用户名: 密码: 验证码:
膜生物反应器污水处理及膜污染过程的数学模拟与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器(MBR)利用膜分离装置代替传统的二沉池,实现了固液的有效分离,被视为最具发展潜力和应用前景的污水处理新工艺之一。然而膜污染是限制MBR进一步商业化应用的瓶颈问题,如何减缓膜污染问题是目前膜技术研究的热点。本文借助数学模拟手段,解析了关键膜污染物溶解性微生物产物(SMP)在MBR中的生成代谢途径及其组分的膜污染潜能,实现了MBR系统生物处理过程及泥饼层对污染物截留行为的模拟,探明了不同形态活性污泥的胞外聚合物(EPS)-膜体系XDLVO的相互作用能,研发了污泥形态学参数图像分析技术,构建了膜孔污染与膜面泥饼层污染的分析模型,弥补了MBR在数值模拟方面研究的不足。
     本研究结合序批实验及数学模拟手段分析SMP的生成代谢途径,发现微生物利用底物产生的溶解性产物(UAP)和微生物死亡产生的溶解性产物(BAP)均具有生物可降解性,但其数均分子量(M_n)均高于20kDa而无法被微生物直接利用,在此基础上提出了基于生成-水解-利用途径的SMP生成代谢模型。针对SMP污染问题,利用膜过滤实验分析了BAP和UAP的过滤性能,BAP和UAP的MFI-UF指数分别为4.37×10~3和1.63×10~4s/L~2;结合BAP和UAP的过滤模式分别符合泥饼层过滤型(R~2=0.988)和完全堵塞型(R~2=0.997),表明微生物利用底物产生的UAP更容易引起膜污染。因此,控制MBR适宜的操作条件,降低UAP的生成量,可有效减缓由SMP引起的膜污染问题。
     在传统ASM3模型基础上引入异养菌同时贮存利用有机底物机制和SMP生成代谢机制,构建了适用于MBR的扩展ASM3-SMP模型,其对MLSS,COD,SMP和S_(NO)均具有较好的预测能力,相关系数R~2值分别为0.83,0.51,0.58和0.74,标准偏差RMSE值分别为134.1mg/L,4.82mg/L,2.23mg/L和1.72mg/L。在此基础上,首次利用扩展傅立叶幅值敏感性测试(EFAST)算法对扩展ASM3-SMP模型进行敏感性和不确定性分析,得出随着SRT的延长输出值受参数主敏感度的影响逐渐增强且模型趋于线性化的结论。此外,依据质量守恒、受力平衡及一阶传递原理,构建了泥饼层形成及污染物在泥饼层-膜过滤过程中的截留模型,避免了采用固定截留系数值带来的模拟偏差,更为真实地模拟了MBR的膜出水水质。
     在分析正常活性污泥(NS)和丝状菌膨胀污泥(BS)的膜污染特性基础上,研发了污泥絮体形态图像分析系统,构建了形态学参数与污泥指数(DSVI)的自回归历遍模型(ARX),其中AR(或R),EFLI/FAI和FF的组合是最佳输入参数,以[EFLI/FAI,FF, R]为输入参数时,ARX的预测值与实验值间的R_(adj)~2达到0.57-0.86,且延迟时间nk偏离零值。为分析NS与BS膜污染特性的差异,本论文进一步探讨了不同形态活性污泥的EPS-重构膜体系间的XDLVO作用能,EPS-膜系统总界面能U XDLVO123为负值,PVDF膜与BS-EPS的U_(123)~(XDLVO)具有相对较大的负值;此外膜表面的粗糙度极大地改变了EPS-膜体系间的相互作用能,相比于光滑膜面,NS-EPS和BS-EPS的膜临界通量分别降低了27.4%和58.2%,结果表明EPS-膜系统之间会发生自吸附行为,其中BS-EPS更容易引起膜污染。
     由于膜污染划分为膜孔污染及膜面泥饼层污染,本文分别基于膜面泥饼层对污染物的截留构建膜孔污染模型以及基于质量守恒、受力平衡、塌缩效应构建膜面泥层污染模型。TMP变化的模拟结果与试验结果达到了良好的拟合度,证实了模型对膜污染过程预测的实用性。结合扩展ASM3-SMP模型及膜污染模型,考察系统运行参数对膜污染的影响并进行优化,结果表明通量是影响膜污染速率的最重要因素,水力停留时间的较优控制范围为7-9h,污泥停留时间的较优控制范围为20-40d,曝气量的较优控制范围为1.2-1.8m~3/h。
Submerged membrane bioreactor (MBR) is considered to be a promising biologicaltreatment technology that uses membrane to replace the conventional sedimentationbasin for the solid-liquid separation of mixed liquor. However, membrane fouling is stilla major problem that hinders MBR’s more widespread application, thus the mitigation ofmembrane fouling has become a challenge of membrane technology. In this work, theproduction-degradation approach of SMP and their fouling potentials were elucidated.Thebilogical process in the MBR and the organic interception by cake layer were wellsimulated. The XDLVO interaciton energy between extracellular polymeric substance(EPS) and membran were investigated. The morphological parameter of sludge withimage analysis was developed, and a fouling model including pore blocking and cakelayer formation was proposed. These compensated the deficiency of MBR research suchas the numerical simulation, enabled in-depth understanding the characteristics ofmembrane fouling, provided valuable information for MBR operation, and promoted thesustainable development of water quality and environment.
     Characterization and modeling of the SMP were conducted towards a betterunderstanding of the production and degradation of SMP in a MBR. Based on thechemical analysis, both utilization associated products (UAP) and biomass associatedproducts (BAP) exhibited the biodegradability and had a large fraction of molecularweight greater than20kDa, thus the approach of production–hydrolysis-utilization wereproposed for the formation and metabolism of SMP. With respect to the membranefouling, a series of stirred dead-end filtration tests were conducted to investigate thefouling potential of BAP and UAP, showing that the respective mean MFI-UF valueswere estimated to be4.37×103and1.63×104s/L2. Modeling work well indicated that themain fouling mechanisms for BAP and UAP filtration were cake filtration and completeblockage. These results showed that the UAP produced in the cell proliferation phaseexhibited the stronger fouling propensity than BAP.
     With respect to the biological process in MBR, extended ASM3-SMP model wasproposed based on the platform of Activated Sludge Model3(ASM3) with two mainimprovements:(i) adopting the concept of simultaneous growth and storage of organicsubstrates;(ii) introducing the formation and degradation of soluble microbial products.the model showed an acceptable agreement with MLSS, COD, SMP and S_(NO), and thecorrelation coefficients between measured and simulated data were0.83,0.51,0.58and0.74, respectively. A complete global sensitivity and uncertainty analysis of the fullmodel is performed using the variance-based extended FAST method, which showed thatthe model discussed herein generally appeared to be much additive as SRT extended andoutputs were predominantly dependent on first-order effects. Additionally, a mechanisticmodel was developed to demonstrate the formation of dynamic cake layer by sludgelower than critical diameter, and the modeling results showed that the external cake layerof rejected sludge particles played an important role in COD removal before the physicalmembrane filtration. Therefore, the removal of organic substance in the MBR systemwas due to in-series phenomena: biological degradation with biomass, interception in thecake layer and filtration of primary membrane.
