用户名: 密码: 验证码:
DMD基因缺失突变及连接片段应用于基因诊断的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DMD基因突变是假肥大型肌营养不良症的分子病理基础,其中大片段缺失约占所有突变类型的65%。依据阅读框学说,通常DMD基因移码突变导致Duchenne型肌营养不良(Duchenne muscular dystrophy,DMD),而整码突变导致Becker型肌营养不良(Becker muscular dystrophy,BMD)。DMD基因缺失的机制甚为复杂,但在DMD基因发生断裂缺失后大都通过非同源末端连接进行修复。DMD基因缺失连接片段即为DMD基因断端重接形成的一段变异的DNA序列。
     对连接片段进行克隆和序列特点分析,可以为研究DMD基因缺失重组机制提供帮助;同时采用PCR技术扩增这段变异的DNA序列可以考虑用于缺失型DMD/BMD携带者检测和产前诊断。我们进行的研究工作分为三个部分:一、DMD基因缺失和5例中国人连接片段序列分析;二、利用连接片段进行缺失型DMD/BMD携带者检测;三、连接片段在缺失型DMD/BMD产前诊断的应用和评价。
     一、DMD基因缺失和5例中国人连接片段序列分析
     1.研究目的
     通过阅读框规则分析所选缺失型DMD/BMD患者基因型与表型的关系;通过进行DMD基因缺失连接片段测序,分析中国人连接片段序列的一些特点并探讨DMD基因缺失和修复的机制。
     2.方法
     研究对象:6例经证实的缺失型DMD/BMD患者。其中病例1、病例2、病例3、病例4为DMD,病例5、病例6为BMD,来自同一家系,故实际互相无血缘关系的研究对象为5例。抽提制备以上患者外周血基因组DNA。
     DMD基因缺失突变的阅读框检测:通过外显子PCR检测确定病例1为DMD基因第46~50外显子缺失,病例2为第51~55外显子缺失,病例3为第31~43外显子缺失,病例4为第45~54外显子缺失,相同家系的病例5、病例6为第3~5外显子缺失。采用在线程序对以上6例研究对象进行外显子缺失的阅读框检测,判断其缺失突变所致可读框改变类型。
     连接片段的克隆和测序:在研究对象DMD基因缺失断裂点所在的相应内含子上每间隔一定距离(一般为3 kb)设计1对引物,通过PCR步移的方法定位相应内含子上的断裂点位点。对5例研究对象内含子上断裂点位点成功定位后,分别在靠近其上下游断裂点处各设计1对配对引物,以直接对各例连接片段进行长片段PCR扩增,将扩增成功的PCR产物纯化后测序。
     连接片段的序列特点分析:对所测5例中国人连接片段5'端和3'端断裂点两侧的序列进行重复序列、基质附着区(matrix attachment regions,MARs)、回文序列、TTTAAA序列以及基因缺失后修复方式的分析。
     3.结果
     6例病例基因型和表型的关系:经检测病例1、病例2、病例3、病例4的缺失突变均属框外缺失(out-of-frame deletion),为改变遗传信息可读框的移码突变,其相应的临床表型均为DMD。同一家系的病例5、病例6的缺失突变属框内缺失(in-frame deletion),为缺失下游仍然保持正常可读框的整码突变,其相应的临床表型为BMD。
     5例中国人连接片段的序列特点:分析发现JUNCTION 1的5'端断裂点位于第45内含子LINE/L1序列内,邻近MAR,附近存在回文序列,其3'端断裂点邻近第50内含子的MAR;JUNCTION 2的5'端断裂点附近存在回文序列,其3'端断裂点位于第55内含子LINE/L1序列内;JUNCTION 3的5'端断裂点位于第30内含子LINE/L1序列内,附近存在回文序列;JUNCTION 4的5'端断裂点位于第44内含子LINE/L1序列内,邻近MAR,其3'端断裂点两旁存在回文序列;JUNCTION 5的5'端断裂点位于第2内含子SINE/Alu序列内,其3'端断裂点邻近第5内含子的MAR,附近有TTTAAA序列。
     5例DMD基因缺失相连接的序列均无广泛同源性。发现JUNCTION 1具有5 bp的微小同源序列连接断裂点两端;JUNCTION 2为平端连接,另外在其5'端断裂点上游39 bp位置发现一处A→G点突变;JUNCTION 3插入7 bp序列连接断裂点两端;JUNCTION 4具有4 bp的微小同源序列连接断裂点两端;JUNCTION 5插入26 bp序列并在连接点周围形成3个13 bp的重复连接断裂点两端,且在其5'端断裂点上游20 bp位置发现一处A→G点突变。
     4.结论
     6例假肥大型肌营养不良症病例基因型和表型的关系均符合阅读框规则,其中4例为out-of-frame缺失突变导致DMD,2例为in-frame缺失突变导致BMD。
     DMD基因的一些二级结构特点促进其断裂重组。5例中国人连接片段序列总体上具备容易导致DMD基因缺失重组的所有分子结构特点,包括重复序列、MARs、回文序列、TTTAAA序列等。并且5例中国人连接片段均采取非同源末端连接进行修复,其连接特点包括微小同源性、小的插入、重复、平端连接。
     二、利用连接片段进行缺失型DMD/BMD携带者检测
     1.研究目的
     依据DMD基因缺失后断端重接可形成的一段变异的DNA序列,提出一种利用连接片段进行缺失型DMD/BMD携带者检测的新方法。
     2.方法
     研究对象:2个DMD/BMD家系和1个散发病例家庭的女性亲属。其中家系1为一个BMD家系,家系中Ⅲ_1、Ⅲ_4为确诊的患者,先证者Ⅲ_1(病例5)已证实为第3~5外显子缺失并已克隆其连接片段JUNCTION 5,Ⅲ_1的母亲Ⅱ_2、Ⅲ_4的女儿Ⅳ4为肯定携带者,Ⅲ_1的妹妹Ⅲ_3为可能携带者;家系2为一个DMD家系,其中先证者Ⅲ_2(病例3)已证实为第31~43外显子缺失并已克隆其连接片段JUNCTION 3,Ⅲ_2的母亲Ⅱ_3为肯定携带者;病例4为一DMD散发病例,已证实为第45~54外显子缺失并已克隆其连接片段JUNCTION 4,其母亲待检测排除为携带者。抽提制备以上检测对象外周血基因组DNA。
     携带者检测:在连接片段序列已被成功测序的情况下,对扩增以上JUNCTION 5、JUNCTION 3、JUNCTION 4的引物进行重新设计减短PCR产物长度,以提高常规PCR扩增连接片段的成功率。然后以相应的新设计3对引物D4-F/R、D31-F/R2、D6-F/R分别对以上2个家系中女性待检测对象和病例4母亲可能存在的连接片段进行PCR扩增和测序,同时扩增患者的连接片段作对照。
     3.结果
     家系1检测结果:对家系1的3例女性Ⅲ_3、Ⅱ_2、Ⅳ4的连接片段PCR反应均为扩增出与患者Ⅲ_1、Ⅲ_4一致的阳性结果,同时比较Ⅲ_3、Ⅱ_2、Ⅳ_4与Ⅲ_1、Ⅲ_4的连接片段的测序结果无差异,诊断家系1的Ⅲ_3、Ⅱ_2、Ⅳ4均为BMD女性携带者。
     家系2检测结果:对家系2的1例女性Ⅱ_3的连接片段PCR反应为扩增出与患者Ⅲ_2一致的阳性结果,同时比较Ⅱ_3与Ⅲ_2的连接片段的测序结果无差异,诊断家系2的Ⅱ_3为DMD女性携带者。
     病例4的母亲检测结果:对病例4的母亲的连接片段PCR反应结果为扩增阴性,而对照的病例4扩增出阳性结果,可以排除病例4的母亲为DMD女性携带者。
     4.结论
     在对DMD/BMD先证者的连接片段的进行克隆和测序后,利用常规PCR技术直接检测待诊女性亲属是否带有连接片段,可以达到准确进行携带者检测的目的。
     通过测序分析表明相同家系中患者和女性携带者连接片段的序列完全一致,因此尽管不同家系患者的DMD基因缺失情况各异,但一般而言同一家系DMD基因缺失的基因型相同。
     三、连接片段在缺失型DMD/BMD产前诊断的应用和评价
     1.研究目的
     探讨利用连接片段进行缺失型DMD/BMD产前诊断的方法,通过实施评价其优势和不足。
     2.方法
     研究对象:在家系1的Ⅲ_3确诊为女性携带者之后,在知情同意的情况下将其作为实施产前诊断的对象。携带者Ⅲ_3共妊娠3次,其中Ⅳ_1、Ⅳ_2为先后两次人工流产的绒毛。Ⅳ_3为第三次妊娠待诊胎儿,分别在孕11周绒毛取样和孕20周取羊水标本进行产前诊断。抽提制备以上标本基因组DNA。
     人流绒毛的基因诊断方法:以新设计引物D4-F/R分别对以上2例人流绒毛Ⅳ_1、Ⅳ_2可能存在的连接片段进行PCR扩增和测序,同时扩增先证者Ⅲ_1的连接片段作为对照;以引物ex3-F/R分别检测Ⅳ_1、Ⅳ_2是否有相应外显子缺失;以扩增SPY基因的引物分别对Ⅳ_1、Ⅳ_2作性别鉴定。
     产前诊断方法:以新设计引物D4-F/R分别对携带者Ⅲ_3在不同孕期所取绒毛组织和羊水可能存在的连接片段进行PCR扩增和测序,并扩增先证者Ⅲ_1的连接片段作为对照;以引物ex3-F/R分别检测2次所取样品的DMD基因第3外显子,并以引物ex6-F/R扩增未缺失的第6外显子作为正常对照,判断是否有外显子缺失;以扩增SRY基因的引物分别对2次所取样品作性别鉴定。
     3.结果
     家系1的Ⅲ_3两次人流绒毛的基因诊断结果:对第一次人流绒毛Ⅳ_1的连接片段PCR反应为扩增出与先证者Ⅲ_1一致的阳性结果,对Ⅳ_1第3外显子的PCR检测结果为扩增阳性无缺失,对Ⅳ_1性别鉴定结果为女性。同时比较Ⅳ_1与本家系先证者Ⅲ_1的连接片段的测序结果无差异,诊断携带者Ⅲ_3第一次人流绒毛Ⅳ_1为BMD女性携带者。
     对第二次人流绒毛Ⅳ_2的连接片段PCR反应结果为扩增阴性,对Ⅳ_2第3外显子的PCR检测结果为扩增阳性无缺失,对Ⅳ_2性别鉴定结果为男性。诊断携带者Ⅲ_3第二次人流绒毛Ⅳ_2为正常男胎。
     家系1的Ⅲ_3第三次妊娠产前诊断结果:对孕11周所取绒毛组织基因组DNA的连接片段PCR反应结果为扩增出与先证者Ⅲ_1一致的阳性结果,对其第3外显子的PCR检测结果为扩增阳性无缺失,性别鉴定结果为男性。男性胎儿出现检测到DMD基因缺失连接片段而相应外显子无缺失的矛盾结果,提示所取的绒毛样品受到母体细胞污染。
     对孕20周羊水细胞基因组DNA的连接片段PCR反应结果为扩增出与先证者Ⅲ_1一致的阳性结果,对其第3外显子的PCR检测结果为扩增阴性(经验证第4外显子同为PCR扩增阴性结果),存在相应的DMD基因缺失,性别鉴定结果为男性。同时比较该连接片段与本家系先证者Ⅲ_1的连接片段的测序结果无差异,诊断胎儿Ⅳ_3为BMD患病男胎并指导引产,取引产胎儿组织进行复查结果无误。
