用户名: 密码: 验证码:
电驱动微流控芯片中传输现象的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于微机电系统(Micro-Electro-Mechanical-System, MEMS)或微全分析系统(Miniaturized Total Analysis System,μ-TAS)的微流控芯片(Microfluidic Chip)将传统分析实验室的功能,包括采样、稀释、反应、分离和检测等,集成到方寸大小的芯片上,具有自动、快速以及低样品消耗等优点,已经在聚合酶链式反应、基因突变检测、蛋白质和氨基酸的分析以及单细胞的分析检测等生化分析过程中表现出了巨大的优势,并将发展成为当今世界最前沿的科技领域之一。
     尽管研究微流控芯片的最终目的是以产品的形式对其进行实际的应用,但由于微流控芯片加工的高成本,使用合理的模型对其中的传输现象(包括流体流动、粒子分离以及传热现象等)进行理论上的分析,对于提高实验效率、降低实验成本和优化芯片结构具有重要的作用。目前,以电场力为驱动源,以电水动力学(Electrohydrodynamics)基本原理为理论依据的微流控芯片占据着主要地位。微流控芯片中的电场驱动可以分为直流电场驱动方式和交流电场驱动方式,两种驱动方式下的传输现象都主要包括流体的电渗流动,粒子的电泳分离,以及由于电场的应用而在溶液中产生的焦耳热效应。本文以微流控芯片中的电水动力学理论为基础,主要采用理论建模和数值仿真的研究方法,并结合实验验证,分别从直流电驱动和交流电驱动微流控芯片中所涉及的电渗、电泳和焦耳热效应这三个基本传输过程中提炼出重要的基础问题进行研究,并提出了一系列新颖的流体控制方案(例如电热流增强效果的微混合器,电热流动泵等),最后通过微加工方法分别制备了具有平面电极和三维小立柱阵列电极的介电电泳芯片,以聚苯乙烯粒子为操作工质完成了正向和负向介电电泳实验,对其介电电泳频谱的分析进行了验证。
     论文的主要内容包括:
     1.直流电驱动微流控芯片中传输现象的关键问题:(1)关于直流电渗流:提出了一种通过在微通道壁面上增加可极化金属薄膜产生诱导zeta电势来控制局部电渗流场的新方法,并与通过表面涂层改变壁面zeta电势的方式进行了比较,发现诱导zeta电势并非定值,且能通过外加电压进行调节。(2)关于直流电泳:建立了预测双T型通道结构微流控芯片中样品电堆积富集过程的数学模型,通过数值模拟得到了样品粒子富集及之后“解聚”的全过程,分析了样品粒子的带电属性、缓冲溶液浓度比以及样品塞初始长度等因素对富集过程的影响,发现较高的缓冲溶液浓度比和较大的样品塞初始长度都能提高样品富集的效果。(3)关于直流电场中的焦耳热效应:分析了PDMS微流控芯片中的温度场分布,考察了缓冲溶液浓度、芯片材料及厚度等因素对温度的影响,并根据焦耳热效应对毛细管区带电泳中样品区带传输速度和电泳分离效率影响的结果,指出了PDMS微流控芯片中焦耳热效应对相应现象的影响趋势,最后指出了减小焦耳热效应的方法,发现减小芯片厚度等措施能有效降低焦耳热效应。
     2.交流电驱动微流控芯片中传输现象的关键问题:(1)关于交流电渗流:关于流体的流动现象:建立了交流电渗泵的数学模型,对其中的电势分布以及交流电渗流的速度分布进行了数值模拟,并分析了电解质溶液浓度和交变电场频率对交流电渗流速度的影响,发现最佳频率与溶液的电荷弛豫时间相关;建立了交流电渗泵的RC等效电路模型,对交流电渗泵的阻抗谱进行了理论分析,并分析了电极周期宽度、通道高度以及电解质溶液浓度对其阻抗特性的影响,发现增大电极周期宽度、通道高度以及电解质溶液浓度都可以降低交流电渗泵的阻抗值。(2)关于介电电泳:建立了聚苯乙烯粒子以及细胞的的介电电泳模型并对其进行了频谱分析,以聚苯乙烯粒子为例,在综合考虑了重力、浮力、介电电泳力以及由于电热流动引起的Stokes粘拽力的情况下分析了粒子的悬浮高度,发现Stokes粘拽力在较高的场强作用下对粒子的悬浮高度具有决定性的影响。(3)关于交流电场中的焦耳热效应(电热流动现象):利用电热流动在电极附近漩涡状的流型特点提出了一种新型的微混合器,并分析了电极布置方式、交变电场的大小和频率等因素对其性能的影响,发现该混合器具有较高的混合效率;提出了基于非对称“叉指型”电极结构的电热流动泵的概念,利用数值模拟对其进行了验证和性能的优化,分析了电极宽度比、电解质溶液浓度、芯片材料以及频率等因素对其电热流速的影响,发现相比于交流电渗泵,电热流动泵能在更为广泛的频率范围内工作。关于电热流微混合器和电热流动泵的原理和技术均已申请了中国发明专利。
     3.微流控芯片中介电电泳分离技术的实验研究:(1)制备了在通道底部沉积有不同平面电极结构的介电电泳芯片,利用聚苯乙烯粒子完成了相应的正、负向介电电泳实验,对其频谱理论分析结果进行了验证。(2)提出并制作了在平面“叉指型”电极上电铸三维小立柱阵列的介电电泳芯片,并完成了介电电泳实验,发现三维小立柱阵列的增加能提高正向介电电泳中电极对粒子的吸附能力。
     本文以理论仿真为主,并结合实验验证的方式,对电驱动微流控芯片中传输现象的若干关键问题进行了研究。这一课题涉及到多种学科的交叉应用,所提模型又是典型的多尺度多物理场耦合问题,具有较高的学术研究价值。本文建立的模型和得到的结论对于进一步深入理解电驱动微流控芯片中的传输现象具有一定的帮助,完成的工作在一定程度上对现有的关于电驱动微流控芯片研究中在理论建模方面的不足做了补充,对于微流控芯片的设计和优化具有良好的指导意义,而本文所提出的一些新型的微流体控制方法,也为今后的研究提供了一定的启发和借鉴。
The microfluidic chip, one of the Micro-Electro-Mechanical Systems (MEMS) or Miniaturized Total Analysis System (μ-TAS), can integrate many functions of a conventional lab (including sample-getting, diluting, reaction, sample separation, as well as detection etc.) into a chip with an area of only several square centimeters. It has the advantages of automated, fast, and low reagent consumption. This kind of chip has a great potential in the processes of Polymer-enzyme Chain Reaction (PCR), nucleic acid analysis, gene mutation detection, analysis of DNA and amino acid, as well as the analysis and detection of single cell.