     Comparison of sludge morphology was made to elucidate the different filtrationcharacteristics, and image analysis was successfully developed in monitoring sludgestatus and gaining morphological parameters. The combinations of EFLI/FAI, FFand the floc elongation related parameter (AR or R) were the preferred performinginput candidates for ARX model. The performance of the ARX ([EFLI/FAI, FF, AR])showed theR_(adj)~2were0.81and0.86(respective for MBR I and MBR II) inidentification;0.65and0.57(respective for MBR II and MBR I) in validation. Mostoften, the inputs gave rise to a delay value, differing from zero, thus improving the intime prediction of the sudden rise in DSVI values.
     The interaction energy, represented by XDLVO potential, was calculated, allowingexploring the interaction energy profiles for EPS-reconstructed membrane surface. Thefree energy of BS-EPS was lower than that of NS-EPS with respect to PVDF in an aquatic environment, suggesting BS-EPS has higher fouling tendency in terms ofadsorption onto the membrane surface. Additionally, the XDLVO interaction energybetween the EPS and a smooth membrane surface was significantly altered by membranesurface topology (roughness). The accurate assessment of membrane-EPS interactionsallowed identification of critical flux for effective membrane process operation, resultingin more than0.27and0.58decrement of critical flux for NS-EPS and BS-EPS with theincorporation of roughness effect.
     A mathematial model was developed to model membrane fouling in the MBR. Themodel for pore fouling was based on the organic interception by cake layer, and the massbalance, force balance and collapse effect was considered in the model of cake layerformation. The results of the simulation compared fairly well with the experimentalresults that were obtained with lab-scaled MBRs, which validated the applicability of thefouling model. The effects of operational variables on the membrane fouling wereconducted with the combination of extended ASM3-SMP and membrane fouling model.The simulation results demonstrated that filtration flux was the most significant factorcausing fouling problems. Based on the simulation results for this study, the hydraulicretention time had an optimum range of7-9h, solid retention time of20-40d andaeration rate of1.2-1.8m~3/h from the fouling control and economic point of view.
引文
[1] Meng, F.G., Chae, S.R., Shin, H.S., et al., Recent Advances in MembraneBioreactors: Configuration Development, Pollutant Elimination, and SludgeReduction. Environmental Engineering Science,2012,29(3):139-160.
    [2] Te Poele, S., Van der Graaf, J., Enzymatic Cleaning in Ultrafiltration of WastewaterTreatment Plant Effluent. Desalination,2005,179(1-3):73-81.
    [3Drews, A., Evenblij, H., Rosenberger, S., Potential and Drawbacks ofMicrobiology–Membrane Interaction in Membrane Bioreactors. EnvironmentalProgress,2005,24(4):426-433.
    [4] Rosenberger, S., Laabs, C., Lesjean, B., et al., Impact of Colloidal and SolubleOrganic Material on Membrane Performance in Membrane Bioreactors forMunicipal Wastewater Treatment. Water Research,2006,40(4):710-720.
    [5] Shen, Y., Zhao, W., Xiao, K., et al., A Systematic Insight into Fouling Propensity ofSoluble Microbial Products in Membrane Bioreactors Based on HydrophobicInteraction and Size Exclusion. Journal of Membrane Science,2010,346(1):187-193.
    [6] Massé, A., Spérandio, M., Cabassud, C., Comparison of Sludge Characteristics andPerformance of a Submerged Membrane Bioreactor and an Activated SludgeProcess at High Solids Retention Time. Water Research,2006,40(12):2405-2415.
    [7] Fan, F., Zhou, H., Husain, H., Identification of Wastewater Sludge Characteristics toPredict Critical Flux for Membrane Bioreactor Processes. Water Research,2006,40(2):205-212.
    [8] Li, X.Y., Wang, X.M., Modelling of Membrane Fouling in a Submerged MembraneBioreactor. Journal of Membrane Science,2006,278(1-2):151-161.
    [9] Busch, J., Cruse, A., Marquardt, W., Modeling Submerged Hollow-Fiber MembraneFiltration for Wastewater Treatment. Journal of Membrane Science,2007,288(1):94-111.
    [10] Zarragoitia-Gonzalez, A., Schetrite, S., Alliet, M., et al., Modelling of SubmergedMembrane Bioreactor: Conceptual Study About Link between Activated SlugdeBiokinetics, Aeration and Fouling Process. Journal of Membrane Science,2008,325(2):612-624.
    [11] Smith, C., DiGregorio, D., Talcott, R., The Use of Ultrafiltration Membranes forActivated Sludge Separation. Proceedings of the24th Industrial Waste Conference,1969,1300-1310.
    [12] Stephenson, T., Pankhania, M., Membrane Bioreactors for Wastewater Treatment,Institution of Chemical Engineers Symposium Series,1994,10-12.
    [13] Bemberis, I., Hubbard, P., Leonard, F., Membrane Sewage TreatmentSystems–Potential for Complete Wastewater Treatment. American Society ofAgricultural&Biological Engineers. Winter Mtg,1971,71-878.
    [14] Kimura, S., Japan's Aqua Renaissance90Project. Water Science and TechnologyWater Science&Technology,1989,21(4-5):43-54.
    [15] Yamamoto, K., Hiasa, M., Mahmood, T., et al., Direct Solid-Liquid SeparationUsing Hollow Fiber Membrane in an Activated Sludge Aeration Tank. WaterScience&Technology,1989,21(4-5):43-54.
    [16] Judd, S., The MBR Book: Principles and Applications of Membrane Bioreactors forWater and Wastewater Treatment, Elsevier,2011.
    [17] Kim, H.K., Ham, M.S., Hong, J.S., et al., Use of Moving Aeration MembraneBioreactor for the Efficient Production of Tissue Type Plasminogen Activator inSerum Free Medium. Biotechnology and Bioprocess Engineering,1996,1(1):32-35.
    [18] Genkin, G., Waite, T.D., Fane, A.G., et al., The Effect of Vibration and CoagulantAddition on the Filtration Performance of Submerged Hollow Fibre Membranes.Journal of Membrane Science,2006,281(1-2):726-734.
    [19] Prip Beier, S., Jonsson, G., A Vibrating Membrane Bioreactor (VMBR):Macromolecular Transmission—Influence of Extracellular Polymeric Substances.Chemical Engineering Science,2009,64(7):1436-1444.
    [20] Bilad, M.R., Mezohegyi, G., Declerck, P., et al., Novel Magnetically InducedMembrane Vibration (MMV) for Fouling Control in Membrane Bioreactors. WaterResearch,2012,46(1):63-72.
    [21] Thobanoglous, G., Burton, F.L., Stensel, H., Wastewater Engineering Treatment andReuse. Wastewater Engineering Treatment and Reuse,2003.
    [22] Martins, A.M.P., Pagilla, K., Heijnen, J.J., et al., Filamentous Bulking Sludge—aCritical Review. Water Research,2004,38(4):793-817.
    [23]张瑜洪,张智吾,促进水资源可持续利用保障国家水资源安全——《全国水资源综合规划》编制概览.中国水利,2011,33:14-32.
    [24]环境保护部,“十二五”主要污染物总量控制规划编制指南.环办(2010)97号,2010,6.