     4.结论
     在缺失型DMD/BMD产前诊断上通过PCR扩增连接片段和检测是否有相应的外显子缺失,可以准确判断男性胎儿是否为患病胎儿,并能有效鉴别检测标本是否受到母体细胞污染。不足之处是比较繁琐和耗时,且仅能应用于缺失型DMD/BMD。
     总结:
     1.6例缺失型DMD/BMD研究对象在DNA水平均符合阅读框规则。
     2.报道了迄今为止数量最多的东方亚洲人DMD基因缺失连接片段序列资料,共完成5例中国人连接片段的测序。
     3.DMD基因的一些二级结构特点促进其断裂重组。5例中国人连接片段序列总体上具备容易导致DMD基因缺失重组的所有分子结构特点,包括重复序列、MARs、回文序列、TTTAAA序列等。
     4.5例中国人连接片段均为采取非同源末端连接进行修复,其连接特点包括微小同源性、小的插入、重复、平端连接。
     5.首次对相同DMD/BMD家系中多个患者和携带者的DMD基因缺失连接片段进行测序分析。
     6.发现尽管不同家系患者的DMD基因缺失情况各异,但一般而言同一家系DMD基因缺失的基因型相同。
     7.成功利用常规PCR扩增连接片段的方法对3个不同缺失型DMD/BMD家庭进行携带者检测。
     8.该方法与目前常用携带者检测方法的主要区别是不对DMD基因进行定量分析,只要对女性被检者检测出与先证者一致的连接片段即可确认为携带者,方法直观、准确。
     9.首次将连接片段应用于1例BMD女性携带者产前诊断,实现了利用连接片段进行缺失型DMD/BMD产前诊断的设想。
     10.连接片段应用于DMD/BMD基因诊断的技术缺点是首先需要分析先证者的基因型,比较繁琐和耗时,且仅能应用于缺失型DMD/BMD。
     创新点:
     1.克隆了5例新的DMD基因缺失突变序列。
     2.首次将基于常规PCR技术扩增连接片段的方法应用于缺失型DMD/BMD携带者检测和产前诊断。
     3.突破了以往认为常规PCR技术不能检测DMD/BMD携带者的观点。
     4.在缺失型DMD/BMD产前诊断上通过PCR扩增连接片段和检测是否有相应的外显子缺失,可以准确判断男性胎儿是否为患病胎儿,并能有效鉴别检测标本是否受到母体细胞污染。
     5.该方法对检测样品需求量小,具有应用于植入前遗传学诊断可行性。
DMD gene mutation is the molecular pathological basis for pseudohypertrophic muscular dystrophy.The large gene fragment deletion accounts for~65%in all the mutants.According to the reading-frame hypothesis,the frameshift mutations of DMD gene generally result in Duchenne muscular dystrophy(DMD),whereas the codon mutations result in Becker muscular dystrophy(BMD).Although the mechanism of DMD gene deletion is very complicated,it can be found that DMD gene with breaks and deletions are almost repaired by non-homologous end joining, which results in a new unique DNA sequence—DMD gene deletion junction fragment by the illegitimate recombination of the two ends of breakpoints in each case.
     Cloning and analyzing the sequence features of the junction fragments is useful for studying the mechanism of DMD gene deletion and recombination.We have also considered that using the PCR technique to amplify this unique DNA sequence could be apply to deletional DMD/BMD carrier detection and prenatal diagnosis.This study has 3 chapters:1.Analysis of DMD gene deletion and the sequences of 5 Chinese junction fragments;2.Using the junction fragment for deletional DMD/BMD carrier detection;3.Application and evaluation of the junction fragment for deletional DMD/BMD prenatal diagnosis.
     1.Analysis of DMD gene deletion and the sequences of 5 Chinese junction fragments
     (1)Objective
     Using the reading-frame rule to analyze the relationship between the genotype and the phenotype of the choosed deletional DMD/BMD patients.Sequencing the Chinese DMD gene deletion junction fragments to analyze some features of them and discuss the mechanism of DMD gene deletion and repair.
     (2)Methods
     Study objects:6 definite deletional DMD/BMD patients.Case 1,case 2,case 3, case 4 were affected by DMD.Case 5 and case 6 from a same family were affected by BMD.So actually there were 5 cases that had no blood relationship each other. The peripheral blood genomic DNA of these patients was extracted and prepared.
     Analysis of DMD gene deletion mutations by the reading-frame rule:Using exon primers for PCR detection,case 1 was substantiated with exons 46-50 deletion of DMD gene,and case 2 with exons 51-55 deletion,case 3 with exons 31-43 deletion, case 4 with exons 45-54 deletion,Case 5 and case 6 from the same family with exons 3-5 deletion.Then the 6 cases were analyzed by on line reading-frame program to know their changed types of open reading frame caused by the exons deletion.
     Cloning and sequencing of the junction fragments:We first designed the primer at intervals(often 3 kb sequence)in the corresponding introns that the DMD gene deletion breakpoints of the DMD/BMD cases were located in.After the breakpoints in introns of the 5 cases were localized by the PCR-based genome-walking method successfully,we designed 1 pair of matched-pair primer close to the upstream and the downstream breakpoints respectively to be used in long fragment PCR amplification of each junction fragment.Sequencing after purifying successfully PCR productions.
     Analysis of the sequence features of the junction fragments:The sequences both sides of 5' and 3' breakpoints of 5 forementioned Chinese junction fragments were analyzed by means of repetitive sequence,matrix attachment regions(MARs), palindromic sequence,the sequence TTTAAA and the repair means after gene deletion.