     Although the final goal for microfluidic chips are to be used as practical products, however, because of the high manufacture cost, the studies on transport phenomena (such as fluid flow, particles’separation, and heat transfer) in these microfluidic chips play very important roles in enhancing experimental efficiency, decreasing the experimental cost, as well as optimizing the chip structure. At present, microfluidic chips, which are driven by electrical field and based on the theory of electrohydrodynamics, are mainly used. There are two types of electrical field-driven methods in microfluidic chips: DC electrical field-driven technique and AC electrical field-driven technique. Both of these techniques involve the fluid driven mechanism of electroosmosis, and the particles’driven mechanism of electrophoresis. Also, because of the imposed electrical field, the Joule heating effect occurs in the flow field that led to non-isothermal temperature distribution. Based on the principles of electrohydrodynamics and transport principles, and by using numerical simulation and experimental methods, some studies of key issues on transport phenonema in electrical field-driven microfluidic chips have been carried out and several novel designs for the fluid control in microfuidic chips, such as electrothermal flow enhanced micromixer and electrothermal flow pump, have been developed in this thesis. Finally, the microfluidic chips for the dielectrophoresis experiment are also made through the micro-machine technique, and the dielectrophoresis experiments are performed by using these chips, which also validated the simulation results for the dielectrophoresis spectrum analysis.
     The main topics studied in this thesis are as follows:
     Some key problems based on the DC electrokinetics are studied. These include: (i) DC Electroosmosis Flow: Develop a new method to control the DC electroomosis field. The effect of induced zeta potential, which is caused by adding polarizable mental membrane on the microchannel wall, on the electroosmosis field is analyzed, and the effects.are compared with the effect caused by changing the zeta potential through changing the wall’s surface characteristics. It is found the induced zeta potential is not constant and the induced charge electroosmosis flow has a more significant effect on disturbing the DC electroosmotic flow flied. (ii)DC Electrophoresis: A numerical model, which can be used to predict the sample stacking process in a microfluidic chip with a double T microchannel, is developed. The impacts factors, such as the charge, concentration ratio of the buffer, as well as the initial length of the sample plug, on the stacking processes are analyzed. It is found that a better stacking effect can be obtained from a higher buffer concentration ratio and longer initial sample plug length. (iii)Joule Heating Effect Caused by the DC Electrical Field: The temperature distribution in PDMS microfluidic chip is computed, and its impact such as the buffer concentration, chip material and thickness, on the temperature distribution are also analyzed. Joule heating effects on the sample band transport velocity and electrophoresis separation efficiency in PDMS microfluidic chips are inferred from the results in capillary. The methods to decrease the Joule heating effect in PDMS microfluidic chips are also discussed. It is found that lower buffer concentration, smaller chip thickness, and chip materials with larger thermal conductivity can decrease the Joule heating effect.
     The key problems based on the AC electrokinetics studied in this thesis are: (i) AC Electroosmosis Flow: A model for AC electroosmosis (ACEO) pump is developed to compute the potential and AC electroosmotic velocity. The impacts of frequency and electrolyte concentration on the ACEO pump velocity are studied. It is found that the frequency at which the optimal ACEO velocity appears depends on the charge relaxation time of the electrolyte. A RC circuit is developed by analyzing the capacitance characteristic of electrical double layer and resistance characteristic of electrolyte solution, and the impedance spectra of the ACEO pump is analyzed with different electrodes widths, channel heights and electrolyte concentrations. It is found that the smaller impedance value occurs at the condition of larger electrode widths, larger channel heights and larger electrolyte concentration. (ii)Dielectrophoresis: The dielectrophoresis model for the polystyrene (PS) particles and cells are developed, and the dielectrophoresis spectrums for these particles are analyzed. The levitation heights for the PS particles in nDEP process in microfluidic chip with interdigitated electrodes is computed by considering the dielectrophoretic forec, net gravity force, as well as the Stokes drag force caused by the electrothermal flow. It is found that the Stokes drag force is the dominant factor for the particles’levitation height for small particles, especially at high electrical field. (iii) Joule Heating Effect Caused by the AC Electrical Field (Electrothermal Flow):A novel micromixer based on the vortex caused by the electrothermal flow near the microelectrodes is proposed, the impact of electrode arrangement style, magnitude and frequency of the AC potential on the mixing efficiency are also studied. It is found that this kind of micromixer has a good mixing efficiency. A new kind of electrothermal flow micropump, based on the electrothermal flow in microchannel with asymmetrical interdigitated microelectrodes is proposed, and the impacts of the electrodes width ratio, electrolyte concentration and chip materials on the velocity of this pump are studied. It is found that the electrothermal flow pump can work in a wider frequency than the ACEO pump. Chinese patents for the electrothermal flow enhanced micromixer and the electrothermal pump have been applied.