    [25] Lee, J., Ahn, W.Y., Lee, C.H., Comparison of the Filtration Characteristics betweenAttached and Suspended Growth Microorganisms in Submerged MembraneBioreactor. Water Research,2001,35(10):2435-2445.
    [26] Cho, B., Fane, A., Fouling Transients in Nominally Sub-Critical Flux Operation of aMembrane Bioreactor. Journal of Membrane Science,2002,209(2):391-403.
    [27] Zhang, J., Chua, H., Zhou, J., et al., Factors Affecting the Membrane Performancein Submerged Membrane Bioreactors. Journal of Membrane Science,2006,284(1-2):54-66.
    [28] Hwang, B.K., Lee, W.N., Yeon, K.M., et al., Correlating TMP Increases withMicrobial Characteristics in the Bio-Cake on the Membrane Surface in a MembraneBioreactor. Environmental Science&Technology,2008,42(11):3963-3968.
    [29] Drews, A., Membrane Fouling in Membrane Bioreactors--Characterisation,Contradictions, Cause and Cures. Journal of Membrane Science,2010,363(1-2):1-28.
    [30] Yamato, N., Kimura, K., Miyoshi, T., et al., Difference in Membrane Fouling inMembrane Bioreactors (MBRs) Caused by Membrane Polymer Materials. Journalof Membrane Science,2006,280(1-2):911-919.
    [31] Zhang, G., Ji, S., Gao, X., et al., Adsorptive Fouling of Extracellular PolymericSubstances with Polymeric Ultrafiltration Membranes. Journal of MembraneScience,2008,309(1-2):28-35.
    [32] Zhang, S., Qu, Y., Liu, Y., et al., Experimental Study of Domestic SewageTreatment with a Metal Membrane Bioreactor. Desalination,2005,177(1-3):83-93.
    [33] Zhang, S., Yang, F., Liu, Y., et al., Performance of a Metallic Membrane BioreactorTreating Simulated Distillery Wastewater at Temperatures of30to45oC.Desalination,2006,194(1-3):146-155.
    [34] Lee, N.H., Amy, G., Croue, J.P., et al., Identification and Understanding of Foulingin Low-Pressure Membrane (MF/UF) Filtration by Natural Organic Matter (NOM).Water Research,2004,38(20):4511-4523.
    [35] Fang, H.H.P., Shi, X., Pore Fouling of Microfiltration Membranes by ActivatedSludge. Journal of Membrane Science,2005,264(1-2):161-166.
    [36] Stephenson, T., Judd, S., Jefferson, B., et al., Membrane Bioreactor for WastewaterTreatment, IWA Publication., London, UK,2000.
    [37] Choo, K.H., Lee, C.H., Effect of Anaerobic Digestion Broth Composition onMembrane Permeability. Water Science&Technology,1996,34(9):173-179.
    [38] Meireles, M., Aimar, P., Sanchez, V., Effects of Protein Fouling on the ApparentPore Size Distribution of Sieving Membranes. Journal of Membrane Science,1991,56(1):13-28.
    [39] Adin, A., Particle Characteristics: A Key Factor in Effluent Treatment and Reuse.Water Science&Technology,1999,40(4):67-74.
    [40] Chang, I.S., Bag, S.O., Lee, C.H., Effects of Membrane Fouling on Solute RejectionDuring Membrane Filtration of Activated Sludge. Process Biochemistry,2001,36(8):855-860.
    [41] Yu, H.Y., Xie, Y.J., Hu, M.X., et al., Surface Modification of PolypropyleneMicroporous Membrane to Improve Its Antifouling Property in MBR: CO2PlasmaTreatment. Journal of Membrane Science,2005,254(1-2):219-227.
    [42] Yu, H.Y., Hu, M.X., Xu, Z.K., et al., Surface Modification of PolypropyleneMicroporous Membranes to Improve Their Antifouling Property in MBR: NH3Plasma Treatment. Separation and Purification Technology,2005,45(1):8-15.
    [43] LaPara, T.M., Klatt, C.G., Chen, R., Adaptations in Bacterial Catabolic EnzymeActivity and Community Structure in Membrane-Coupled Bioreactors Fed SimpleSynthetic Wastewater. Journal of Biotechnology,2006,121(3):368-380.
    [44]刘淑舒,张西旺, DelaiSun, D.等,长泥龄膜生物反应器中活性污泥的膜污染研究.环境工程学报,2009,3(10).
    [45] Trussell, R.S., Merlo, R.P., Hermanowicz, S.W., et al., The Effect of OrganicLoading on Process Performance and Membrane Fouling in a SubmergedMembrane Bioreactor Treating Municipal Wastewater. Water Research,2006,40(14):2675-2683.
    [46] Meng, F., Shi, B., Yang, F., et al., Effect of Hydraulic Retention Time on MembraneFouling and Biomass Characteristics in Submerged Membrane Bioreactors.Bioprocess and Biosystems Engineering,2007,30(5):359-367.
    [47]李菊,唐书娟,王志伟,温度对膜生物反应器运行特性及膜污染的影响.环境科学与管理,2010,35(005):110-114.
    [48]王小佳,姜维,李继香等,抽停比和膜组件放置方式对MBR膜污染的影响.中国给水排水,2010,17:69-72.
    [49] Nagaoka, H., Yamanishi, S., Miya, A., Modeling of Biofouling by ExtracellularPolymers in a Membrane Separation Activated Sludge System. Water Science&Technology,1998,38(4):497-504.
    [50] Wiesmann, U., Choi, I.S., Dombrowski, E.M., Biological Wastewater Treatment,Wiley Online Library,2006.
    [51] Han, S.S., Bae, T.H., Jang, G.G., et al., Influence of Sludge Retention Time onMembrane Fouling and Bioactivities in Membrane Bioreactor System. ProcessBiochemistry,2005,40(7):2393-2400.
    [52] Grelier, P., Rosenberger, S., Tazi-Pain, A., Influence of Sludge Retention Time onMembrane Bioreactor Hydraulic Performance. Desalination,2006,192(1-3):10-17.
    [53] Jinsong, Z., Chuan, C.H., Jiti, Z., et al., Effect of Sludge Retention Time onMembrane Bio‐Fouling Intensity in a Submerged Membrane Bioreactor.Separation Science and Technology,2006,41(7):1313-1329.
    [54] Chang, I.S., Lee, C.H., Membrane Filtration Characteristics in Membrane-CoupledActivated Sludge System--the Effect of Physiological States of Activated Sludge onMembrane Fouling. Desalination,1998,120(3):221-233.
    [55] Field, R., Wu, D., Howell, J., et al., Critical Flux Concept for MicrofiltrationFouling. Journal of Membrane Science,1995,100(3):259-272.
    [56] Defrance, L., Jaffrin, M., Comparison between Filtrations at Fixed TransmembranePressure and Fixed Permeate Flux: Application to a Membrane Bioreactor Used forWastewater Treatment. Journal of Membrane Science,1999,152(2):203-210.
    [57] Howell, J., Chua, H., Arnot, T., In Situ Manipulation of Critical Flux in aSubmerged Membrane Bioreactor Using Variable Aeration Rates, and Effects ofMembrane History. Journal of Membrane Science,2004,242(1-2):13-19.