     (3)Results
     Relationship between the genotype and the phenotype of the 6 cases:Through the detection,the deletion mutations of case 1,case 2,case 3 and case 4 all belong to out-of-frame deletion which is the frameshift mutation changing the genetic information of open reading frame.The corresponding clinical phenotype is DMD. The deletion mutations of case 5 and case 6 from the same family belong to in-frame deletion which is the codon mutation maintaining open reading frame correct downstream the deletion.The corresponding clinical phenotype is BMD.
     Sequence features of 5 Chinese junction fragments:It was found that the 5' breakpoint of JUNCTION 1 was located in LINE/L1 element of intron 45 and close to a MAR,with a palindromic sequence nearby.It's 3' breakpoint was close to a MAR of intron 50.The 5' breakpoint of JUNCTION 2 had a palindromic sequence nearby.It's 3' breakpoint was located in LINE/L1 element of intron 55.The 5' breakpoint of JUNCTION 3 was located in LINE/L1 element of intron 30,with a palindromic sequence nearby.The 5' breakpoint of JUNCTION 4 was located in LINE/L1 element of intron 44 and close to a MAR.It's 3' breakpoint had a palindromic sequence beside.The 5' breakpoint of JUNCTION 5 was located in SINE/Alu element of intron 2.It's 3' breakpoint was close to a MAR of intron 5,with the sequence TTTAAA nearby.
     There wasn't extensive homogeneity in gene deletion conjuncted sequence in the 5 cases.A 5 bp microhomologous sequence was found in the joint of JUNCTION 1. The blunt end ligation was found in the joint of JUNCTION 2,with an A→G point mutation at 39 bp site upstream it's 5' breakpoint.A 7 bp inserted sequence was found in the joint of JUNCTION 3.A 4 bp microhomologous sequence was found in the joint of JUNCTION 4.A 26 bp inserted sequence was found in the joint of JUNCTION 5 which formed three 13 bp duplications around it,with an A→G point mutation at 20 bp site upstream it's 5' breakpoint.
     (4)Conclusion
     The relationship between the genotype and the phenotype of the 6 pseudohypertrophic muscular dystrophy cases all fit with the reading-frame rule.4 cases of them are out-of-frame deletions leading to DMD.2 cases of them are in-frame deletions leading to BMD.
     Some secondary structures of DMD gene facilitate gene breakage and recombination.Overall,the sequences of 5 Chinese junction fragments of our study have all the molecular features including repeated sequence,MARs,palindromic sequence,the sequence TTTAAA,etc,which cause DMD gene deletion and recombination easily.Moreover,5 Chinese junction fragments are all repaired by non-homologous end joining whose characteristic junctions showing microhomologies,small insertions,duplications,or blunt end ligation.
     2.Using the junction fragment for deletional DMD/BMD carrier detection
     (1)Objective
     On the basis of DMD gene deletion junction fragment is the unique DNA sequence resulted from illegitimate recombination after the gene deletion,a novel approach is presented here for the detection of deletional DMD/BMD carriers with the junction fragments.
     (2)Methods
     Study objects:The female relations of 2 DMD/BMD families and a sporadic case's family.Family 1 was a BMD family.In this familyⅢ_1 andⅢ_4 were definite patients.The probandⅢ_1(Case 5)had been substantiated with exons 3-5 deletion and its junction fragment(JUNCTION 5)had been cloned.Ⅲ_1's motherⅡ_2 and Ⅲ_4's daughterⅣ_4 were definite carriers.Ⅲ_1's younger sisterⅢ_3 was a possible carrier.Family 2 was a DMD family.In this family the probandⅢ_2(Case 3)had been substantiated with exons 31-43 deletion and its junction fragment(JUNCTION 3)had been cloned.Ⅲ_2's motherⅡ_3 was a definite carrier.Case 4 was a DMD sporadic case that had been substantiated with exons 45-54 deletion and its junction fragment(JUNCTION 4)had been cloned.His mother was to be excluded as a carrier. The peripheral blood genomic DNA of them was extracted and prepared.
     Carriers detection:On the basis of successful sequencing of the junction fragments,we redesigned the primers that amplified above JUNCTION 5, JUNCTION 3,JUNCTION 4 to elevate the achievement ratio of routine PCR amplifying the junction fragments by cutting short the PCR products length.Then 3 pairs of redesigned primer D4-F/R,D31-F/R2,D6-F/R were used to PCR amplify and sequence the possible junction fragments of the female objects of above 2 families and case 4's mother respectively.At the same time the junction fragments of the patients were amplified as control.
     (3)Results
     Results of family 1:The PCR amplifications of the junction fragments of 3 femalesⅢ_3,Ⅱ_2,Ⅳ_4 of family 1 were the same positive results as those of patientsⅢ_1 andⅢ_4.Meanwhile the sequences of the junction fragments ofⅢ_3,Ⅱ_2,Ⅳ_4 andⅢ_1,Ⅲ_4 had no difference by sequencing comparison.SoⅢ_3,Ⅱ_2,Ⅳ_4 of family 1 were all diagnosed as female carriers of BMD.
     Results of family 2:The PCR amplification of the junction fragment of a femaleⅡ_3 of family 2 was the same positive result as that of patientⅢ_2.Meanwhile the sequences of the junction fragments ofⅡ_3 andⅢ_2 had no difference by sequencing comparison.SoⅡ_3 of family 2 was diagnosed as female carrier of DMD.
     Results of case 4's mother:The PCR amplification of the junction fragment of case 4's mother was negative result.But the control of case 4 was positive result.So case 4's mother was excluded as female carrier of DMD.
     (4)Conclusion
     After the junction fragment of the DMD/BMD proband was cloned and sequenced,using the routine PCR technique to detect the female relation to be diagnosed having the junction fragment or not directly can achieve the aim of accurate carrier detection.
     The sequencing results indicate that the junction fragments of the patients and the carriers from the same families are identical,so generally the same family has the same genotype of DMD gene deletion despite the patients from the different families having the different deletions.
     3.Application and evaluation of the junction fragment for deletional DMD/BMD prenatal diagnosis
     (1)Objective
     To study the approach of using the junction fragment for deletional DMD/BMD prenatal diagnosis.It's advantage and disadvantage has been evaluated through the practice.
     (2)Methods
     Study objects:AfterⅢ_3 of family 1 was diagnosed as female carrier,she was choosed as the study object of practising prenatal diagnosis under her agreement. CarrierⅢ_3 was gravida 3.Ⅳ_1 andⅣ_2 were 2 chorionic villi from her successive artificial abortion.Ⅳ_3 was the fetus of tertigravida to be diagnosed.The chorionic villi at 11 weeks' gestation and the amniotic fluid at 20 weeks' gestation were taken respectively as the samples of prenatal diagnosis.The genomic DNA of these samples was extracted and prepared.
     The methods of gene diagnosis of the chorionic villi from artificial abortion:The redesigned primer D4-F/R was used to PCR amplify and sequence the possible junction fragments ofⅣ_1 andⅣ_2 respectively.At the same time the junction fragment of probandⅢ_1 was amplified as control.The primer ex3-F/R was used to identifyⅣ_1 andⅣ_2 with corresponding exons deletion or not respectively.The primer of amplifying SRY gene was used to diagnose the sex ofⅣ_1 andⅣ_2 respectively.
     The methods of prenatal diagnosis:The redesigned primer D4-F/R was used to PCR amplify and sequence the possible junction fragments of the samples of the chorionic villi and the amniotic fluid at different gestation respectively.At the same time the junction fragment of probandⅢ_1 was amplified as control.The primer ex3-F/R was used to amplify exon 3 of the 2 samples to identify them with exons deletion or not respectively,with the primer ex6-F/R being used to amplify the undeleted exon 6 as normal control.The primer of amplifying SRY gene was used to diagnose the sex of the 2 samples respectively.
     (3)Results
     Results of gene diagnosis of 2 chorionic villi fromⅢ_3 's artificial abortion of family 1:The PCR amplification of the junction fragment of the first chorionic villiⅣ_1 was the same positive result as that of probandⅢ_1.The PCR amplification of exon 3 ofⅣ_1 was positive result without deletion.The sex diagnosis ofⅣ_1 was female.Meanwhile the sequences of the junction fragments ofⅣ_1 and probandⅢ_1 of the family had no difference by sequencing comparison.So the chorionic villiⅣ_1 from carrierⅢ_3's first artificial abortion was diagnosed as female carrier of BMD.
     The PCR amplification of the junction fragment of the second chorionic villiⅣ_2 was negative result.The PCR amplification of exon 3 ofⅣ_2 was positive result without deletion.The sex diagnosis ofⅣ_2 was male.So the chorionic villiⅣ_2 from carrierⅢ_3's second artificial abortion was diagnosed as normal male fetus.