     The experimental and numerical simulation work on the dielectrophoresis in microfluidic chip include: (i) Microfluidic chips with different electrode structures are fabricated for the DEP experiments by using micromachine technique. Both positive and negative dielectrophoresis experiments for PS particles are performed, and the dielectrophoresis spectrum analysis results are also validated by experimental data; and (ii) The dielectrophoresis microfluidic chip with 3D columns on the planar interdigitated microelectrodes are developed and manufactured, and a better capability on attracting particles in pDEP are obtained, which agrees with the prediction well.
     This study covers some key issues on transport phenomena in electrical field-driven microfluidic chips, they are interdisciplinary in nature, which also involve multi-scale and multi-physics fields. Both numerical simulation and experimental investigation have been carried out for these problems. The models and results in this thesis are useful to enhance the present understanding of transport phenomena and complement the lack of model development and theory analysis in electrical field-driven microfluidic chips, and are helpful for the design and optimization of the microfluidic chip. The noval fluid control methods proposed in this thesis are also helpful for the continuing work about microfluidic chips.
引文
[1]方肇伦等,微流控分析芯片,北京,科学出版社,2003年:1-11
    [2]方肇伦等,微流控分析芯片的制作及应用,北京,科学出版社:2003:1-8
    [3]林炳承,秦建华,微流控芯片实验室,北京,科学出版社:2006:1-10
    [4] Manz.A., Graber.N., Widmer.H.M., Miniaturized Total Chemical-analysis systems: a novel concept for chemical sensing[J], Sens.Actuator,B-Chemical,1990,1-6: 244-248
    [5] Li D.Q., Electrokinetics in microfluidics, New York, Academic Press, 2004
    [6] Jocobson S.C., Hergenroder R., Amsey A.W., Moore J.M., Precomumn reaction with electrophoretic analysis integrated on a microchip[J], Anal Chem.,1994, 6(6):4127-4132
    [7] Macevoy W.J., Avellaneda M., Electroosmotic coupling: incorporating larger surface effects with a new length scale[J], Journal of Colloid and Interface Science,1997,8(18):139-149
    [8] Thorsen T., Maerkl S.J., Quake S.R., Microfluidic large-scale integration[J], Science,2002, 298(5593):580-584
    [9] Reyes D.R., Iossifidis D., Auroux P.A., et al., Micro total analysis systems. 1. Introduction, theory, and technology [J], Anal. Chem., 2002, 74:2623-2636
    [10] Vilkner T., Janasek D. and Manz A., Micro total analysis systems, Recent developments[J], Anal. Chem., 2004, 76, 3373-3386
    [11] Squires T.M., Quake S.R., Microfluidics: Fluid physics at the nanoliter scale[J], Reviews of Modern Physics, 2005,77:977-1026
    [12] Ericson D., Towards numerical prototyping of labs-on-chip: modeling for integrated microfluidic devices[J],Microfluid Nanofluid,2005,1:301-318
    [13] Glatzel T., Litterst C., Cupelli C., et al., Computational fluid dynamics(CFD) software tools for microfluidic applications--A case study[J], Computers Fluids,2008,37:218-235
    [14] Griffiths D.J., Introduction to Electrodynamics, Prentice Hall ed, 1999
    [15]虞福春,郑春开,电动力学,北京,北京大学出版社,2003年:1-12
    [16] Stratton J.A., Electromagnetic theory, McGraw Hill, New York, 1941
    [17] Castellanos A., Electrohydrodynamics, Springer Wien, New York,1998
    [18] Ramos A., Morgan H., Green N.G., et al., AC electrokinetics: a review of forces in microelectrode structures[J], Journal of Physics D: applied physics, 1998, 31: 2340-2353
    [19]江涛,基于MEMS技术的直流电渗流微泵的研究[学位论文],哈尔滨,哈尔滨工业大学,2006年
    [20]高颖,邬冰,电化学基础,北京,化学工业出版社,2004年:165-179
    [21] Kilic M.S., Bazant M.Z., Steric effects in the dynamics of electrolytes at large applied voltage:ⅠDouble-layer charging[J], Physical Review E, 2007, 75(2): 021502
    [22] Kilic M.S., Bazant M.Z., Steric effects in the dynamics of electrolytes at large applied voltage:Ⅱ.Modified Possion-Nernst-Planck equations[J], Physical Review E, 2007, 75(2): 021503
    [23] Yang C., Li D.Q., Analysis of electrokinetic effects on the liquid flow in rectangular microchannels[J], Colloids and Surfaces A,1998,143: 339-353
    [24]徐泰然,MEMS和微系统--设计与制造,北京,机械工业出版社,2004年,249-278
    [25] Dose E.V., Guiochon G.. A., High-resolution modeling of capillary zone electrophoresis and isotachophoresis[J], Analytical Chemistry, 1991, 63: 1083-1088
    [26] Jocobson. S.C., Hergenroder R., Amsey A.W., et al., Precomumn reaction with electrophoretic analysis integrated on a microchip[J], Anal Chem.,1994, 6 (6):4127-4132
    [27] Macevoy W.J., Avellaneda M., Electroosmotic Coupling: Incorporating Larger Surface Effects with a New Length Scale[J], Journal of Colloid and Interface Science,1997,8(18):139-149
    [28] Yang C., Li D.Q., Jacob H.M., Modeling forced liquid convection in rectangular microchannels with electrokinetic effects[J], Int. J. Heat and Mass transfer, 1998, 41: 4229-4249