    [58] Kim, J.S., Lee, C.H., Chang, I.S., Effect of Pump Shear on the Performance of aCrossflow Membrane Bioreactor. Water Research,2001,35(9):2137-2144.
    [59]孟凡刚,张捍民,于连生等,活性污泥性质对短期膜污染影响的解析研究.环境科学,2006,27(7):1348-1352.
    [60]张聚成,张劲松,金若非等,基因工程菌厌氧膜生物反应器中膜污染的研究.污染防治技术,2011,24(4):18-23.
    [61] Geng, Z., Hall, E.R., A Comparative Study of Fouling-Related Properties of Sludgefrom Conventional and Membrane Enhanced Biological Phosphorus RemovalProcesses. Water Research,2007,41(19):4329-4338.
    [62] Jarusutthirak, C., Amy, G., Croué, J.P., Fouling Characteristics of WastewaterEffluent Organic Matter (EFOM) Isolates on NF and UF Membranes. Desalination,2002,145(1-3):247-255.
    [63] Wu, J., Huang, X., Effect of Mixed Liquor Properties on Fouling Propensity inMembrane Bioreactors. Journal of Membrane Science,2009,342(1):88-96.
    [64] Lesjean, B., Rosenberger, S., Laabs, C., et al., Correlation between MembraneFouling and Soluble/Colloidal Organic Substances in Membrane Bioreactors forMunicipal Wastewater Treatment. Water Science and Technology: a Journal of theInternational Association on Water Pollution Research,2005,51(6-7):1.
    [65] Drews, A., Vocks, M., Iversen, V., et al., Influence of Unsteady MembraneBioreactor Operation on EPS Formation and Filtration Resistance. Desalination,2006,192(1-3):1-9.
    [66] Drews, A., Vocks, M., Bracklow, U., et al., Does Fouling in MBRs Depend on SMP?Desalination,2008,231(1-3):141-149.
    [67] Iritani, E., Katagiri, N., Sengoku, T., et al., Flux Decline Behaviors in Dead-EndMicrofiltration of Activated Sludge and Its Supernatant. Journal of MembraneScience,2007,300(1-2):36-44.
    [68] Lyko, S., Al-Halbouni, D., Wintgens, T., et al., Polymeric Compounds in ActivatedSludge Supernatant--Characterisation and Retention Mechanisms at a Full-ScaleMunicipal Membrane Bioreactor. Water Research,2007,41(17):3894-3902.
    [69] Evenblij, H., Geilvoet, S., Van der Graaf, J., et al., Filtration Characterisation forAssessing MBR Performance: Three Cases Compared. Desalination,2005,178(1-3):115-124.
    [70] Laspidou, C.S., Rittmann, B.E., A Unified Theory for Extracellular PolymericSubstances, Soluble Microbial Products, and Active and Inert Biomass. WaterResearch,2002,36(11):2711-2720.
    [71] Cho, J., Song, K., Yun, H., et al., Quantitative Analysis of Biological Effect onMembrane Fouling in Submerged Membrane Bioreactor. Water Science andTechnology: a Journal of the International Association on Water Pollution Research,2005,51(6-7):9.
    [72] Ahmed, Z., Cho, J., Lim, B.R., et al., Effects of Sludge Retention Time onMembrane Fouling and Microbial Community Structure in a Membrane Bioreactor.Journal of Membrane Science,2007,287(2):211-218.
    [73] Ji, L., Zhou, J., Influence of Aeration on Microbial Polymers and MembraneFouling in Submerged Membrane Bioreactors. Journal of Membrane Science,2006,276(1-2):168-177.
    [74] Ramesh, A., Lee, D., Wang, M., et al., Biofouling in Membrane Bioreactor.Separation Science and Technology,2006,41(7):1345-1370.
    [75] Rosenberger, S., Kraume, M., Filterability of Activated Sludge in MembraneBioreactors. Desalination,2002,146(1-3):373-379.
    [76] Meng, F., Zhang, H., Yang, F., et al., Identification of Activated Sludge PropertiesAffecting Membrane Fouling in Submerged Membrane Bioreactors. Separation andPurification Technology,2006,51(1):95-103.
    [77] Meng, F., Chae, S.R., Drews, A., et al., Recent Advances in Membrane Bioreactors(MBRs): Membrane Fouling and Membrane Material. Water Research,2009,43(6):1489-1512.
    [78] Harada, H., Momonoi, K., Yamazaki, S., et al., Application of Anaerobic-UFMembrane Reactor for Treatment of a Wastewater Containing High StrengthParticulate Organics. Water Science&Technology,1994,30(12):307-319.
    [79] Le Clech, P., Jefferson, B., Chang, I.S., et al., Critical Flux Determination by theFlux-Step Method in a Submerged Membrane Bioreactor. Journal of MembraneScience,2003,227(1-2):81-93.
    [80] Henze, M., Activated Sludge Models ASM1, ASM2, ASM2d and ASM3,International Water Association,2000.
    [81] Gujer, W., Henze, M., Mino, T., et al., Activated Sludge Model No.3. WaterScience&Technology,1999,39(1):183-193.
    [82] Van Veldhuizen, H., Van Loosdrecht, M., Heijnen, J., Modelling BiologicalPhosphorus and Nitrogen Removal in a Full Scale Activated Sludge Process. WaterResearch,1999,33(16):3459-3468.
    [83] Brdjanovic, D., van Loosdrecht, M., Versteeg, P., et al., Modeling COD, N and PRemoval in a Full-Scale WWTP Haarlem Waarderpolder. Water Research,2000,34(3):846-858.
    [84] Rieger, L., Koch, G., Kühni, M., et al., The Eawag Bio-P Module for ActivatedSludge Model No.3. Water Research,2001,35(16):3887-3903.
    [85] Ramphao, M., Wentzel, M., Merritt, R., et al., Impact of Membrane Solid–LiquidSeparation on Design of Biological Nutrient Removal Activated Sludge Systems.Biotechnology and Bioengineering,2005,89(6):630-646.
    [86] Günder, B., The Membrane-Coupled Activated Sludge Process in MunicipalWastewater Treatment, Technomic Publishing Company,2001.
    [87] Krampe, J., Krauth, K., Oxygen Transfer into Activated Sludge with High MLSSConcentrations. Water Science&Technology,2003,297-303.
    [88] Manser, R., Gujer, W., Siegrist, H., Consequences of Mass Transfer Effects on theKinetics of Nitrifiers. Water Research,2005,39(19):4633-4642.
    [89] Brockmann, M., Seyfried, C., Sludge Activity and Cross-Flow Microfiltration—aNon-Beneficial Relationship. Water Science&Technology,1996,34(9):205-213.
    [90] Ghyoot, W., Vandaele, S., Verstraete, W., Nitrogen Removal from Sludge RejectWater with a Membrane-Assisted Bioreactor. Water Research,1999,33(1):23-32.
    [91] Drews, A., Mante, J., Iversen, V., et al., Impact of Ambient Conditions on SMPElimination and Rejection in MBRs. Water Research,2007,41(17):3850-3858.
    [92] Malamis, S., Andreadakis, A., Fractionation of Proteins and Carbohydrates ofExtracellular Polymeric Substances in a Membrane Bioreactor System. BioresourceTechnology,2009,100(13):3350-3357.
