用户名: 密码: 验证码:
我国淋病奈瑟菌头孢曲松耐药趋势及运用比较蛋白质组学研究其部分耐药机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淋病奈瑟菌(Neisseria gonorrhoeae,Ng)是淋病的病原菌,主要经性途径传播。据估计,全世界每年新增6000万淋病患者,这无疑对公共卫生构成严重威胁。淋病主要引起黏膜感染,如不及时、有效的治疗,感染可扩散至邻近器官,或经血播散。妇女和儿童感染淋病可产生较为严重的并发症,如不孕、失明等。此外,淋病患者感染HIV的机会可增加近5倍。
     据全国流行病学资料显示,从上世纪80~90年代,淋病呈上升趋势;至2000年,淋病开始缓慢下降。但是,由于抗生素的滥用,Ng耐药株特别是多重耐药株的出现,使淋病疫情复杂化。头孢曲松(ceftriaxone,CRO)是各国推荐治疗淋病的一线药物,但敏感性呈下降趋势。可以预见,一旦Ng对第三代头孢类抗生素产生耐药,有效治疗手段将面临枯竭的窘境,发病率将急剧增加,淋病的流行也会更为广泛。有鉴于此,研究Ng对CRO的耐药机制刻不容缓。迄今为止,国内外分离出耐CRO Ng临床株非常罕见,这直接制约着对其耐药机制的研究。为此,我们拟采用人工诱导的方法,在实验室诱导出耐CRO Ng株,在此基础上,运用比较蛋白质组学技术寻找Ng对CRO耐药的差异表达的蛋白质分子。可以预见,本研究的结果对我国淋病的预防和治疗可能会产生一定积极的作用。全文分为4个部分,各章的主要内容简述如下:
     第一部分我国淋病奈瑟菌头孢曲松耐药监测及趋势的系统分析
     检索中国期刊全文数据库、PubMed、Cochrane数据库收集近期国内外发表的有关中国大陆地区Ng CRO耐药监测文献。筛选合格文献进行系统评价,分析文献的质量及Ng的耐药趋势。入选46篇文献,共报道10163株Ng CRO药敏情况;23篇文献主要来自华南地区(50%);26篇提供的标准菌株为WHO Ng分离株(56.52%);32篇文献药敏试验方法为WHO推荐的琼脂糖稀释法(69.57%);Ng的CRO耐药率仍较低但有增加趋势。由此可见,应该进一步提高Ng耐药监测研究的质量,使之能更好地反映Ng耐药状况;此外,要加强有关耐药机制的前瞻性研究,防范于末然。
     第二部分淋病奈瑟菌临床头孢曲松敏感株体外诱导耐药试验
     采用次抑菌浓度法对1株Ng CRO敏感株体外经CRO反复诱导。诱导前Ng临床株CRO的MIC值为0.0156μg/ml,经过120代传代,诱导后菌株对CRO的MIC值为1.0μg/ml;耐药子代经过30d的无药传代后MIC值无明显变化。可见,体外人工诱导虽然过程漫长,但仍可获得Ng耐CRO株,且该获得性耐药稳定性较好。体外诱导耐药的成功使后续的比较蛋白质组学研究成为可能,同时也说明,如果临床继续滥用CRO治疗Ng,耐CRO Ng迟早会产生。
     第三部分淋病奈瑟菌头孢曲松敏感株和耐药株双向凝胶电泳试验
     本研究的目的是分离Ng CRO临床敏感株和诱导耐药株差异表达的蛋白质分子,为进一步研究Ng的蛋白质组学打下基础。分别提取母代、子代两种细菌的总蛋白,进行等电点聚焦和SDS-聚丙烯胺凝胶电泳,对所得胶图利用ImageMaster 5.0软件进行分析。最好得到了分辨率和重复性均较好的双向凝胶电泳图谱,通过统计分析确定了差异表达>1.3倍的蛋白斑点24个。该结果证明在Ng CRO临床敏感株和诱导耐药株中存在差异表达的蛋白质分子,双向凝胶电泳技术能对这些分了进行较有效地分离。
     第四部分运用比较蛋白质组技术研究淋病奈瑟菌头孢曲松敏感株和耐药株之间差异表达的蛋白质
     本研究的目的是筛选与Ng产生CRO耐药相关的蛋白质分子,揭示其部分耐药机制。对蛋白质表达差异>1.3倍的24个差异蛋白质斑点进行切取,其中有两个蛋白质斑点(795、1014)没有切到相应的蛋白质,最后共有22个蛋白质斑点进行了LC-MS/MS分析。将原始质谱文件输入SEQUEST软什并查寻NCBI数据库,搜索后匹配到的蛋白质点有21个,每个蛋白质点有1~多个蛋白群组成。其中第1127蛋白质斑点未检索到相应的蛋白质,可能为一种新的蛋白质分子,需要进一步鉴定。已鉴定的蛋白质与细菌的运动、新陈代谢、信号转导、分裂、基因合成和甲基化、β-内酰胺水解等有关,可为进一步研究Ng耐CRO机制提供线索。
Neisseria gonorrhoeae is responsible for the sexually transmitted disease gonorrhoea.The estimated 60 million new cases of gonorrhoeae occurring globally each year constitute a major public health problem.These are mainly mucosal infections,but if left untreated or improperly treated,may be complicated by spread to nearby organs, dissemination via the blood stream.Infection of the genitals in females with N. gonorrhoeae can result in pelvic inflammatory diseases if left untreated,which can result in infertility.Gonorrhoea may be added the amplication of spread of sexually transmitted HIV-up to five fold-that occurs in those with gonorrhoea while exposed to HIV.