    [29] Sergey V. E., Stephen C.J., Ramsey J.M., Computer simulations of electrokinetic transport in microfabricated channel structures[J], Anal.Chem., 1998.70: 4494-4504
    [30] Hu L.G., Jed D.H., Jacob H.M., Numerical model of electrokinetic flow for capillary electrophoresis[J], Journal of Colloid and Interface Science ,1999,215: 300-312
    [31] Ren L.Q., Qu W.L., Li D.Q., Interfacial electrokinetic effects on liquid flow in micochannels[J], Int.J.Heat Mass Transfer 2001, 44: 3125-3134
    [32] Lin J.Y., Fu L.M., Yang R.J., Numerical simulation of electrokinetic focusing in microfluidic chips[J], J.Micromech Microeng., 2002,12: 955-961
    [33] Zeng S.L., Chen C.H., Electroosmotic pumps with polymer frits[J], Sensors and Actuators, 2002,8(26):209-212
    [34] Yang C., Transient Analysis of Electroosmotic Flow in a Slit Microchannel[J], Journal of Colloid and Interface Science, 2002,248: 524-527
    [35] Lin J.Y., Fu L.M., Yang R.J., Numerical simulation of electrokinetic focusing in microfluidic chips[J], J.Micromech Microeng., 2002,12: 955-961
    [36] Fu L.M., Yang R.J., Lee G.B., et al., Electrokinetic injection techniques in microfluidic chips[J], Anal.Chem., 2002,74:5084-5091
    [37] Jin Y., Luo G.A., Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips[J], Electrophoresis,2003,24:1242-1252
    [38] Sinton D., Ren L.Q., Li D.Q., Visualization and numerical modelling of microfluidic on-chip injection[J], Journal of Colloid and Interface Science,2003,260:431-439
    [39] Lin C.H., Yang R.J., Tai C.H., et al., Double-L injection technique for high performance capillary electrophoresis detection in microfluidic chips[J], J.Micromech.Microeng., 2004,14:639-646
    [40] Kang Y.J., Electroosmotic flow in a microchannel packed with microspheres[Dissertation], Singapore, Nanyang Technological University, 2004
    [41] Jahn A., Vreeland W.N., Gaitan M., et al., Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing[J], J. Am. Chem. Soc, 2004, 126, 2674-2675
    [42] Meike K., Carsten B., Tobias P., High-throughput protein and DNA analysis based on microfluidic on-chip electrophoresis[J], Journal of the Association for Laboratory Automation, 2005,10: 319-326
    [43] Cellar N.A., Burns S.T., Meiners J.C., et al., Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids[J], Analytical Chemistry, 2005,77:7067-7073
    [44] Zhang Y.L., Wong T.N., Yang C., Dynamic aspects of electroomotic flow[J], Microfluidics and Nanofluidics, 2006,2: 205-214
    [45] Hu Y.D., Lee J.S.H., Werner C., et al., Electrokinetically controlled concentration gradient in microchambers in microfluidic system[J], Microfluid Nanofluid,2006,2:141-153
    [46] Rawool A.S., Mitra S.K., Numerical simulation of electroosmotic effect in serpentine channels, [J] Microfluidics and Nanofluidics, 2006, 2:261-269
    [47] Rawool A.S., Mitra S.K., Kandlikar S.G., Numerical simulation of flow through microchannels with designed roughness[J], Microfluidics and Nanofluidics,2006,2:215-221
    [48] Krishnamoorthy S., Feng.J. Heary A.C., et al., Simulation and experimental characterization of electroosmotic flow in surface modified channels[J], Microfluidics and Nanofluidics, 2006, 2: 345-355
    [49] Wu Z.M., Li D.Q., Mixing and flow regulation by induced charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles[J], Microfluidic Nanofluidic, in press
    [50]邓延倬,何金兰,高效毛细管电泳,北京,科学出版社,1996,189-190
    [51] Dean S.B., Chien R.L,, Optimization in sample stacking for high-performance capillary electrophoresis[J], Anal. Chem, 1991, 63: 2042-2047
    [52] Leung S.A., Yang Y.T., Kang J.W., Lu H.J., et al., Determination of trace level anions in snow samples by capillary electrophoresis with sample stacking[J], Journal of Chromatography A, 1999,834:387-391
    [53] Quirino J.P., Terabe S., Sample stacking of fast-moving anions in capillary zone electrophoresis with Ph-suppressed electroosmotic flow[J], Journal of Chormatography A. 1999,850:339-344
    [54] Osbourn D.M., Weiss D.J., Lunte C.E., On line preconcentration methods for capillary electrophoress, Electrophoresis[J], 2000, 21:2768-2779
    [55] Leung S.A., Mello A.J.D., Electrophoretic analysis of amines using reversed-phase, reversed-polarity, head-column field amplified sample stacking and laser-induced fluorescence detection[J], Journal of Chormatography A. 1999,850:339-344
    [56] Lichtenberg J., Verpoorte E., Rooij N.F.D., Sample preconcentration by field amplification stacking for microchip-based capillary electrophoresis[J], Electrophoresis,2001,22:258-271
    [57] Hirokawa T., Ikuta N., Yoshiyama T., et al., Change of migration time and separation window accompanied by field-enhanced sample stacking in capillary zone electrophoresis[J], Electrophoresis, 2001,22: 3444-3448
    [58] Yang H., Chien R.L., Sample stacking in laboratory-on-a-chip devices, Journal of Chromatography A, 2001, 924: 155-163
    [59] Jung B., Bharadwaj R., Samtiago J.G., Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis[J], Electrophoresis, 2003, 24: 3476-3483