    [93] Shin, H.S., Kang, S.T., Characteristics and Fates of Soluble Microbial Products inCeramic Membrane Bioreactor at Various Sludge Retention Times. Water Research,2003,37(1):121-127.
    [94] Ng, H.Y., Tan, T.W., Ong, S.L., Membrane Fouling of Submerged MembraneBioreactors: Impact of Mean Cell Residence Time and the Contributing Factors.Environmental Science&Technology,2006,40(8):2706-2713.
    [95] Jiang, T., Kennedy, M.D., De Schepper, V., et al., Characterization of SolubleMicrobial Products and Their Fouling Impacts in Membrane Bioreactors.Environmental Science&Technology,2010,44(17):6642-6648.
    [96] Yoon, S.H., Kim, H.S., Yeom, I.T., The Optimum Operational Condition ofMembrane Bioreactor (MBR): Cost Estimation of Aeration and Sludge Treatment.Water Research,2004,38(1):37-46.
    [97] Lu, S., Imai, T., Ukita, M., et al., A Model for Membrane Bioreactor Process Basedon the Concept of Formation and Degradation of Soluble Microbial Products. WaterResearch,2001,35(8):2038-2048.
    [98] Lu, S., Imai, T., Ukita, M., et al., Modeling Prediction of Membrane BioreactorProcess with the Concept of Soluble Microbial Product. Water Science andTechnology: a Journal of the International Association on Water Pollution Research,2002,46(11-12):63.
    [99] Lee, Y., Cho, J., Seo, Y., et al., Modeling of Submerged Membrane BioreactorProcess for Wastewater Treatment. Desalination,2002,146(1-3):451-457.
    [100]Di Bella, G., Mannina, G., Viviani, G., An Integrated Model forPhysical-Biological Wastewater Organic Removal in a Submerged MembraneBioreactor: Model Development and Parameter Estimation. Journal of MembraneScience,2008,322(1):1-12.
    [101]Ahn, Y., Choi, Y., Jeong, H., et al., Modeling of Extracellular Polymeric Substancesand Soluble Microbial Products Production in a Submerged Membrane Bioreactorat Various Srts. Water Science and Technology: a Journal of the InternationalAssociation on Water Pollution Research,2006,53(7):209.
    [102]Oliveira-Esquerre, K., Narita, H., Yamato, N., et al., Incorporation of the Conceptof Microbial Product Formation into ASM3and the Modeling of a MembraneBioreactor for Wastewater Treatment. Brazilian Journal of Chemical Engineering,2006,23(4):461-471.
    [103]Jiang, T., Myngheer, S., De Pauw, D.J.W., et al., Modelling the Production andDegradation of Soluble Microbial Products (SMP) in Membrane Bioreactors(MBR). Water Research,2008,42(20):4955-4964.
    [104]Krishna, C., Van Loosdrecht, M., Substrate Flux into Storage and Growth inRelation to Activated Sludge Modeling. Water Research,1999,33(14):3149-3161.
    [105]Guisasola, A., Sin, G., Baeza, J., et al., Limitations of ASM1and ASM3: AComparison Based on Batch Oxygen Uptake Rate Profiles from DifferentFull-Scale Wastewater Treatment Plants. Water Science&Technology,2005,52(10-11):69-77.
    [106]Shimizu, Y., Shimodera, K.I., Watanabe, A., Cross-Flow Microfiltration ofBacterial Cells. Journal of fermentation and bioengineering,1993,76(6):493-500.
    [107]Chang, I.S., Kim, S.N., Wastewater Treatment Using Membrane Filtration--Effectof Biosolids Concentration on Cake Resistance. Process Biochemistry,2005,40(3-4):1307-1314.
    [108]Ishiguro, K., Imai, K., Sawada, S., Effects of Biological Treatment Conditions onPermeate Flux of UF Membrane in a Membrane/Activated-Sludge WastewaterTreatment System. Desalination,1994,98(1-3):119-126.
    [109]Sato, T., Ishii, Y., Effects of Activated Sludge Properties on Water Flux ofUltrafiltration Membrane Used for Human Excrement Treatment. Water Science&Technology,1991,23(7-9):1601-1608.
    [110]Krauth, K., Staab, K., Pressurized Bioreactor with Membrane Filtration forWastewater Treatment. Water Research,1993,27(3):405-411.
    [111]Liu, R., Huang, X., Sun, Y.F., et al., Hydrodynamic Effect on Sludge Accumulationover Membrane Surfaces in a Submerged Membrane Bioreactor. ProcessBiochemistry,2003,39(2):157-163.
    [112]Wintgens, T., Rosen, J., Melin, T., et al., Modelling of a Membrane BioreactorSystem for Municipal Wastewater Treatment. Journal of Membrane Science,2003,216(1-2):55-65.
    [113]Broeckmann, A., Busch, J., Wintgens, T., et al., Modeling of Pore Blocking andCake Layer Formation in Membrane Filtration for Wastewater Treatment.Desalination,2006,189(1-3):97-109.
    [114]Cho, J., Ahn, K.H., Seo, Y., et al., Modification of Asm No.1for a SubmergedMembrane Bioreactor System: Including the Effects of Soluble Microbial Productson Membrane Fouling. Water Science&Technology,2003,177-181.
    [115]Cho, J., Ahn, K.H., Lee, Y., et al., Investigation of Biological and FoulingCharacteristics of Submerged Membrane Bioreactor Process for WastewaterTreatment by Model Sensitivity Analysis. Water science and technology: a journalof the International Association on Water Pollution Research,2004,49(2):245.
    [116]魏复盛,国家环境保护总局,水和废水监测分析方法编委会,水和废水监测分析方法,中国环境科学出版社,2002.
    [117]Morgan, J., Forster, C., Evison, L., A Comparative Study of the Nature ofBiopolymers Extracted from Anaerobic and Activated Sludges. Water Research,1990,24(6):743-750.
    [118]Dubois, M., Gilles, K., Hamilton, J., et al., Colorimetric Method for Determinationof Sugars and Related Substances. Analytical Chemistry,1956,28(3):350-356.
    [119]Fr lund, B., Griebe, T., Nielsen, P.H., Enzymatic Activity in the Activated-SludgeFloc Matrix. Applied Microbiology and Biotechnology,1995,43(4):755-761.
    [120]Bura, R., Cheung, M., Liao, B., et al., Composition of Extracellular PolymericSubstances in the Activated Sludge Floc Matrix. Water Science&Technology,1998,37(4-5):325-333.
    [121]An, Y., Wang, Z., Wu, Z., et al., Characterization of Membrane Foulants in anAnaerobic Non-Woven Fabric Membrane Bioreactor for Municipal WastewaterTreatment. Chemical Engineering Journal,2009,155(3):709-715.
    [122]Xie, H., Saito, T., Hickner, M.A., Zeta Potential of Ion-Conductive Membranes byStreaming Current Measurements. Langmuir,2011,27(8):4721-4727.
    [123]Zhao, Z.P., Wang, Z., Wang, S.C., Formation, Charged Characteristic and BSAAdsorption Behavior of Carboxymethyl Chitosan/PES Composite MF Membrane.Journal of Membrane Science,2003,217(1):151-158.
    [124]Bowen, W.R., Cheng, S.Y., Doneva, T.A., et al., Manufacture and Characterisationof Polyetherimide/Sulfonated Poly (Ether Ether Ketone) Blend Membranes. Journalof Membrane Science,2005,250(1):1-10.