     Results of prenatal diagnosis of tertigravidaⅢ_3 of family 1:The PCR amplification of the junction fragment of the chorionic villi sample genomic DNA prepared at 11 weeks' gestation was the same positive result as that of probandⅢ_1. The PCR amplification of it's exon 3 was positive result without deletion.It's sex diagnosis was male.The contradictory outcome of DMD gene deletion junction fragment being detect but without corresponding exons deletion in a male fetus indicated that the chorionic villi sample had been contaminated by maternal cell.
     The PCR amplification of the junction fragment of the amniotic cell genomic DNA prepared at 20 weeks' gestation was the same positive result as that of probandⅢ_1.The PCR amplification of it's exon 3 was negative result(It was checked by exon 4 which was also negative amplification),with corresponding exons deletion.It's sex diagnosis was male.Meanwhile the sequence of it's junction fragment and that of probandⅢ_1 of the family had no difference by sequencing comparison.So fetusⅣ_3 was diagnosed as diseased male fetus with BMD and was instructed in induced abortion.The result was rechecked without mistake by the fetus tissue from the induced abortion.
     (4)Conclusion
     By PCR amplifying the junction fragment and detecting the corresponding exons with deletion or not for deletional DMD/BMD prenatal diagnosis,the male fetus can be diagnosed accurately as diseased fetus or not.As well as the study sample can be identified effectively being contaminated by maternal cell or not.The disadvantage of this approach is laborious and time-consuming,and can only be applied to deletional DMD/BMD.
     Summarization
     (1)The 6 deletional DMD/BMD cases all fit with the reading-frame rule at the DNA level.
     (2)Our study has fulfilled the sequencing of 5 Chinese junction fragments, reporting the largest sequence data of DMD gene deletion junction fragments of east Asian people up to now.
     (3)Some secondary structures of DMD gene facilitate gene breakage and recombination.Overall,the sequences of the 5 Chinese junction fragments have all the molecular features including repeated sequence,MARs,palindromic sequence, the sequence TTTAAA,etc,which cause DMD gene deletion and recombination easily.
     (4)The 5 Chinese junction fragments are all repaired by non-homologous end joining whose characteristic junctions showing microhomologies,small insertions, duplications,or blunt end ligation.
     (5)The DMD gene deletion junction fragments of several patients and carriers from the same DMD/BMD families have been sequenced and analyzed for the first time.
     (6)Our study discovers that generally the same family has the same genotype of DMD gene deletion despite the patients from the different families having the different deletions.
     (7)Our study has used routine PCR amplifying the junction fragment for the carriers detection of 3 different deletional DMD/BMD families successfully.
     (8)The main difference between this approach and the common approaches of carrier detection at present is that it doesn't need quantitative analysis of DMD gene. The female object can be diagnosed as a carrier as long as she was detected in having the same junction fragment as the proband,with direct-viewing and accurateness.
     (9)Our study has applied the junction fragment to prenatal diagnosis for a female carrier of BMD for the first time,realizing the presumption that the junction fragment could be applied to deletional DMD/BMD prenatal diagnosis.
     (10)The disadvantage of the approach of using the junction fragment for gene diagnosis of DMD/BMD is that the genotype of the proband need to be investigated first,which is laborious and time-consuming,and can only be applied to deletional DMD/BMD.
     Innovation
     (1)5 new sequences of DMD gene deletion mutation have been cloned.
     (2)The approach based on routine PCR amplifying the junction fragment has been used for deletional DMD/BMD carrier detection and prenatal diagnosis for the first time.
     (3)The previous viewpoint that the routine PCR technique can't detect the female carriers of DMD/BMD has been broken through.
     (4)By PCR amplifying the junction fragment and detecting the corresponding exons with deletion or not for deletional DMD/BMD prenatal diagnosis,the male fetus can be diagnosed accurately as diseased fetus or not.As well as the study sample can be identified effectively being contaminated by maternal cell or not.
     (5)The approach has the feasibility of being applied to preimplantation genetic diagnosis,with a little check sample needed.
引文
1 Love DR,England SB,Speer A,et al.Sequences of junction fragments in the deletion-prone region of the dystrophin gene[J].Genomics.1991,10(1):57-67.
    2 Nachman MW.Haldane and the first estimates of the human mutation rate[J].J Genet.2004,83(3):231-233.
    3 Koenig M,Beggs AH,Moyer M,et al.The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion[J].Am J Hum Genet.1989,45(4): 498-506.
    4 White S, Kalf M, Liu Q, et al.Comprehensive detection of genomic duplications and deletions in the DMD gene, by use of multiplex amplifiable probe hybridization[J].Am J Hum Genet.2002, 71(2): 365-374.
    5 Muntoni F, Torelli S, Ferlini A.Dystrophin and mutations: one gene, several proteins, multiple phenotypes[J].Lancet Neurol.2003,2(12): 731-740.
    6 Gualandi F, Rimessi P, Trabanelli C, et al.Intronic breakpoint definition and transcription analysis in DMD/BMD patients with deletion/duplication at the 5' mutation hot spot of the dystrophin gene[J].Gene.2006, 370:26-33.
    7 Emery AE.The muscular dystrophies [J].Lancet.2002, 359(9307):687-695.8 Berko BA, Swift M.X-linked dilated cardiomyopathy [J].N Engl J Med.1987,316(19):1186-1191.
    9 Mandel JL.Dystrophin: the gene and its product[J].Nature.1989,339(6226):584-586.
    10 Lander ES, Linton LM, Birren B, et al.Initial sequencing and analysis of the human genome[J].Nature.2001,409(6822):860-921.
    11 Duan D.From the smallest virus to the biggest gene: marching towards gene therapy for duchenne muscular dystrophy[J].Discov Med.2006,6(33):103-108.
    12 Bies RD, Phelps SF, Cortez MD, et al.Human and murine dystrophin mRNA transcripts are differentially expressed during skeletal muscle, heart, and brain development[J].Nucleic Acids Res.1992,20(7): 1725-1731.
    13 Torelli S, Ferlini A, Obici L, et al.Expression, regulation and localisation of dystrophin isoforms in human foetal skeletal and cardiac muscle[J].Neuromuscul Disord.1999,9(8):541-551.
    14 Sironi M, Bardoni A, Felisari G, et al.Transcriptional activation of the non-muscle, full-length dystrophin isoforms in Duchenne muscular dystrophy skeletal muscle[J].J Neurol Sci.2001,186(l-2):51-57.
    15 Nishio H, Takeshima Y, Narita N, et al.Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter[J].J Clin Invest.1994, 94(3):1037-1042.
    16 Wheway JM, Roberts RG.The dystrophin lymphocyte promoter revisited: 4.5-megabase intron, or artifact[J]? Neuromuscul Disord.2003,13(1):17-20.
    17 Pillers DM, Bulman DE, Weleber RG, et al.Dystrophin expression in the human retina is required for normal function as defined by electroretinography[J].Nat Genet.1993, 4(1):82-86.
    18 D'Souza VN, Nguyen TM, Morris GE, et al.A novel dystrophin isoform is required for normal retinal electrophysiology[J].Hum Mol Genet.1995,4(5):837-842.
    19 Lidov HG, Selig S, Kunkel LM.Dp140: a novel 140 kDa CNS transcript from the dystrophin locus[J].Hum Mol Genet.1995,4(3):329-335.
    20 Byers TJ, Lidov HG, Kunkel LM.An alternative dystrophin transcript specific to peripheral nerve[J].Nat Genet.1993,4(1):77-81.
    21 Bar S, Barnea E, Levy Z, et al.A novel product of the Duchenne muscular dystrophy gene which greatly differs from the known isoforms in its structure and tissue distribution[J].Biochem J.1990, 272(2):557-560.
    22 Rando TA.The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies [J].Muscle Nerve.2001,24(12):1575-1594.
    23 Petrof BJ.Molecular pathophysiology of myofiber injury in deficiencies of the dystrophin-glycoprotein complex[J].Am J Phys Med Rehabil.2002, 81(11suppl):S162-174.
    24 Hegde MR,Chin EL,Mulle JG,et al.Microarray-based mutation detection in the dystrophin gene[J].Hum Mutat.2008,29(9):1091-1099.
    25 Chaturvedi LS,Mukherjee M,Srivastava S,et al.Point mutation and polymorphism in Duchenne/Becker muscular dystrophy(D/BMD)patients[J].Exp Mol Med.2001,33(4):251-256.
    26 den Dunnen JT,Grootscholten PM,Bakker E,et al.Topography of the Ducherme muscular dystrophy(DMD)gene:FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications[J].Am J Hum Genet.1989,45(6):835-847.