     According to the national epidemiology data,the incidence of gonorhoea increased in our country from the 1980s to the 1990s,it has been decreased again since 2000.But the emergence of antibiotic-resistance of N.gonorrhoeae,especially the multidrug resistant strain,has aggravated deeply to this trend.More importantly,some strains of N. gonorrhoeae with decreased susceptibility to ceftriaxone have been reported in many countries.Since the ceftriaxone is the first line drug recommended by CDC,WHO and the Health of Ministry of our country in the treatment of gonococcal infections,the emergence of ceftriaxone-resistant N.gonorrhoeae will make the management and prevention of gonorrhea become more difficult.So,to carry out the researches on the molecular mechanism of ceftriaxone-resistant N.gonorrhoeae in vitro ahead of the emergence of clinical isolate of ceftriaxone-resistant N.gonorrhoeae is very useful and urgent.Because few clinical strains of ceftriaxone-resistant N.gonorrhoeae isolated from clinical specimens so far,there are rare papers related to this issue published at present.A plan is developed to induce ceftriaxone-resistant N.gonorrhoeae strains in vitro and to investigate its molecular mechanism of ceftriaxone-resistance by comparative proteomics. The results will be help in making decisions to the treatment and prevention of gonococcal infections.The current research is divided into four parts as follow:
     Chapter 1
     Surveillance of ceftriaxone resistance in N.gonorrhoeae in mainland China:a systematic review
     Firstly,to collect all recent references with regard to surveillance of ceftriaxone resistance in N.gonorrhoeae in mainland China,then to evaluate its quality and infer the tendency of ceftriaxone resistance by it.References were searched by CNKI,PubMed and Cochrane database,and eligible references were included for systematic review. Forty-six references entered the systematic review in which 10 163 strains were reported. Twenty three references were from South China(50%);the control strains in 26 references were WHO isolates of N.gonorrhoeae(56.52%);antimicrobial susceptibility testing was performed by agar dilution using GC agar base according to WHO in 32 references(50%);the rate of ceftriaxone resistance in N.gonorrhoeae in mainland China was low but it showed an increasing tendency.The quality of surveillance of antibiotic resistance in N.gonorrhoeae in mainland China should be improved to better reveal the situation of ceftriaxone resistance in it.
     Chapter 2
     Study on in vitro induced ceftriaxone Resistance of N.gonorrhoeae
     Our objective is to induce ceftriaxone resistant N.gonorrhoeae strain from a clinical isolated strain by sub-MIC culture.The clinical strain of neisseria gonorrheae was induced successfully with ceftriaxone after cultured for 120 passages and whose MICs increased from 0.0156μg/ml to 1.00μg/ml.The strain was transferred 30 passages on ceftriaxone-free medium and the MICs was the same as those after induced.From the results,we make a conclusion that the ceftrixone induction experiment could make N. gonorrhoeae acquire stable resistance to ceftriaxone.
     Chapter 3
     Separation of differential proteins from ceftriaxone sensitive strain to resistant strain of N.gonorrhoeae by two-dimensional polyacrylamide gel electrophoresis
     These two different strains of N.gonorrhoeae were cultured,and total proteins were extracted from these bacteria.After preparation of the total proteins,solubilized proteins were separated in the first molecular in IPG(immobilized pH gradient) strips depending on their pI and subsequently in the second dimension according to their molecular weight by SDS-polyacrylamide gel electrophoresis.Those differential protein spots were visualized by image analysis software of ImageMaster 5.0.The repeatability and resolution of Gel electrophoresis were high.2-DE was performed to find expression-altered proteins(>1.3 fold) between sensitive and resistant strains.The results indicate that there are differential proteins between ceftriaxone sensitive and resistant strains of N.gonorrhoeae,and further research on the cerftriaxone resistant mechanism of N.gonorrhoeae can be based on it.