    [125]Oss, C.J.v., Interfacial Forces in Aqueous Media, Taylor&Francis, Boca Raton,2006.
    [126]Dold, P., Ekama, G., Marais, G.R., A General Model for the Activated SludgeProcess. Progress in Water Technology,1980,12(6).
    [127]Mamais, D., Jenkins, D., Prrr, P., A Rapid Physical-Chemical Method for theDetermination of Readily Biodegradable Soluble COD in Municipal Wastewater.Water Research,1993,27(1):195-197.
    [128]Roeleveld, P.J., Loosdrecht, M.C.v., Experience with Guidelines for WastewaterCharacterisation in the Netherlands. Water Science&Technology,2002,45(6):77-87.
    [129]Melcer, H., Methods for Wastewater Characterization in Activated SludgeModeling, International Water Association,2003.
    [130]Commision, W.R., Theory,Design and Operation of Nutrient Removal ActivatedSludge Processes, Pretoria, South Africa: Water Research Commission.,1984.
    [131]van Aalst‐van Leeuwen, M., Pot, M., Van Loosdrecht, M., et al., KineticModeling of Poly (β-Hydroxybutyrate) Production and Consumption by ParacoccusPantotrophus under Dynamic Substrate Supply. Biotechnology and Bioengineering,1997,55(5):773-782.
    [132]Van Loosdrecht, M., Heijnen, J., Modelling of Activated Sludge Processes withStructured Biomass. Water Science&Technology,2002,13-23.
    [133]Sin, G., Guisasola, A., De Pauw, D.J.W., et al., A New Approach for ModellingSimultaneous Storage and Growth Processes for Activated Sludge Systems underAerobic Conditions. Biotechnology and Bioengineering,2005,92(5):600-613.
    [134]Le Clech, P., Jefferson, B., Chang, I.S., et al., Critical Flux Determination by theFlux-Step Method in a Submerged Membrane Bioreactor. Journal of MembraneScience,2003,227(1–2):81-93.
    [135]Park, H.D., Lee, Y.H., Kim, H.B., et al., Reduction of Membrane Fouling bySimultaneous Upward and Downward Air Sparging in a Pilot-Scale SubmergedMembrane Bioreactor Treating Municipal Wastewater. Desalination,2010,251(1-3):75-82.
    [136]Ni, B., Zeng, R., Fang, F., et al., Fractionating Soluble Microbial Products in theActivated Sludge Process. Water Research,2010,44(7):2292-2302.
    [137]Arabi, S., Nakhla, G., Impact of Molecular Weight Distribution of SolubleMicrobial Products on Fouling in Membrane Bioreactors. Separation andPurification Technology,2010,73(3):391-396.
    [138]Jiang, T., Kennedy, M.D., Schepper, V.D., et al., Characterization of SolubleMicrobial Products and Their Fouling Impacts in Membrane Bioreactors.Environmental Science&Technology,2010.
    [139]Duclos-Orsello, C., Li, W.Y., Ho, C.C., A Three Mechanism Model to DescribeFouling of Microfiltration Membranes. Journal of Membrane Science,2006,280(1-2):856-866.
    [140]Chen, W., Westerhoff, P., Leenheer, J.A., et al., Fluorescence Excitation-EmissionMatrix Regional Integration to Quantify Spectra for Dissolved Organic Matter.Environmental Science&Technology,2003,37(24):5701-5710.
    [141]Wang, Z.W., Wu, Z.C., Tang, S.J., Characterization of Dissolved Organic Matter ina Submerged Membrane Bioreactor by Using Three-Dimensional Excitation andEmission Matrix Fluorescence Spectroscopy. Water Research,2009,43(6):1533-1540.
    [142]Ramesh, A., Lee, D.J., Lai, J.Y., Membrane Biofouling by Extracellular PolymericSubstances or Soluble Microbial Products from Membrane Bioreactor Sludge.Applied Microbiology and Biotechnology,2007,74(3):699-707.
    [143]Meng, F.G., Yang, F.L., Shi, B.Q., et al., A Comprehensive Study on MembraneFouling in Submerged Membrane Bioreactors Operated under Different AerationIntensities. Separation and Purification Technology,2008,59(1):91-100.
    [144]Satyawali, Y., Balakrishnan, M., Effect of Pac Addition on Sludge Properties in anMBR Treating High Strength Wastewater. Water Research,2009,43(6):1577-1588.
    [145]Meng, F., Yang, F., Shi, B., et al., A Comprehensive Study on Membrane Fouling inSubmerged Membrane Bioreactors Operated under Different Aeration Intensities.Separation and Purification Technology,2008,59(1):91-100.
    [146]Boerlage, S.F.E., Kennedy, M.D., Dickson, M.R., et al., The Modified FoulingIndex Using Ultrafiltration Membranes (MF-UF): Characterisation, FiltrationMechanisms and Proposed Reference Membrane. Journal of Membrane Science,2002,197(1-2):1-21.
    [147]Wang, Z., Wang, P., Wang, Q., et al., Effective Control of Membrane Fouling byFilamentous Bacteria in a Submerged Membrane Bioreactor. Chemical EngineeringJournal,2010,158(3):608-615.
    [148]Meng, F.G., Zhang, H.M., Yang, F.L., et al., Identification of Activated SludgeProperties Affecting Membrane Fouling in Submerged Membrane Bioreactors.Separation and Purification Technology,2006,51(1):95-103.
    [149]Shen, Y.X., Zhao, W.T., Xiao, K., et al., A Systematic Insight into FoulingPropensity of Soluble Microbial Products in Membrane Bioreactors Based onHydrophobic Interaction and Size Exclusion. Journal of Membrane Science,2010,346(1):187-193.
    [150]Bolton, G., LaCasse, D., Kuriyel, R., Combined Models of Membrane Fouling:Development and Application to Microfiltration and Ultrafiltration of BiologicalFluids. Journal of Membrane Science,2006,277(1-2):75-84.
    [151]Wang, F.L., Tarabara, V.V., Pore Blocking Mechanisms During Early Stages ofMembrane Fouling by Colloids. Journal of Colloid and Interface Science,2008,328(2):464-469.
    [152]Hermia, J., Constant Pressure Blocking Filtration Laws-Application to Power-LawNon-Newtonian Fluids. Chemical Engineering Research and Design,1982,60(a):183-187.
    [153]Liang, S., Liu, C., Song, L.F., Soluble Microbial Products in Membrane BioreactorOperation: Behaviors, Characteristics, and Fouling Potential. Water Research,2007,41(1):95-101.
    [154]Fatone, F., Battistoni, P., Pavan, P., et al., Operation and Maintenance of Full-ScaleMunicipal Membrane Biological Reactors: A Detailed Overview on a Case Study.Industrial&Engineering Chemistry Research,2007,46(21):6688-6695.
    [155]Saroi, D.P., Guglielmi, G., Chiarani, D., et al., Modeling and Simulation ofMembrane Bioreactors by Incorporating Simultaneous Storage and Growth Concept:An Especial Attention to Fouling While Modeling the Biological Process.Desalination,2008,221(1-3):475-482.