    [60] Mello A.J., Electrophoretic analysis of amines using reversed-phase, reversed-polarity, head-column field-amplified sample stacking and laser-induced fluorescence detection[J], Journal of Chromatography A, 2002 ,979:171-178
    [61] Bharadwaj R., Santiago J.G., On-chip field amplified sample stacking under suppressed electroosmotic flow conditions. In 7th International Conference on Miniaturized Chemical and Biochemical analysis Systems, Squaw Valley, California, USA, 2003, October, 5-9
    [62] Cellar N.A., Burns S.T., Meiners J.C., et al., Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids[J], Analytical Chemistry, 2005,77: 7067-7073
    [63] Wang Y.C., Stevens A.L., Han J., Million-fold preconcentration of proteins and peptides by nanofluidic filter[J], Anal.Chem.,2005,77:4293-4299
    [64] Song S.S., Anup K., On-chip sample preconcentration for integrated microfluidic analysis[J], Analytical and Bioanalytical Chemistry 2006,384:41-43
    [65] Gong M.J., Wehmeyer K.R., Limbach P.A., et al., On line sample preconcentration using field-amplified stacking injection in microchip capillary electrophoresis[J], Anal. Chem., 2006, 78:3730-3737
    [66] Jones A. E., Grushka E., Nature of temperature gradient in capillary zone electrophoresis[J],J.Chormatogr, 1989,466: 219-225
    [67] Grushka E. R., McCormick M., Kirkl J. J., Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations[J], Anal. Chem., 1989, 61:241-246
    [68] Jones A. E., Grushka E., Nature of temperature gradient in capillary zone electrophoresis[J], J.Chromatogr,1989, 466: 219-225
    [69] Gobie W.A., F.Ivory C., Thermal model of capillary electrophoresis and a method for counteracting thermal band broadening[J], J. Chromatogr,1990, 516:191-210
    [70] Knox J.H., McCormick K.A., Temperature effects in capillary electrohporesis. 1: Inter capillary temperature and effect upon performance[J], Chromatographia, 1994, 38: 207-214
    [71] Knox J.H., McCormick K.A., Temperature effects in capillary electrohporesis.2: Some theoretical calculations and predictions[J], Chromatographia 1994, 38: 215-221
    [72] Liu K.L., Davis K.L., Morris M. D., Raman spectroscopic measurement of spatial and temporal temperature gradient in operating electrophoresis capillaries[J], Anal. Chem.1994, 66:3744-3750
    [73] Bosse M.A., Arce P., The role of Joule heating in dispersive mixing effects in electrophoretic cells: hydrodynamic considerations[J], Electrophoresis, 2000, 21:1018-1025
    [74] Ross D., Gaitan M., Locascio L.E., Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye[J], Anal. Chem., 2001, 73:4117-4123
    [75] Zhao T.S., Liao Q., Thermal effects on electro-osmotic pumping of liquids in microchannels[J], J Micromech Microeng, 2002, 12: 962-970
    [76] Keisuke H., Prashanta D., Joule heating effects in electroosmotically driven microchannel flows[J], International Journal of Heat and Mass Transfer, 2004,47: 3085-3095
    [77] Erickson D., Sinton D., Li D.Q., Joule heating and heat transfer in poly (dimethylsiloxane) microfluidics systems[J], Lab on a Chip, 2001, 3: 141-149
    [78] Tang G.Y., Yang C., Chai J.C., et al, Joule heating effect on electroosmotic flow and mass species transport in a microcapillary[J], Int. J. Heat Mass Transfer, 2004,47: 215-227
    [79] Tang G.Y., Yang C., Chai J.C., et al, Numerical simulation of Joule heating effect on sample band transport in capillary electrophoresis[J], Analytica Chimca Acta, 2006,561:138-149
    [80] Xuan X.C., Sinton D., Li D.Q., Thermal end effects on electroosmotic flow in a capillary[J], Int. Journal of Heat and Mass Transfer, 2004, 47: 3145-3147
    [81] Xian X.C., Xu B., Sinton D., et al., Electroosmotic flow with Joule heating effects[J], Lab on a Chip, 2004, 4: 230-236
    [82] Xuan X. C., Li D.Q., Analytical study of Joule heating effects on electrokinetic transportation incapillary electrophoresis[J], J. Chromatography A, 2005,1064: 227-237
    [83] Xuan X.C., Li D.Q., Thermodynamic analysis of electrokinetic energy conversion[J], J. Power Sources, 2006, 156: 677–684
    [84] Huang K.D., Yang R.J., Numerical modeling of the Joule heating effect on electrokinetic flow focusing, Electrophoresis, 2006, 27: 1957-1966
    [85] Chein R.Y., Yang Y.C., Lin Y.S., Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows[J], Electrophoresis, 2006,27:640-649
    [86] Sinton D., Xuan X.C., Li D.Q., Thermally induced velocity gradients in electrophoresis microchannel flows: the cooling influence of optical infrastructure[J], Experiments in Fluids, 2004, 37: 872-882
    [87] Ren L.Q., Transport phenomena in microfluidic devices, [Dissertation], University of Toronto, Canada, 2004
    [88] Xuan X. C., Li D.Q., Band-broadening in capillary zone electrophoresis with axial temperature gradients[J], Electrophoresis,2005,26:166-175