     Chapter 4
     Research of differential proteins in ceftriaxone sensitive and in vitro-induced ceftriaxone resistant N.gonorrhoeae by comparative proteome analysis
     To screen the differential express proteins related to ceftriaxone resistant mechanism in N.gonorrhoeae.First,we induced ceftriaxone resistant N.gonorrhoeae strain from a clinical isolated by sub-MIC culture and total proteins were separated by SDS-polyacylamide gel electrophoresis.Those differential protein spots were identified by mass spectrometry and the results indexed in database.Twenty one differential express proteins(>1.3 fold) were identified successfully,which were constituted by one or more protein.But the spot of 1127 was not be matched in NCBI databases and it maybe a new protein of N.gonorrhoeae.Further research is needed on whether these proteins could be used as diagnostic markers or therapeutic targets.
引文
[1]蒋法兴,其木格,戴秀琴,等.2003-2006年南京地区淋球菌分离株抗菌药物敏感性监测[J].中国麻风皮肤病杂志,2008,24(1):23-25.
    [2]刘卫兵,岳喜昂,王乖娟.淋球菌耐药现状及耐药质粒研究进展[J].中国麻风皮肤病杂志,2005,21(11):893-895.
    [3]李国明,陈群,王胜春.淋球菌耐药现状与耐药质粒的研究[J].中国公共卫生,2000,16(11):988-989.
    [4]刘铁梅,王旭东,周劲松.PCR-SSCP在淋球菌氟喹诺酮耐药基因突变研究中的应用[J].中国实验诊断学,2006,10(07):697-699.
    [5]Lisacek F,Cohen-Boulakia S,Appel R D.Proteome informatics Ⅱ:bioinformatics for comparative proteomics[J].Proteomics,2006,6(20):5445-5466.
    [6]Regnier F E,Julka S.Primary amine coding as a path to comparative proteomics[J]. Proteomics,2006,6(14):3968-3979.
    [7]Kubota K,Kosaka T,Ichikawa K.Combination of two-dimensional electrophoresis and shotgun peptide sequencing in comparative proteomics[J].J Chromatogr B Analyt Technol Biomed Life Sci,2005,815(l-2):3-9.
    [8]Stephenson K,Hoch J A.Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms[J].Curr Med Chem,2004,11(6):765-773.
    [9]Hoch J A.Two-component and phosphorelay signal transduction[J].Curr Opin Microbiol,2000,3(2):165-170.
    [10]Georgellis D,Kwon O,De Wulf P,et al.Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system[J].J Biol Chem,1998,273(49):32864-32869.
    [11]Pyo J S,Roh S H,Kim D K,et al.Anti-cancer effect of Betulin on a human lung cancer cell line:a pharmacoproteomic approach using 2 D SDS PAGE coupled with nano-HPLC tandem Mass Spectrometry[J].Planta Med,2009,75(2):127-131.
    [12]Boyce M,Py B F,Ryazanov A G,et al.A pharmacoproteomic approach implicates eukaryotic elongation factor 2 kinase in ER stress-induced cell death[J].Cell Death Differ,2008,15(3):589-599.
    [13]Brown R E,Zhang P L,Lun M,et al.Morphoproteomic and pharmacoproteomic rationale for mTOR effectors as therapeutic targets in head and neck squamous cell carcinoma[J].Ann Clin Lab Sci,2006,36(3):273-282.
    [14]Jia L,Coward L,Gorman G S,et al.Pharmacoproteomic effects of isoniazid,ethambutol,and N-geranyI-N'-(2-adamantyl)ethane-l,2-diamine(SQ109)on Mycobacterium tuberculosis H37Rv[J].J Pharmacol Exp Ther,2005,315(2):905-911.
    [15]Chiosis G,Boneca I G.Selective cleavage of D-Ala-D-Lac by small molecules:re-sensitizing resistant bacteria to vancomycin.[J].Science,2001,293(5534):1484-1487.
    [16]Mcatee C P,Hoffman P S,Berg D E.Identification of differentially regulated proteins in metronidozole resistant Helicobacter pylori by proteome techniques[J].Proteomics,2001,l(4):516-521.