    27 Giliberto F,Ferreiro V,Dalamon V,et al.Dystrophin deletions and cognitive impairment in Duchenne/Becker muscular dystrophy[J].Neurol Res.2004,26(1):83-87.
    28 Sironi M,Pozzoli U,Comi GP,et al.A region in the dystrophin gene major hot spot harbors a cluster of deletion breakpoints and generates double-strand breaks in yeast[J].FASEB J.2006,20(11):1910-1912.
    29 Beggs AH,Koenig M,Boyce FM,et al.Detection of 98%of DMD/BMD gene deletions by polymerase chain reaction[J].Hum Genet.1990,86(1):45-48.
    30 Oudet C,Hanauer A,Clemens P,et al.Two hot spots of recombination in the DMD gene correlate with the deletion prone regions[J].Hum Mol Genet.1992,1(8):599-603.
    31 Nobile C,Galvagni F,Marchi J,et al.Genomic organization of the human dystrophin gene across the major deletion hot spot and the 3'region[J].Genomics.1995,28(1):97-100.
    32 Blake DJ,Weir A,Newey SE,et al.Function and genetics of dystrophin and dystrophin-related proteins in muscle[J].Physiol Rev.2002,82(2):291-329.
    33 钟敏,潘速跃,陆兵勋.假肥大型肌营养不良症患者dystrophin基因缺失断裂点的分子结构特点[J].中华神经科杂志,2007,40(8):521-524.
    34 Chu G Double strand break repair[J].J Biol Chem.1997,272(39):24097-24100.
    35 Roth DB, Porter TN, Wilson JH.Mechanisms of nonhomologous recombination in mammalian cells[J].Mol Cell Biol.1985, 5(10):2599-2607.
    36 Pfeiffer P, Thode S, Hancke J, et al.Mechanisms of overlap formation in nonhomologous DNA end joining [J].Mol Cell Biol.1994,14(2):888-895.
    37 Sargent RG, Brenneman MA, Wilson JH.Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination[J].Mol Cell Biol.1997,17(1):267-277.
    38 England SB, Nicholson LV, Johnson MA, et al.Very mild muscular dystrophy associated with the deletion of 46% of dystrophin[J].Nature.1990,343(6254):180-182.
    39 Love DR, Flint TJ, Marsden RF, et al.Characterization of deletions in the dystrophin gene giving mild phenotypes[J].Am J Med Genet.1990, 37 (1):136-142.
    40 Love DR, Flint TJ, Genet SA, et al.Becker muscular dystrophy patient with a large intragenic dystrophin deletion: implications for functional minigenes and gene therapy[J].J Med Genet.1991, 28(12):860-864.
    41 Gospe SM Jr, Lazaro RP, Lava NS, et al.Familial X-linked myalgia and cramps: a nonprogressive myopathy associated with a deletion in the dystrophin gene [J].Neurology.1989, 39(10): 1277-1280.
    42 Beggs AH, Hoffman EP, Snyder JR, et al.Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies[J].Am J Hum Genet.1991,49(1):54-67.
    43 Angelini C, Fanin M, Freda MP, et al.Prognostic factors in mild dystrophinopathies[J].J Neurol Sci.1996,142(l-2):70-78.
    44 Melis MA, Cau M, Muntoni F, et al.Elevation of serum creatine kinase as the only manifestation of an intragenic deletion of the dystrophin gene in three unrelated families[J].Eur J Paediatr Neurol.1998, 2(5):255-261.
    45 Monaco AP, Bertelson CJ, Liechti-Gallati S, et al.An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus[J].Genomics.1988,2(1):90-95.
    46 Zhou GQ, Xie HQ, Zhang SZ, et al.Current understanding of dystrophin-related muscular dystrophy and therapeutic challenges ahead [J].Chin Med J (Engl).2006, 119(16):1381-1391
    47 Malhotra SB, Hart KA, Klamut HJ, et al.Frame-shift deletions in patients with Duchenne and Becker muscular dystrophy[J].Science.1988,242(4879):755-759.
    48 Baumbach LL, Chamberlain JS, Ward PA, et al.Molecular and clinical correlations of deletions leading to Duchenne and Becker muscular dystrophies [J].Neurology.1989, 39(4):465-474.
    49 Gillard EF, Chamberlain JS, Murphy EG, et al.Molecular and phenotypic analysis of patients with deletions within the deletion-rich region of the Duchenne muscular dystrophy (DMD) gene[J].Am J Hum Genet.1989,45(4):507-520.
    50 Muntoni F, Gobbi P, Sewry C, et al.Deletions in the 5' region of dystrophin and resulting phenotypes[J].J Med Genet.1994, 31(11):843-847.
    51 Arahata K, Beggs AH, Honda H, et al.Preservation of the C-terminus of dystrophin molecule in the skeletal muscle from Becker muscular dystrophy[J].J Neurol Sci.1991,101(2): 148-156.
    52 Elhawary NA, Shawky RM, Hashem N.Frameshift deletion mechanisms in Egyptian Duchenne and Becker muscular dystrophy families[J].Mol Cells.2004,18(2):141-149.
    53 Dubowitz V.Current and future therapy in muscular dystrophy; need for a common language between basic scientists and clinicians [J].Acta Myol.2004, 23(2):Ⅴ-Ⅸ.
    54 Davies KE, Grounds MD.Treating muscular dystrophy with stem cells[J]? Cell.2006, 127(7): 1304-1306.
    55 Foster K, Foster H, Dickson JG.Gene therapy progress and prospects: Duchenne muscular dystrophy [J].Gene Ther.2006,13(24):1677-1685.
    56 Grounds MD, Davies KE.The allure of stem cell therapy for muscular dystrophy[J].Neuromuscul Disord.2007, 17(3):206-208.
    57 Ferreiro V, Giliberto F, Francipane L, et al.The role of polymorphic short tandem (CA)n repeat loci segregation analysis in the detection of Duchenne muscular dystrophy carriers and prenatal diagnosis [J].Mol Diagn.2005, 9(2):67-80.
    58 Velazquez-Wong AC, Hernandez-Huerta C, Marquez-Calixto A, et al.Identification of duchenne muscular dystrophy female carriers by fluorescence in situ hybridization and RT-PCR[J].Genet Test.2008,12(2):221-223.
    59 Chamberlain JS, Gibbs RA, Ranier JE, et al.Multiplex PCR for the diagnosis of Duchenne muscular dystrophy.In: PCR protocols: a guide to methods and applications[M].San Diego: Academic Press, 1990.272-281.
    60 Frisso G, Carsana A, Tinto N, et al.Direct detection of exon deletions/duplications in female carriers of and male patients with Duchenne/Becker muscular dystrophy[J].Clin Chem.2004, 50(8):1435-1438.
    61 Gatta V, Scarciolla O, Gaspari AR, et al.Identification of deletions and duplications of the DMD gene in affected males and carrier females by multiple ligation probe amplification (MLPA)[J].Hum Genet.2005,117(1):92-98.
    62 Mao YP, Cremer M.Detection of Duchenne muscular dystrophy carriers by dosage analysis using the DMD cDNA clone 8[J].Hum Genet.1989,81(2):193-195.
    63 Mansfield ES, Robertson JM, Lebo RV, et al.Duchenne/Becker muscular dystrophy carrier detection using quantitative PCR and fluorescence-based strategies[J].Am J Med Genet.1993,48(4):200-208.
    64 Yau SC, Bobrow M, Mathew CG, et al.Accurate diagnosis of carriers of deletions and duplications in Duchenne/Becker muscular dystrophy by fluorescent dosage analysis[J].J Med Genet.1996, 33(7):550-558.
    65 Joncourt F, Neuhaus B, Jostarndt-Foegen K, et al.Rapid identification of female carriers of DMD/BMD by quantitative real-time PCR[J].Hum Mutat.2004, 23(4):385-391.
    66 Ried T, Mahler V, Vogt P, et al.Direct carrier detection by in situ suppression hybridization with cosmid clones of the Duchenne/Becker muscular dystrophy locus[J].Hum Genet.1990, 85(6):581-586.
    67 Ligon AH, Kashork CD, Richards CS, et al.Identification of female carriers for Duchenne and Becker muscular dystrophies using a FISH-based approach[J].Eur J Hum Genet.2000, 8(4):293-298
    68 Xiao Y, Jiang X, Wang R.Screening for DMD/BMD deletion carriers by fluorescence in situ hybridization[J].Genet Test.2003, 7(3): 195-201.
    69 Schouten JP, McElgunn CJ, Waaijer R, et al.Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification[J].Nucleic Acids Res.2002, 30(12):e57.
    70 Janssen B, Hartmann C, Scholz V, et al.MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene: potential and pitfalls[J].Neurogenetics, 2005, 6(1):29-35.