    [89] Xuan X.C., Li D.Q., Joule heating effects on peak broadending in capillary zone electrophoresis[J], J. Micromechanics Microengineering, 2004, 14: 1171-1180
    [90] Peterson N. J., Nikolajsen R. P. H., Mogensen K. B.,et al, Effect of Joule heating on efficiency and performance for microchip-based and capillary based electrophoretic separation systems: A closer look[J], Electrophoresis,2004,25:253-269
    [91] Porras S. P., Marzial E. I., Ga? B., et al, Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis[J], Electrophoresis,2003, 24: 1553-1564
    [92] Palonen,S. Jussila M., Porras S. P., et al, Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: Eehanol as background electrolyte solvent[J], Electrophoresis,2004, 25: 344-354
    [93] Green N.G.., Ramos A., Morgan H., AC electrokinetics: a survey of sub-micrometre particle dynamics[J], J.Phys.D: Appl. Phys.,2000,33:632-641
    [94] Castellanos A., Ramos A., González A., et al., Electrohydrodynamics and dielectrophoresis in Microsystems: scaling laws[J], Journal of Physics D: Applied physics, 2003, 36: 2584-2597
    [95] Ramos A., Morgan H., Green N.G., et al., AC electric-field-induced fluid flow in microelectrodes[J], Journal of Colloid and Interface Science, 1999,217:420-422
    [96] Ajdari A., Pumping liquids using asymmetric electrode arrays[J], Physical Review E, 2000, 61(1): R45-R48
    [97] Brown A.B.D., Smith C.G., Rennie A.R., Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes[J], Physical Review E, 2000,63(1): 016305
    [98] Green N.G., Ramos A., González A., et al, Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes:ⅠExperimental measurements[J], Physical review E, 2000, 61(4): 4011-4018
    [99] González A., Ramos A., Green N.G.., et al., Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes.Ⅱ. A linear double-layer analysis[J], Physical review E, 2000, 61 (4): 4019-4028
    [100] Green N.G., Ramos A., González A., et al, Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes.Ⅲ. Observation of streamlines and numerical simulation[J], Physical review E, 2002, 66 (2): 026305
    [101] Studer V., Pepin A., Chen Y., Fabrication of microfluidic devices for AC electrokinetic fluid pumping[J], Microelectronic Engineering,2002,61-62: 915-920
    [102] Ramos A., González A., Castellanos A., Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes[J], Physical Review E, 2003, 67(5): 056302
    [103] Debesset S., Hayden C.J., Dalton C., et al., An AC electroosmotic micropump for circular chromatographic applications[J], Lab on a chip, 2004,4:396-400
    [104] Cahill B.P., Heyderman L.J., Gobrecht J., et al., Electro-osmotic pumping on application of phase-shifted signals on interdigitated electrodes[J], Sensors and Actuators B, 2005,10:157-163
    [105] Ramos A., Morgan H., Green N.G., pumping of liquids with travelling wave electrophoosmosis[J], J. Appl. Phys., 2005, 97:084906
    [106] García-Sánchez P., Ramos A., Green N.G., Experiments on ac electrokinetic pumping of liquids using arrays of microelectrodes[J], IEEE Transactions on Dielectrics and Electrical Insulation, 2006,13(3): 670-677
    [107] Bazant M Z, Ben Y X, Theoretical prediction of fast 3D AC electro-osmotic pumps[J], Lab on a chip, 2006,6:1455-1461
    [108] Brown A.B.D., Smith C.G., and Rennie A.R., Pumping of water with ac electric field applied to asymmetric pairs of microelectrodes[J], Physical review E, 2006, 63: 016305
    [109] Urbanski J. P., Thorsen T., Levitan J.A., et al., Fast AC electro-osmotic micropumps with non-planar electrodes[J], Applied Physics letter, 2006,89 :143508
    [110] Squires T.M., Bazant M.Z., Breading symmetries in induced charge electroosmosis and electrophoresis[J], J. Fluid Mech., 2006, 560: 65-101
    [111] Ramos A., González A., García-Sánchez P., A linear analysis of the effect of Faradaic currents on travelling-wave electroosmosis[J], Journal of Colloid and Interface Science, 2007,309:323-331
    [112] Urbanski J.P., Levitan J.A., Burch D.N., et al., The effect of step height on the performance of three-dimensional ac electroosmotic microfluidic pumps[J], J. Colloid Inter. Sci. 2007, 309: 332-341
    [113] Islam N., Lian M., Wu J., Enhancing microcantilever capability with integrated AC electroosmotic trapping[J], Microfluid Nanofluid,2007,3,369-375
    [114] Loucaides N., Ramos A., Novel systems for configurable AC electroosmotic pumping[J], Microfluid Nanofluid, accepted
    [115] Hansen T.S., Simulation and testing of AC electroosmotic micropumps[Dissertation], Denmark, Technical University of Denmark, 2004
    [116] Arnoldus M., Asymmetric electrode micropumps[Dissertation], Denmark, Technical University of Denmark, 2004
    [117] Belmon L., Electrohydrodynamics of the asymmetric electrode array micropump [Dissertation], Denmark, Technical University of Denmark, 2004
    [118] Gregersen M.M., AC asymmetric electrode micropumps [Dissertation], Denmark, Technical University of Denmark, 2005