    [1]Cohen,MS.Sexually transmitted diseases enhance HIV transmission:no longer a hypothesis[J].Lancet,1998,351(Suppl 3):5-7.
    [2]中国疾病控制中心性病控制中心.2007年全国梅毒与淋病疫情分析报告[J].性病情况简报,2008,222:2-13.
    [3]叶顺章,苏晓红,王千秋,等.淋球菌监测15年[J].中华性科学杂志,2004,13(1):1-3.
    [4]葛华,冯丽茹,寇玉年,等.1996年-1997年西宁地区淋球菌耐药情况分析[J].青海医药杂志,2002,32(5):57-58.
    [5]董永慧,郅琦,金雁,等.2002年乌鲁木齐113株淋球菌抗生素耐药性检测分析[J].地方病通报,2003,18(2):46-47.
    [6]冯莲凤,蔺军霞,阴爱珍,等.西安地区105株淋球菌抗菌药物耐药性分析[J].中华皮肤科杂志,2005,38(5):1.
    [7]任小蓉,刘恩让,尚宏喜,等.2006年陕西地区淋球菌对4种抗生素敏感性的检测结果分析[J].中国医院用药评价与分析,2007,7(5):359-361.
    [8]王泽明,杜华,张多文.淋球菌126株耐药性分析[J].西北国防医学杂志,2007,28(4):305-306.
    [9]雍刚,杨曦,谭俊,等.2000-2004年成都地区淋球菌耐药性监测[J].中国艾滋病性病.2006,12(3):242-245.
    [10]王胜春,刘玉峰,陈群,等.淋球菌中国流行株抗生素敏感性监测及耐药相关性[J].第四军医大学学报,2002,23(17):1611-1614.
    [11]赵翠英,赵宏儒,单丽娟,等.河北省保定地区淋病双球菌的耐药性测定[J].河北职工医学院学报,2000,17(3):42-43.
    [12]赵宏儒,刘艳芳,赵翠英.淋病奈瑟菌耐药性监测[J].河北职工医学院学报,2001,18(2):38-39.
    [13]王玮,吴斌,徐蒙,等.呼和浩特地区两个时间段淋球菌对抗生素敏感性的对比监测[J].内蒙古医学杂志,2004,36(12):1008-1009.
    [14]吴斌,王玮,李蒙.呼和浩特地区淋球菌对抗生素的敏感性[J].职业与健康,2007,23(2):148-149.
    [15]范鑫,崔雪萍,戎建荣,等.太原地区淋球菌对5种抗生素药物敏感性的初步测定[J].山西医药杂志,2007,36(12):1113-1134.
    [16]周渭衍,裘新民,许爱娥.杭州地区64株淋球菌流行株对抗菌药物的敏感性测定[J].中华皮肤科杂志,2002,35(3):228.
    [17]殷文浩,鲍彰,郑敏.淋球菌流行株对抗生素耐药性的监测[J].浙江预防医学,2003,15(4):29-30.
    [18]李文飞,马静霖,司晓青.淋球菌对4种抗生素敏感性的研究[J].预防医学文献信息,2003,9(4):429-430.
    [19]舒向荣,姜东,段颖卿,等.381株淋病奈瑟菌耐药性及β-内酰胺酶.江西医学检验,2005,23(6):561-562.
    [20]王静霓,王继江,吕锡宏,等.上海某院淋球菌株对常用抗生素耐药性观察[J].上海预防医学杂志,2006,18(12):602-203.
    [21]Yang Y,Liao M,Gu WM,et al.Antimicrobial susceptibility and molecular determinants of quinolone resistance in Neisseria gonorrhoeae isolates from Shanghai[J].J Antimicrob Chemother,2006,58(4):868-872.
    [22]赵建妹,胡丽华,林峰.性病门诊患者淋球菌耐药监测结果分析[J].中国麻风皮肤病杂志,2007,23(5):422.
    [23]潘炜华,廖万清.126株淋病奈瑟菌耐药性分析及其所致感染的中西医结合治疗[J].微生物与感染,2007,2(4):199-201.
    [24]王秀琴,侯存军,刘庆东,等.165株淋球菌耐药性研究[J].中国麻风皮肤病杂志,2008,24(2):114-116.
    [25]Su X,Jiang F,Qimuge,et al.Surveillance of antimicrobial susceptibilities in Neisseria gonorrhoeae in Nanjing,China,1999-2006[J].Sex Transm Dis,2007,34(12):995-999.
    [26]徐德兴,王露霞,熊剑辉,等.广州地区淋病奈瑟菌的耐药性监测[J].广东医学,2000,21(1):7-8.