    71 Lalic T, Vossen RH, Coffa J, et al.Deletion and duplication screening in the DMD gene using MLPA[J].Eur J Hum Genet, 2005,13(11):1231-1234.
    72 Schrijver I, Cherny SC, Zehnder JL.Testing for maternal cell contamination in prenatal samples: a comprehensive survey of current diagnostic practices in 35 molecular diagnostic laboratories [J].J Mol Diagn.2007, 9(3):394-400.
    73 Nakamura A, Yoshida K, Fukushima K, et al.Follow-up of three patients with a large in-frame deletion of exons 45-55 in the Duchenne muscular dystrophy (DMD) gene[J].J Clin Neurosci.2008,15(7):757-763.
    1 Koenig M,Hoffman EP,Bertelson CJ,et al.Complete cloning of the Duchenne muscular dystrophy(DMD)eDNA and preliminary genomie organization of the DMD gene in normal and affected individuals[J].Cell.1987,50(3):509-517.
    2 Davies KE,Smith TJ,Bundey S,et al.Mild and severe muscular dystrophy associated with deletions in Xp21 of the human X chromosome[J].J Med Genet.1988,25(1):9-13.
    3 Hamed S,Sutherland-Smith A,Gorospe J,et al.DNA sequence analysis for structure/function and mutation studies in Becker muscular dystrophy[J].Clin Genet.2005,68(1):69-79.
    4 Monaco AP,Bertelson CJ,Liechti-Gallati S,et al.An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus[J].Genomics.1988,2(1):90-95.
    5 Toffolatti L,Cardazzo B,Nobile C,et al.Investigating the mechanism of chromosomal deletion:characterization of 39 deletion breakpoints in introns 47and 48 of the human dystrophin gene[J].Genomics.2002,80(5):523-530.
    6 Sironi M,Pozzoli U,Cagliani R,et al.Relevance of sequence and structure elements for deletion events in the dystrophin gene major hot-spot[J].Hum Genet,2003,112(3):272-288.
    7 萨姆布鲁克J,拉塞尔DW,著.黄培堂,等译.分子克隆实验指南[M].第3版.北京.科学出版社,2002.463-471.
    8 Chamberlain JS,Gibbs RA,Ranier JE,et al.Multiplex PCR for the diagnosis of Duchenne muscular dystrophy.In:PCR protocols:a guide to methods and applications[M].San Diego:Academic Press,1990.272-281.
    9 Beggs AH,Koenig M,Boyce FM,et al.Detection of 98%of DMD/BMD gene deletions by polymerase chain reaction[J].Hum Genet.1990,86(1):45-48.
    10 钟敏,潘速跃,陆兵勋,等.dystrophin基因第45~54外显子缺失连接片段的克隆和测序[J].中华医学遗传学杂志,2006,23(2):138-141.
    11 钟敏,潘速跃,陆兵勋,等.Dystrophin基因3~5号外显子缺失连接片段的克 隆和测序[J].南方医科大学学报,2006,26(6):757-759.
    12 钟敏,潘速跃,陆兵勋,等.在Dystrophin基因大内含子上定位缺失突变位点的策略[J].中国临床康复,2006,10(12):120-121.
    13 Hodgson S,Hart K,Abbs S,et al.Correlation of clinical and deletion data in Duchenne and Becket muscular dystrophy[J].J Med Genet.1989,26(11):682-693.
    14 den Dunnen JT,Grootscholten PM,Bakker E,et al.Topography of the Duchenne muscular dystrophy(DMD)gene:FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications[J].Am J Hum Genet.1989,45(6):835-847.
    15 Abbs S,Bobrow M.Analysis of quantitative PCR for the diagnosis of deletion and duplication carriers in the dystrophin gene[J].J Med Genet.1992,29(3):191-196.
    16 Yau SC,Bobrow M,Mathew CG,et al.Accurate diagnosis of carriers of deletions and duplications in Duchenne/Becker muscular dystrophy by fluorescent dosage analysis[J].J Med Genet.1996,33(7):550-558.
    17 White S,Kalf M,Liu Q,et al.Comprehensive detection of genomic duplications and deletions in the DMD gene,by use of multiplex amplifiable probe hybridization[J].Am J Hum Genet.2002,71(2):365-374.
    18 Schwartz M,Duno M,Palle AL,et al.Deletion of exon 16 of the dystrophin gene is not associated with disease[J].Hum Mutat.2007,28(2):205-211.
    19 Nakamura A,Yoshida K,Fukushima K,et al.Follow-up of three patients with a large in-frame deletion of exons 45-55 in the Duchenne muscular dystrophy(DMD)gene[J].J Clin Neurosci.2008,15(7):757-763.
    20 McNaughton JC,Cockburn D J,Hughes G,et al.Is gene deletion in eukaryotes sequence-dependent? A study of nine deletion junctions and nineteen other deletion breakpoints in intron 7 of the human dystrophin gene[J].Gene.1998,222(1):41-51.
    21 潘速跃,张成,刘焯霖,等.Dystrophin基因第51号外显子缺失连接片段的克隆和测序[J].遗传学报,2002,29(2):105-110.
    22 盛文利,陈江瑛,潘速跃,等.缺失型杜氏肌营养不良症缺失热区内含子断裂点分子结构特点的对比分析[J].中华医学遗传学杂志,2003,20(5):376-380.
    23 Suminaga R,Takeshima Y,Yasuda K,et al.Non-homologous recombination between Alu and LINE-1 repeats caused a 430-kb deletion in the dystrophin gene:a novel source of genomic instability[J].J Hum Genet.2000,45(6):331-336.
    24 Baumbach LL,Chamberlain JS,Ward PA,et al.Molecular and clinical correlations of deletions leading to Duchenne and Becker muscular dystrophies[J].Neurology.1989,39(4):465-474.
    25 Koenig M,Beggs AH,Moyer M,et al.The molecular basis for Duchenne versus Becker muscular dystrophy:correlation of severity with type of deletion[J].Am J Hum Genet.1989,45(4):498-506.
    26 Gillard EF,Chamberlain JS,Murphy EG,et al.Molecular and phenotypic analysis of patients with deletions within the deletion-rich region of the Duchenne muscular dystrophy(DMD)gene[J].Am J Hum Genet.1989,45(4):507-520.
    27 Banerjee M,Verma IC.Are there ethnic differences in deletions in the dystrophin gene?[J].Am J Med Genet.1997,68(2):152-157.
    28 Aartsma-Rus A,Van Deutekom JC,Fokkema IF,et al.Entries in the Leiden Duchenne muscular dystrophy mutation database:An overview of mutation types and paradoxical cases that confirm the reading-frame rule[J].Muscle Nerve.2006,34(2):135-144.
    29 Beggs AH,Hoffman EP,Snyder JR,et al.Exploring the molecular basis for variability among patients with Becker muscular dystrophy:dystrophin gene and protein studies[J].Am J Hum Genet.1991,49(1):54-67.
    30 Arikawa-Hirasawa E,Koga R,et al.A severe muscular dystrophy patient with an internally deleted very short(110 kD)dystrophin:presence of the binding site for dystrophin-associated glycoprotein(DAG)may not be enough for physiological function of dystrophin[J].Neuromuscul Disord.1995, 5(5):429-438.
    31 Fanin M, Freda MP, Vitiello L, et al.Duchenne phenotype with in-frame deletion removing major portion of dystrophin rod: threshold effect for deletion size[J]?Muscle Nerve.1996, 19(9): 1154-1160.
    32 England SB, Nicholson LV, Johnson MA, et al.Very mild muscular dystrophy associated with the deletion of 46% of dystrophin[J].Nature.1990,343(6254): 180-182.
    33 Mirabella M, Galluzzi G, Manfredi G, et al.Giant dystrophin deletion associated with congenital cataract and mild muscular dystrophy[J].Neurology.1998,51(2):592-595.
    34 Novakovic I, Bojic D, Todorovic S, et al.Proximal dystrophin gene deletions and protein alterations in becker muscular dystrophy[J].Ann N Y Acad Sci.2005,1048:406-410.
    35 Carsana A, Frisso G, Tremolaterra MR, et al.Analysis of dystrophin gene deletions indicates that the hinge Ⅲ region of the protein correlates with disease severity [J].Ann Hum Genet.2005, 69(Pt 3):253-259.
    36 Cagliani R, Sironi M, Ciafaloni E, et al.An intragenic deletion/inversion event in the DMD gene determines a novel exon creation and results in a BMD phenotype[J].Hum Genet.2004,115(1):13-18.