    [119] Olesen L.H., AC electrokinetic micropumps [Dissertation], Denmark, Technical University of Denmark, 2006
    [120]陈佑安,交流电渗流应用于微帮浦之组件研究[学位论文],台湾,台湾大学,2005年
    [121] Wang X.B., Huang Y., Burt J.P. H., et al., Selective dielectrophoretic confinement of bioparticles in potential energy wells[J], J. Phys. D: Appl. Phys.1993, 26: 1278-1285
    [122] Müller T., Gerardino A., Schnelle T., et al., Trapping of micrometer and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces[J], J. Phys. D: Appl. Phys.1996, 29: 340-349
    [123] Green N. G., Morgan H., Dielectrophoretic separation of nano-particles[J], J. Phys.D: Appl. Phys. 1997, 30:L41-L44
    [124] Green N. G.., Morgan H., Dielectrophoretic investigations of sub- micrometre latex spheres[J], J. Phys. D: Appl. Phys.1997, 30: 2626-2633
    [125] Wang X.B., Huang Y., Gascoyne P.R.C., et al., Dielectrophoretic manipulation of particles[J], IEEE Transactions on industry applications 1997,33(3): 660-669
    [126] Green N.G.., Morgan H., Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces[J], Journal of Physics D: Applied physics, 1998, 31:L25-L30
    [127] Cui L., Holmes D., Morgan H., The dielectrophoretic levitation and separation of latex beads in microchips[J], Electrophoresis,2001,22:3893-3901
    [128] Doh I., Cho Y.H., A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process[J], Sensors and Actuators A, 2005, 121: 59-65
    [129] Sebastian A., Buckle A.M., Markx G., Formation of multilayer aggregates of mammalian cells by dielectrophoresis[J], J. Micromech. Microeng., 2006, 16: 1769-1777
    [130] Kua C.H., Lam Y.C., Rodriguez I., Particle transportation using programmable electrode arrays,DSpace at MIT, 2007
    [131] Meike K, Carsten B, Tobias P, High- throughput protein and DNA analysis based on microfluidic on-chip electrophoresis[J], Journal of the Association for Laboratory Automation, 2005,10: 319-326
    [132] W?lti C., Germishuizen W.A., Tosch P., et al.., AC electrokinetic manipulation of DNA[J], J.Phys. D: Appl. Phys., 2007, 40: 114-118
    [133] Zheng L., Brody J. P., Burke P.J., Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly[J], Biosensors and Bioelectronics, 2004, 20: 606-619
    [134] Bhatt K.H., Grego S., Velev O.D., An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes[J], Langmuir,2005,21:6603-6612
    [135] Aldaeus F., Lin Y., Amberg G., et al., Multi-step dielectrophoresis for separation of particles[J], J. Chromatography A, 2006, 1131: 261-266
    [136] James C.D., Okandan M., Mani S.S., Monolithic surface micromachined fluidic devices for dielectrphoretic preconcentration and routing of particles[J], J. Micromech. Microeng. 2006, 16: 1909-1918
    [137] The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation [J], Analytical Chemistry , 2004,76:6908-6914
    [138] Wong P.K., Wang T.H., Deval J.H., et al., Electrokinetics in Microdevices for biotechnology applications[J], IEEE transactions on mechatronics, 2004,9(2):366-376
    [139] Nieuwenhuis J.H., Vellekoop M.J., Simulation study of dielectrophoretic particle sorters[J], Sensors and Actuators B, 2004,103: 331-338
    [140] Zhou H., White L.R., Tilton R.D., Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis[J], J. Colloid Interface Science, 2005, 285: 179-191
    [141] Flores-Rodriguez N., Markx G.H., Improved levitation and trapping of particles by negativedielectrophoresis by the addition of amphoteric molecules[J], J. Phys. D: Appl. Phys. 2004, 37: 353-361
    [142] Neftali F.R., Gerard H.M., Improved levitation and trapping of particles by negative dielectrophoresis by the addition of amphoteric molecules[J], J.Phys.D: Appl. Phys., 2004, 37: 353-361
    [143] Morgan H., Izquierdo A.G., Bakewell D., et al., The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series[J], J.Phys.D: Appl. Phys., 2001, 34: 1553-1561
    [144] Green N.G., Ramos A., Horgan H., Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method[J], J. Electrostatics, 2002,56: 235-254
    [145] Li W.H., Du H., Chen D.F., et al., Analysis of dielectrophoresis electrode arrays for nanoparticle manipulation[J], Computational Materials Science,2004, 30:320-325
    [146] Chen D.F., Du H., Li W.H., et al, Numerical modeling of dielectrophoresis using a meshless approach[J], J. Micromech. Microeng., 2005, 15: 1040-1048
    [147] Crews N., Darabi J., Voglewede P., Bayoumi G., An analysis of interdigitated electrode geometry for dielectrophoretic particle transport in micro-fluidics[J], Sensors and Actuators, accepted
    [148] Chen D.F., Du H., Simulation studies on electrothermal fluid flow induced in a dielectrophoretic microelectrode system[J],Journal of Micromechanics and Microengineering ,2006, 16 , 2411-2419
    [149] Green N.G., Ramos A., González A., et al., Electric field induced fluid flow on microelectrodes: the effect of illumination[J], J. Phys. D: Appl. Phys., 2000, 33, L13-L17