    [156]Jiang, T., Sin, G., Spanjers, H., et al., Comparison of the Modeling Approachbetween Membrane Bioreactor and Conventional Activated Sludge Processes.Water Environment Research,2009,81(4):432-440.
    [157]Fenu, A., Guglielmi, G., Jimenez, J., et al., Activated Sludge Model (ASM) BasedModelling of Membrane Bioreactor (MBR) Processes: A Critical Review withSpecial Regard to MBR Specificities. Water Research,2010,44(15):4272-4294.
    [158]Liu, H.B., Yang, C.Z., Pu, W.H., et al., Formation Mechanism and Structure ofDynamic Membrane in the Dynamic Membrane Bioreactor. Chemical EngineeringJournal,2009,148(2-3):290-295.
    [159]Li, X., Wang, X., Modelling of Membrane Fouling in a Submerged MembraneBioreactor. Journal of Membrane Science,2006,278(1-2):151-161.
    [160]Delgado, S., Villarroel, R., Gonzalez, E., Effect of the Shear Intensity on Fouling inSubmerged Membrane Bioreactor for Wastewater Treatment. Journal of MembraneScience,2008,311(1-2):173-181.
    [161]Jang, N., Ren, X., Cho, J., et al., Steady-State Modeling of Bio-Fouling Potentialswith Respect to the Biological Kinetics in the Submerged Membrane Bioreactor(SMBR). Journal of Membrane Science,2006,284(1-2):352-360.
    [162]Ahimou, F., Semmens, M.J., Novak, P.J., et al., Biofilm Cohesiveness MeasurementUsing a Novel Atomic Force Microscopy Methodology. Applied and EnvironmentalMicrobiology,2007,73(9):2897-2904.
    [163]Hwang, K.J., Chen, F.F., Modeling of Particle Fouling and Membrane Blocking inSubmerged Membrane Filtration. Separation Science and Technology,2007,42(12):2595-2614.
    [164]Chen, J.C., Kim, A.S., Monte Carlo Simulation of Colloidal Membrane Filtration:Principal Issues for Modeling. Advances in Colloid and Interface Science,2006,119(1):35-53.
    [165]Freni, G., Mannina, G., Viviani, G., Identifiability Analysis for Receiving WaterBody Quality Modelling. Environmental Modelling&Software,2009,24(1):54-62.
    [166]Ho, Y., Varley, J., Mantalaris, A., Development and Analysis of a MathematicalModel for Antibody-producing GS-NS0cells under normal and hyperosmoticculture conditions. Biotechnology Progress,2006,22(6):1560-1569.
    [167]Ascough, J., II, T., Ma, L., et al., Key Criteria and Selection of Sensitivity AnalysisMethods Applied to Natural Resource Models.2005.
    [168]Kiparissides, A., Kucherenko, S.S., Mantalaris, A., et al., Global SensitivityAnalysis Challenges in Biological Systems Modeling. Industrial&EngineeringChemistry Research,2009,48(15):7168-7180.
    [169]Saltelli, A., Global Sensitivity Analysis: The Primer, Wiley-Interscience,2008.
    [170]Sin, G., Gernaey, K.V., Neumann, M.B., et al., Global Sensitivity Analysis inWastewater Treatment Plant Model Applications: Prioritizing Sources ofUncertainty. Water Research,2011,45(2):639-651.
    [171]Neumann, M.B., Gujer, W., von Gunten, U., Global Sensitivity Analysis forModel-Based Prediction of Oxidative Micropollutant Transformation DuringDrinking Water Treatment. Water Research,2009,43(4):997-1004.
    [172]Varella, H., Guérif, M., Buis, S., Global Sensitivity Analysis Measures the Qualityof Parameter Estimation: The Case of Soil Parameters and a Crop Model.Environmental Modelling&Software,2010,25(3):310-319.
    [173]Saltelli, A., Tarantola, S., Chan, K., A Quantitative Model-Independent Method forGlobal Sensitivity Analysis of Model Output. Technometrics,1999,41(1):39-56.
    [174]Marino, S., Hogue, I.B., Ray, C.J., et al., A Methodology for Performing GlobalUncertainty and Sensitivity Analysis in Systems Biology. Journal of TheoreticalBiology,2008,254(1):178-196.
    [175]Sin, G., Gernaey, K., Neumann, M., et al., Uncertainty Analysis in WWTP ModelApplications: A Critical Discussion Using an Example from Design. WaterResearch,2009,43(11):2894-2906.
    [176]Barker, D.J., Stuckey, D.C., A Review of Soluble Microbial Products (SMP) inWastewater Treatment Systems. Water Research,1999,33(14):3063-3082.
    [177]Liwarska-Bizukojc, E., Biernacki, R., Identification of the Most SensitiveParameters in the Activated Sludge Model Implemented in Biowin Software.Bioresource Technology,2010,101(19):7278-7285.
    [178]Pai, T.-Y., Wan, T.-J., Tsai, Y.-P., et al., Effect of Sludge Retention Time onNitrifiers' Biomass and Kinetics in an Anaerobic/Oxic Process. CLEAN–Soil, Air,Water,2010,38(2):167-172.
    [179]Morgan, M., Henrion, M., Small, M., Uncertainty: A Guide to Dealing withUncertainty in Quantitative Risk and Policy Analysis, Cambridge University Press,1990.
    [180]Brun, R., Kühni, M., Siegrist, H., et al., Practical Identifiability of ASM2dParameters--Systematic Selection and Tuning of Parameter Subsets. Water Research,2002,36(16):4113-4127.
    [181]Ruano, M., Ribes, J., DE, P., Parameter Subset Selection for the DynamicCalibration of Activated Sludge Models (ASMs): Experience Versus SystemsAnalysis. Water Science&Technology,2007,56(8):107-115.
    [182]Mannina, G., Di Bella, G., Viviani, G., Uncertainty assessment of a membranebioreactor model using the GLUE methodology, Biochemical Engineering Journal,2010,52(2):263-275.
    [183]Li, H.Y., Yang, M., Zhang, Y., et al., Nitrification Performance and MicrobialCommunity Dynamics in a Submerged Membrane Bioreactor with CompleteSludge Retention. Journal of Biotechnology,2006,123(1):60-70.
    [184]Gao, M.C., Yang, M., Li, H.Y., et al., Comparison between a Submerged MembraneBioreactor and a Conventional Activated Sludge System on TreatingAmmonia-Bearing Inorganic Wastewater. Journal of Biotechnology,2004,108(3):265-269.
    [185]Trussell, R.S., Merlo, R.P., Hermanowicz, S.W., et al., The Effect of OrganicLoading on Process Performance and Membrane Fouling in a SubmergedMembrane Bioreactor Treating Municipal Wastewater. Water Research,2006,40(18):3479-3482.
    [186]Jenne, R., Banadda, E.N., Smets, I., et al., Detection of Filamentous BulkingProblems: Developing an Image Analysis System for Sludge CompositionMonitoring. Microscopy and Microanalysis,2007,13(01):36-41.
    [187]Müller, E., Lind, G., Lemmer, H., et al., Population Structure and Chemical EpsAnalyses of Activated Sludge and Scum. Acta Hydrochimica et Hydrobiologica,2005,33(3):189-196.