    37 Blonden LA, Grootscholten PM, den Dunnen JT, et al.242 breakpoints in the 200-kb deletion-prone P20 region of the DMD gene are widely spread[J].Genomics.1991, 10(3):631-639.
    38 Nobile C, Toffolatti L, Rizzi F, et al.Analysis of 22 deletion breakpoints in dystrophin intron 49[J].Hum Genet.2002,110(5):418-421.
    39 Sironi M, Pozzoli U, Comi GP, et al.A region in the dystrophin gene major hot spot harbors a cluster of deletion breakpoints and generates double-strand breaks in yeast[J].FASEB J.2006,20(11):1910-1912.
    40 钟敏,潘速跃,陆兵勋.假肥大型肌营养不良症患者dystrophin基因缺失断裂点的分子结构特点[J].中华神经科杂志,2007,40(8):521-524.
    41 Burwinkel B,Kilimann MW.Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease[J].J Mol Biol.1998,277(3):513-517.
    42 Huie ML,Shanske AL,Kasper JS,et al.A large Alu-mediated deletion,identified by PCR,as the molecular basis for glycogen storage disease Type Ⅱ(GSDII)[J].Hum Genet.1999,104(1):94-98.
    43 盛文利,陈江瑛,朱良付,等.DMD基因内含子的重复序列与内含子不稳定性和基因缺失的关联[J].中山大学学报(医学科学版),2005,26(1):11-15.
    44 Boulikas T.Chromatin domains and prediction of MAR sequences[J].Int Rev Cytol.1995,162A:279-388.
    45 Iarovaia OV,Bystritskiy A,Ravcheev D,et al.Visualization of individual DNA loops and a map of loop domains in the human dystrophin gene[J].Nucleic Acids Res.2004,32(7):2079-2086.
    46 Froelich-Ammon SJ,Gale KC,Osheroff N.Site-specific cleavage of a DNA hairpin by topoisomerase Ⅱ.DNA secondary structure as a determinant of enzyme recognition/cleavage[J].J Biol Chem.1994,269(10):7719-7725.
    47 Singh GB,Kramer JA,Krawetz SA.Mathematical model to predict regions of chromatin attachment to the nuclear matrix[J].Nucleic Acids Res.1997,25(7):1419-1425.
    48 Chu G.Double strand break repair[J].J Biol Chem.1997,272(39):24097-24100.
    49 Sargent RG,Brenneman MA,Wilson JH.Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination[J].Mol Cell Biol.1997,17(1):267-277.
    50 Nicolas AL, Young CS.Characterization of DNA end joining in a mammalian cell nuclear extract: junction formation is accompanied by nucleotide loss, which is limited and uniform but not site specific[J].Mol Cell Biol.1994, 14(1): 170-180.
    51 Pfeiffer P, Thode S, Hancke J, et al.Mechanisms of overlap formation in nonhomologous DNA end joining[J].Mol Cell Biol.1994,14(2):888-895.
    52 Lin Y, Waldman AS.Capture of DNA sequences at double-strand breaks in mammalian chromosomes[J].Genetics.2001, 158(4): 1665-74.
    53 Lynch M.Intron evolution as a population-genetic process[J].Proc Natl Acad Sci USA.2002, 99(9):6118-23.
    54 Redon R, Ishikawa S, Fitch KR, et al.Global variation in copy number in the human genome[J].Nature.2006,444(7118):444-454.
    55 Stranger BE, Forrest MS, Dunning M, et al.Relative impact of nucleotide and copy number variation on gene expression phenotypes[J].Science.2007, 315(5813):848-853.
    56 Armour JA, Sismani C, Patsalis PC, et al.Measurement of locus copy number by hybridisation with amplifiable probes[J].Nucleic Acids Res.2000, 28(2):605-609.
    57 Schouten JP, McElgunn CJ, Waaijer R, et al.Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification[J].Nucleic Acids Res.2002, 30(12):e57.
    58 White SJ, den Dunnen JT.Copy number variation in the genome; the human DMD gene as an example[J].Cytogenet Genome Res.2006,115(3-4):240-246.
    1 Sinha S,Mishra S,Singh V,et al.High frequency of new mutations in North Indian Duchenne/Becker muscular dystrophy patients[J].Clin Genet.1996,50(5):327-331.
    2 Mukherjee M,Chaturvedi LS,Srivastava S,et al.De novo mutations in sporadic deletional Duchenne muscular dystrophy(DMD)cases[J].Exp Mol Med.2003,35(2):113-117.
    3 Traverso M,Malnati M,Minetti C,et al.Multiplex real-time PCR for detection of deletions and duplications in dystrophin gene[J].Biochem Biophys Res Commun.2006,339(1):145-150.
    4 Panigrahi I,Mittal B.Carrier detection and prenatal diagnosis in Duchenne/Becker muscular dystrophy[J].Indian Pediatr.2001,38(6):631-639.
    5 Joncourt F,Neuhaus B,Jostarndt-Foegen K,et al.Rapid identification of female carriers of DMD/BMD by quantitative real-time PCR[J].Hum Mutat.2004,23(4):385-391.
    6 Muntoni F,Torelli S,Ferlini A.Dystrophin and mutations:one gene,several proteins,multiple phenotypes[J].Lancet Neurol.2003,2(12):731-740.
    7 Lalic T,Vossen RH,Coffa J,et al.Deletion and duplication screening in the DMD gene using MLPA[J].Eur J Hum Genet,2005,13(11):1231-1234.
    8 钟敏,潘速跃,陆兵勋,等.dystrophin基因第45~54外显子缺失连接片段的克隆和测序[J].中华医学遗传学杂志,2006,23(2):138-141.
    9 萨姆布鲁克J,拉塞尔DW,著.黄培堂,等译.分子克隆实验指南[M].第3版.北京.科学出版社,2002.463-471.
    10 Vel(?)zquez-Wong AC,Hern(?)ndez-Huerta C,M(?)rquez-Calixto A,et al.Identification of duchenne muscular dystrophy female carriers by fluorescence in situ hybridization and RT-PCR[J].Genet Test.2008,12(2):221-223.
    11 Hussain T,Kumar DV,Sundaram C,et al.Quantitative ELISA for platelet m-calpain:a phenotypic index for detection of carriers of Duchenne muscular dystrophy[JJ].Clin Chim Acta.1998,269(1):13-20.
    12 Chamberlain JS,Gibbs RA,Ranier JE,et al.Multiplex PCR for the diagnosis of Duchenne muscular dystrophy.In:PCR protocols:a guide to methods and applications[M].San Diego:Academic Press,1990.272-281.
    13 Beggs AH,Koenig M,Boyce FM,et al.Detection of 98%of DMD/BMD gene deletions by polymerase chain reaction[JJ].Hum Genet.1990,86(1):45-48.
    14 Frisso G,Carsana A,Tinto N,et al.Direct detection of exon deletions/duplications in female carriers of and male patients with Duchenne/Becker muscular dystrophy[J].Clin Chem.2004,50(8):1435-1438.
    15 Gatta V,Scarciolla O,Gaspari AR,et al.Identification of deletions and duplications of the DMD gene in affected males and carrier females by multiple ligation probe amplification(MLPA)[J].Hum Genet.2005,117(1):92-98.
    16 Mao YP,Cremer M.Detection of Duchenne muscular dystrophy carriers by dosage analysis using the DMD cDNA clone 8[J].Hum Genet.1989,81(2):193-195.
    17 Mansfield ES,Robertson.JM,Lebo RV,et al.Duchenne/Becker muscular dystrophy carrier detection using quantitative PCR and fluorescence-based strategies[J].Am J Med Genet.1993,48(4):200-208.
    18 Pastore L,Caporaso MG,Frisso G,et al.A quantitative polymerase chain reaction (PCR) assay completely discriminates between Duchenne and Becker muscular dystrophy deletion carriers and normal females[J].Mol Cell Probes.1996,10(2):129-137.
    19 Yau SC, Bobrow M, Mathew CG, et al.Accurate diagnosis of carriers of deletions and duplications in Duchenne/Becker muscular dystrophy by fluorescent dosage analysis[J].J Med Genet.1996, 33(7):550-558.
    20 Ried T, Mahler V, Vogt P, et al.Direct carrier detection by in situ suppression hybridization with cosmid clones of the Duchenne/Becker muscular dystrophy locus[J].Hum Genet.1990, 85(6):581-586.
    21 Ligon AH, Kashork CD, Richards CS, et al.Identification of female carriers for Duchenne and Becker muscular dystrophies using a FISH-based approach[J].Eur JHum Genet.2000, 8(4):293-298
    22 Xiao Y, Jiang X, Wang R.Screening for DMD/BMD deletion carriers by fluorescence in situ hybridization[J].Genet Test.2003, 7(3):195-201.