    [150] Green N.G., Ramos A., González A., et al., Electrothermally induced fluid flow on microelectrodes[J], Journal of electrostatics, 2001, 53, 71-87
    [151] Perch-Nielsen I.R., Green N.G., Wolff A., Numerical simulation of travelling wave induced electrothermal fluid flow[J], Journal of Physics D: Applied physics, 2004, 37, 2323-2330
    [152] Sigurdson M., Wang D.Z., Meinhart C.D., Electrothermal stirring for heterogeneous immunoassays[J], Lab Chip, 2005,5,1366-1373
    [153] González A., Ramos A., Morgan H., et al., Electrothermal flows generated by alternating and rotating electric fields in Microsystems[J], J. Fluid Mech, 2006, 564, 415-433
    [154] Lian M., Islam N., Wu J., AC electrothermal manipulation of conductive fluids and particles for lab-chip applications[J], IET Nanobiotechnology, 2007,1(3),36-43
    [155] Feldman H.C., Sinurdson M., Meinhart C.D., AC electrothermal enhancement of heterogeneous assays in microfluidics[J], Lab Chip, 2007,7:1553-1559
    [156] Wu J., Lian M., Yang K., Micropumping of bioliquids by alternating current electrothermal effects[J], Applied Physics Letters, 2007,90, 234103
    [157] Wang D.Z., Sinurdson M., Meinhart C.D., Experimental analysis of particle and fluid motion in ac electrokinetics[J], Experiments in Fluids, 2005,38:1-10
    [158] Meinhart C.,Wang D.Z., Turner K., Measurement of AC electrokinetic flows[J], Biomedical Microdevices, 2003, 5(2):139-145
    [159] Erickson D., Li D.Q., Influence of surface heterogeneity on electrokinetically driven microfluidic mixing[J], Langmuir 2002, 18, 1883-1892
    [160] Erickson D., Li D.Q., Microchannel flow with patchwise and periodic surface heterogeneity[J], Langmuir 2002, 18, 8949-8959
    [161] Bazant M.Z.,Induced-Charge electrokinetic phenomena:Theory and microfluidic applications[J], Physical review letters,2002, 92(6),066101
    [162] Squires T.M., Bazant M.Z., Induced-charge electroosmosis[J], J. Fluid Mech., 2004,509: 217-252
    [163] Liu R.H., Stremler M. A., Sharp K.V., et al., Passive mixing in a three-dimensional serpentine microchannel [J], J. Microelectromech. Syst., 2000, 9, 190-197
    [164]曹军,洪芳军,郑平,焦耳热效应对毛细管电泳中样品区带传输的影响,化学工程,2008, 36(7), 71-74
    [165] Cao J, Hong F J, Cheng P, Numerical study of radial temperature gradient effect on separation efficiency in capillary electrophoresis, International communications in heat and mass transfer, 2007,34:1048-1055
    [166] Terabe S., Otsuka K., Ichikawa K., et al., Electrokinetic separation with micellar solutions and open-tuber capillaries[J], Anal Chem, 1984, 56: 111-113
    [167]陈立仁,蒋生祥,刘震等,高效液相色谱基础与实践,北京,科学出版社,2001年,1-17
    [168]邹汉法,刘震,叶明亮等,毛细管电色谱及其应用,北京,科学出版社,2001年,1-31
    [169]张维冰,毛细管电色谱理论基础,北京,科学出版社,2006年:10-54
    [170] Lee K., Kwon S.G., Kim S.H., et al., Dielectrophoresis tweezers using sharp probe electrode[J], Sensors and Actuators A, 2007,136: 154-160
    [171]赵志强,一种基于MEMS和细胞电场效应的细胞融合方法的研究[学位论文],重庆,重庆大学,2006年
    [172]汪和睦,谢廷栋,细胞电穿孔电融合电刺激原理技术及应用,天津,天津科学技术出版社,2000年,95-108
    [173] Markx G.H., Pethig R., Rousselet J., The dielectrophoretic levitation of latex beads with referenceto field-flow fraction, Phys.D: Appl. Phys. 1997, 30:2470-2477
    [174]赖志铭,使用介电泳分离微粒子之计算探讨[学位论文],台湾,台湾大学,2007年
    [175] Bessoth F.G., deMello A. J., Manz A., Microstructure for efficient continuous flow mixing[J], Anal Commun, 1999, 36:213
    [176] Stroock A.D., Dertinger S. K.W., Ajdari A., et al., Chaotic mixer for microchannels[J], Science, 2002, 295: 647-651
    [177] Wang H.Z., Iovenitti P., Harvey E., et al., Numerical investigation of mixing in microchannels with patterned grooves[J], J. Micromech. Microeng. 2003, 13, 801–808
    [178] Lastochkin D., Zhou R., Wang P., et al., Electrokinetic micropump and micromixer design based on ac faradiaic polarization[J], J. Appl. Phys.,2004, 96(3),1-4
    [179] Chang C.C., Yang R.J., Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks[J], J. Micromech Microeng, 2004, 14, 550-558
    [180] Fu L.M., Yang R.J., Lin C.H., et al., A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency[J], Electrophoresis, 2005, 5, 1814-1824
    [181] Shin S. M., Kang I.S., Cho Y. K., Mixing enhancement by using electrokinetic instability under time-periodic electric field [J], J. Micromech. Microeng., 2005, 15, 455-462
    [182] Coleman J.T., McKechnie J., Sinton D., High-efficiency electrokinetic micro-mixing through symmetric sequential injection and expansion[J], Lab Chip, 2006, 6, 1033-103
    [183] Huang S.H., Wang S.K., Khoo H.S., et al., AC electroosmotic generated in-plane microvortices for stationary or continuous fluid mixing[J], Sensors and Actuators B., accepted
    [184] Cao J, Cheng P,Hong F J,A numerical study of an electrothermal vortex enhanced micromixer, Microfluidics and Nanofluidics, 2008,5:13-21
    [185]潘欣欣,基于磁珠技术的微流控生物芯片系统的研究[学位论文],上海,上海交通大学,2007年
    [186] Menz.W等着,王春海等译,微系统技术,北京,化学工业出版社,2003年
    [187]陈阳,微流控芯片流体动态观测平台及实验研究[学位论文],大连,大连理工大学,2004年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700