    [188]Pan, J.R., Su, Y.-C., Huang, C., et al., Effect of Sludge Characteristics onMembrane Fouling in Membrane Bioreactors. Journal of Membrane Science,2010,349(1-2):287-294.
    [189]Meng, F., Zhang, H., Yang, F., et al., Effect of Filamentous Bacteria on MembraneFouling in Submerged Membrane Bioreactor. Journal of Membrane Science,2006,272(1-2):161-168.
    [190]Xuan, W., Bin, Z., Zhiqiang, S., et al., The EPS Characteristics of Sludge in anAerobic Granule Membrane Bioreactor. Bioresource Technology,2010,101(21):8046-8050.
    [191]Wu, B., Yi, S., Fane, A.G., Microbial Behaviors Involved in Cake Fouling inMembrane Bioreactors under Different Solids Retention Times. BioresourceTechnology,2011,102(3):2511-2516.
    [192]Choi, J.G., Bae, T.H., Kim, J.H., et al., The Behavior of Membrane FoulingInitiation on the Crossflow Membrane Bioreactor System. Journal of MembraneScience,2002,203(1-2):103-113.
    [193]Li, J., Li, Y., Ohandja, D.-G., et al., Impact of Filamentous Bacteria on Properties ofActivated Sludge and Membrane-Fouling Rate in a Submerged MBR. Separationand Purification Technology,2008,59(3):238-243.
    [194]Wang, Z., Wu, Z., Tang, S., Extracellular Polymeric Substances (EPS) Propertiesand Their Effects on Membrane Fouling in a Submerged Membrane Bioreactor.Water Research,2009,43(9):2504-2512.
    [195]Van der Bruggen, B., Kim, J.H., DiGiano, F.A., et al., Influence of MF Pretreatmenton NF Performance for Aqueous Solutions Containing Particles and an OrganicFoulant. Separation and Purification Technology,2004,36(3):203-213.
    [196]Maximous, N., Nakhla, G., Wan, W., Comparative Assessment of Hydrophobic andHydrophilic Membrane Fouling in Wastewater Applications. Journal of MembraneScience,2009,339(1-2):93-99.
    [197]Brant, J.A., Childress, A.E., Assessing Short-Range Membrane-Colloid InteractionsUsing Surface Energetics. Journal of Membrane Science,2002,203(1-2):257-273.
    [198]Van Oss, C., Acid--Base Interfacial Interactions in Aqueous Media. Colloids andSurfaces A: Physicochemical and Engineering Aspects,1993,78(1-49.
    [199]Adomeit, P., Renz, U., Deposition of Fine Particles from a Turbulent Liquid Flow:Experiments and Numerical Predictions. Chemical Engineering Science,1996,51(13):3491-3503.
    [200]Lee, S., Elimelech, M., Relating Organic Fouling of Reverse Osmosis Membranesto Intermolecular Adhesion Forces. Environmental Science&Technology,2006,40(3):980-987.
    [201]Richard Bowen, W., Sharif, A.O., Hydrodynamic and Colloidal Interactions Effectson the Rejection of a Particle Larger Than a Pore in Microfiltration andUltrafiltration Membranes. Chemical Engineering Science,1998,53(5):879-890.
    [202]Wang, S., Guillen, G., Hoek, E.M.V., Direct Observation of Microbial Adhesion toMembranes. Environmental Science&Technology,2005,39(17):6461-6469.
    [203]Chen, G., Beving, D.E., Bedi, R.S., et al., Initial Bacterial Deposition on Bare andZeolite-Coated Aluminum Alloy and Stainless Steel. Langmuir,2009,25(3):1620-1626.
    [204]Cerovic, L., Lefèvre, G., Jaubertie, A., et al., Deposition of Hematite Particles onPolypropylene Walls in Dynamic Conditions. Journal of Colloid and InterfaceScience,2009,330(2):284-291.
    [205]Kim, Y.J., Choi, Y.G., Chung, T.H., A Simple Image Analysis Algorithm forEvaluation of Extended Filaments Length Based on the Enhanced Digitized Image.Journal of Environmental Science and Health, Part A,2008,43(13):1489-1494.
    [206]Arelli, A., Luccarini, L., Madoni, P., Application of Image Analysis in ActivatedSludge to Evaluate Correlations between Settleability and Features of Flocs andFilamentous Species. Water Science&Technology,2009,59(10):2029-2036.
    [207]Eriksson, L., Hardin, A., Settling Properties of Activated Sludge Related to FlocStructure. Water Science&Technology,1984,16(10-11):55-67.
    [208]Sezgin, M., Jenkins, D., Parker, D.S., A Unified Theory of Filamentous ActivatedSludge Bulking. Journal (Water Pollution Control Federation),1978,50(2):362-381.
    [209]Park, P.K., Lee, C.H., Lee, S., Permeability of Collapsed Cakes Formed byDeposition of Fractal Aggregates Upon Membrane Filtration. EnvironmentalScience&Technology,2006,40(8):2699-2705.
    [210]Zhang, H., Gao, J., Jiang, T., et al., A Novel Approach to Evaluate the Permeabilityof Cake Layer During Cross-Flow Filtration in the Flocculants Added MembraneBioreactors. Bioresource Technology,2011.
    [211]Hwang, K.J., Liu, H.C., Cross-Flow Microfiltration of Aggregated SubmicronParticles. Journal of Membrane Science,2002,201(1-2):137-148.
    [212]Antelmi, D., Cabane, B., Meireles, M., et al., Cake Collapse in Pressure Filtration.Langmuir,2001,17(22):7137-7144.
    [213]Mandelbrot, B.B., The Fractal Geometry of Nature, WH freeman,1983.
    [214]Wen, H., Lee, D., Strength of Cationic Polymer-Flocculated Clay Flocs. Advancesin Environmental Research,1998,2:390-396.
    [215]Jin, B., Wilén, B.M., Lant, P., A Comprehensive Insight into Floc Characteristicsand Their Impact on Compressibility and Settleability of Activated Sludge.Chemical Engineering Journal,2003,95(1-3):221-234.
    [216]Jiang, T., Kennedy, M.D., Yoo, C.K., et al., Controlling Submicron ParticleDeposition in a Side-Stream Membrane Bioreactor: A Theoretical HydrodynamicModelling Approach Incorporating Energy Consumption. Journal of MembraneScience,2007,297(1-2):141-151.
    [217]Hwang, E., Sun, D., Tay, J., Operational Factors of Submerged InorganicMembrane Bioreactor for Organic Wastewater Treatment: Sludge Concentration andAeration Rate. Water Science&Technology,2003,121-126.
    [218]Ueda, T., Hata, K., Kikuoka, Y., et al., Effects of Aeration on Suction Pressure in aSubmerged Membrane Bioreactor. Water Research,1997,31(3):489-494.
    [219] Germain, E., Stephenson, T., Pearce, P., Biomass Characteristics and MembraneAeration: Toward a Better Understanding of Membrane Fouling in SubmergedMembrane Bioreactors (MBRs). Biotechnology and Bioengineering,2005,90(3):316-322.
    [220]Zhang, J., Li, X., Modeling Particle‐Size Distribution Dynamics in a FlocculationSystem. AIChE journal,2003,49(7):1870-1882.
    [221]Logan, B.E., Environmental Transport Processes, Wiley-Interscience,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700