorption by corn leaf tissue. Plant Physiol.1964, 39: 992~996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700