    23 White S, Kalf M, Liu Q, et al.Comprehensive detection of genomic duplications and deletions in the DMD gene, by use of multiplex amplifiable probe hybridization[J].Am J Hum Genet.2002, 71(2):365-374.
    24 Schouten JP, McElgunn CJ, Waaijer R, et al.Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification[J].Nucleic Acids Res.2002, 30(12):e57.
    25 Janssen B, Hartmann C, Scholz V, et al.MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene:potential and pitfalls[J].Neurogenetics, 2005, 6(1):29-35.
    26 Lai KK, Lo IF, Tong TM, Cheng LY, et al.Detecting exon deletions and duplications of the DMD gene using Multiplex Ligation-dependent Probe Amplification (MLPA)[J].Clin Biochem.2006, 39(4):367-372.
    27 黎青,李少英,胡冬贵,等.假肥大型肌营养不良症的产前基因诊断[J].北京大学学报(医学版),2006,38(1):53-56.
    28 申本昌,张成,孙筱放,等.Duchenne肌营养不良症患者及携带者的基因缺失和重复突变检测[J].中华医学遗传学杂志,2007,24(4):460-463.
    29 钟敏,潘速跃,陆兵勋.假肥大型肌营养不良症患者dystrophin基因缺失断裂点的分子结构特点[J].中华神经科杂志,2007,40(8):521-524.
    30 McNaughton JC,Cockburn DJ,Hughes G,et al.Is gene deletion in eukaryotes sequence-dependent? A study of nine deletion junctions and nineteen other deletion breakpoints in intron7 of the human dystrophin gene[J].Gene.1998,222(1):41-51.
    31 钟敏,潘速跃,陆兵勋,等.克隆缺失连接片段——一种基于PCR技术的缺失型假肥大型肌营养不良症的携带者检测[J].中华医学遗传学杂志,2008,25(6):642-645.
    1 Panigrahi I,Mittal B.Carrier detection and prenatal diagnosis in Duchenne/Becker muscular dystrophy[J].Indian Pediatr.2001,38(6):631-639.
    2 Ferreiro V,Giliberto F,Francipane L,et al.The role of polymorphic short tandem (CA)n repeat loci segregation analysis in the detection of Duchenne muscular dystrophy carriers and prenatal diagnosis[J].Mol Diagn.2005,9(2):67-80.
    3 Sinha S,Mishra S,Singh V,et al.High frequency of new mutations in North Indian Duchenne/Becker muscular dystrophy patients[J].Clin Genet.1996,50(5):327-331.
    4 Mukherjee M,Chaturvedi LS,Srivastava S,et al.De novo mutations in sporadic deletional Duchenne muscular dystrophy(DMD) cases[J].Exp Mol Med.2003,35(2):113-117.
    5 Schrijver I,Cherny SC,Zehnder JL.Testing for maternal cell contamination in prenatal samples:a comprehensive survey of current diagnostic practices in 35molecular diagnostic laboratories[J].J Mol Diagn.2007,9(3):394-400.
    6 萨姆布鲁克J,拉塞尔DW,著.黄培堂,等译.分子克隆实验指南[M].第3版.北京.科学出版社,2002.463-471.
    7 Lo YM,Yein MS,Lau TK,et al.Quantitative analysis of fetal DNA in matemal plasma and serum:implications for noninvasive prenatal diagnosis[J].Am J Hum Genet.1998,62(4):768-775.
    8 Dubowitz V.Current and future therapy in muscular dystrophy;need for a common language between basic scientists and clinicians[J].Acta Myol.2004,23(2):Ⅴ-Ⅸ.
    9 Davies KE,Grounds MD.Treating muscular dystrophy with stem cells[J]? Cell.2006,127(7):1304-1306.
    10 Foster K,Foster H,Dickson JG.Gene therapy progress and prospects:Duchenne muscular dystrophy[J].Gene Ther.2006,13(24):1677-1685.
    11 Grounds MD,Davies KE.The allure of stem cell therapy for muscular dystrophy[J].Neuromuscul Disord.2007,17(3):206-208.
    12 Malmgren H,White I,Johansson S,et al.PGD for dystrophin gene deletions using fluorescence in situ hybridization[J].Mol Hum Reprod.2006,12(5):353-356.
    13 Nakagome Y,Nagafuchi S,Nakahori Y.Prenatal sex determination[J].Lancet.1990,335(8684):291.
    14 Ao A,Erickson RP,Winston RM,et al.Transcription of paternal Y-linked genes in the human zygote as early as the pronucleate stage[J].Zygote.1994,2(4):281-287.
    15 Avent ND,Chitty LS.Non-invasive diagnosis of fetal sex;utilisation of free fetal DNA in matemal plasma and ultrasound[J].Prenat Diagn,2006,26(7):598-603.
    16 Geifman-Holtzman O,Ober Berman J.Prenatal diagnosis:update on invasive versus noninvasive fetal diagnostic testing from maternal blood[J].Expert Rev Mol Diagn.2008,8(6):727-751.
    17 Tongsong T,Wanapirak C,Kunavikatikul C,et al.Fetal loss rate associated with cordocentesis at midgestation[J].Am J Obstet Gynecol.2001,184(4):719-723.
    18 Eisenberg B,Wapner RJ.Clinical proceduress in prenatal diagnosis[J].Best Pract Res Clin Obstet Gynaecol.2002,16(5):611-627.
    19 Brambati B,Tului L.Chorionic villus sampling and amniocentesis[J].Curr Opin Obstet Gynecol.2005,17(2):197-201.
    20 Hahn S,Chitty LS.Noninvasive prenatal diagnosis:current practice and future perspectives[J].Curr Opin Obstet Gynecol.2008,20(2):146-151.
    21 Adinolfi M,Sherlock J.Fetal cells in transcervical samples at an early stage of gestation[J].J Hum Genet.2001,46(3):99-104.
    22 Antoniadi T,Yapijakis C,Kaminopetros P,et al.A simple and effective approach for detecting maternal cell contamination in molecular prenatal diagnosis[J].Prenat Diagn.2002,22(5):425-429.
    23 Mann K,Donaghue C,Fox SP,et al.Strategies for the rapid prenatal diagnosis of chromosome aneuploidy[J].Eur J Hum Genet.2004,12(11):907-915.
    24 Rueangchainikhom W,Sarapak S,Orungrote N.Chorionic villus sampling for early prenatal diagnosis at Bhumibol Adulyadej Hospital[J].J Med Assoc Thai.2008,91(1):1-6.
    25 陆国辉,陈天健,黄尚志,等.产前诊断及其在国内应用的分析[J].中国优生 与遗传杂志,2003,11(1):l-4.
    26 Ren Z,Zhou C,Xu Y,et al.Mutation and haplotype analysis for Duchennemuscular dystrophy by single cell multiple displacement amplification[J].Mol Hum Reprod.2007,13(6):431-436.
    27 Ren Z,Zeng HT,Xu YW,et al.Preimplantation genetic diagnosis for Duchenne muscular dystrophy by multiple displacement amplification[J].Fertil Steril.2009,91(2):359-364.
    28 Handyside AH,Kontogianni EH,Hardy K,et al.Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification[J].Nature.1990,344(6268):768-770.
    29 Hussey ND,Donggui H,Froiland DA,et al.Analysis of five Duchenne muscular dystrophy exons and gender determination using conventional duplex polymerase chain reaction on single cells[J].Mol Hum Reprod.1999,5(11):1089-1094.
    30 Ray PF,Vekemans M,Munnich A.Single cell multiplex PCR amplification of five dystrophin gene exons combined with gender determination[J].Mol Hum Reprod.2001,7(5):489-494.
    31 Girardet A,Hamamah S,Dechaud H,et al.Specific detection of deleted and non-deleted dystrophin exons together with gender assignment in preimplantation genetic diagnosis of Duchenne muscular dystrophy[J].Mol Hum Reprod.2003,9(7):421-427.
    32 Renwick PJ,Trussler J,Ostad-Saffari E,et al.Proof of principle and first cases using preimplantation genetic haplotyping~a paradigm shift for embryo diagnosis[J].Reprod Biomed Online.2006,13(1):110-119.
    33 Sellner LN,Taylor GR.MLPA and MAPH:new techniques for detection of gene deletions[J].Hum Mutat.2004,23(5):413-419.
    34 White SJ,den Dunnen JT.Copy number variation in the genome;the human DMD gene as an example[J].Cytogenet Genome Res.2006,115(3-4):240-246.
    35 Traverso M,Malnati M,Minetti C,et al.Multiplex real-time PCR for detection of deletions and duplications in dystrophin gene[J].Biochem Biophys Res Commun.2006,339(1):145-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700