    [27]Guoming L,Qun C,Shengchun W.Resistance of Neisseria gonorrhoeae epidemic strains to antibiotics:report of resistant isolates and surveillance in Zhanjiang,China:1998 to 1999[J].Sex Transm Dis,2000,27(2):115-118.
    [28]涂亚庭,刘志香,刘厚君,等.淋球菌对六种抗菌药物敏感性的测定[J].医学导报,2001,20(6):346-347.
    [29]曹文苓,费实,李平,等.1999年广州地区所见淋球菌对抗生素耐药性结果分析[J].中国皮肤性病学杂志,2001,15(2):103-105.
    [30]欧阳育琪,陈亚光,苏湘兰,等.郴州地区淋病奈瑟菌耐药性特点分析[J].中国微生态杂志,2001,13(2):94.
    [31]H P Zheng,W L Cao,X Z Wu,et al.Antimicrobial susceptibility of Neisseria gonorrhoeae strains isolated in Guangzhou,China,1996-2001[J].Sex Transm Infect,2003:79:399-402. 学杂志,2003,17(2):111-113.
    [33]王建中,许敏鸿,蔡小丹,等.汕头市淋球菌耐药菌株和质粒图谱测定[J].中国麻风皮肤病杂志,2003,19(1):8-10.
    [34]蔡昌金,吴昌辉,陆善词,等.中山市淋病奈瑟菌抗生素的耐药性研究[J].广东医学,2003,24(10):1123-1124.
    [35]罗冬青,瞿锐,金志雄.146株淋球菌对抗生素药物敏感性测定[J].医学文选,2003,22(5):701-702.
    [36]黄新宇,杨健,杨文林.淋球菌对5种抗菌药物的敏感性测定[J].现代临床医学生物工程学杂志,2004,10(6):502-503.
    [37]何琴,汤学夫,耿肇平,等.2000年-2004年淋球菌深圳分离株的耐药性变迁[J].中国优生与遗传杂志,2005,13(11):112-113.
    [38]曹文苓,黎小东,毕超,等.广州地区2004年淋球菌对5种抗生素耐药性的监测[J].现代预防医学,2005,32(11):1521-1522.
    [39]方谷芬,刘湘林,袁正泉.岳阳地区266株淋球菌药敏结果分析[J].医学临床研究,2007,24(4):617-619.
    [40]张冬民,夏晖,毛斐.1995-2006年许昌市556株淋球菌的耐药性分析[J].中国卫生检验杂志,2007,17(8):1473-1474.
    [41]吴兴中,郑和平,黄进梅,等.广州地区2000-2004年淋球菌对抗菌药物耐药性的变迁[J].中国临床药学杂志,2006,15(5):277-279.
    [42]Wang B,Xu JS,Wang CX,et al.Antimicrobial susceptibility of Neisseria gonorrhoeae isolated in Jiangsu Province,China,with a focus on fluoroquinolone resistance[J].J Med Microbiol,2006,55(Pt 9):1251-1255.
    [43]王贞生,任丽珠,庄文豪,等.2001-2006年福州地区淋球菌耐药监测结果[J].中国麻风皮肤病杂志,2007,23(12):1077-1078.
    [44]涂亚庭,张丽霞,林能兴,等.武汉地区淋球菌对6种抗菌药物敏感性的监测[J].中国麻风皮肤病杂志,2006,22(6):451-452.
    [45]黄耿,朱邦勇.2000年至2005年门诊368株淋球菌株对抗生素耐药性的研究[J].广西医学,2006,28(5):688-689.
    [46]柯建良,吴志周,黄澍杰,等.广东省江门地区淋球菌分离株抗生素耐药性及其质粒图谱结果分析[J].岭南皮肤性病科杂志,2006,13(3):191-193.
    [47]曾斤日,何玥,黄江浩,等.深圳市宝安区淋球菌对19种抗生素耐药现状[J].现代预防医学,2007,34(23):4565-4566.
    [48]覃善列,李伟,朱邦勇,等.538株淋球菌对环丙沙星和头孢曲松耐药性测定[J].中国皮肤性病学杂志,2007,21(2):84.
    [49]R.Finch.Antibiotic resistance-from pathogen to disease surveillance[J].Clin Microbiol Infect,2002,8:317-320.
    [50]Magee JT,Pritchard EL,Fitzgerald KA,et al.Antibiotic prescribing and antibiotic resistance in community practice:retrospective study,1996-8[J].BMJ,1999,319(7219):1239-1240.
    [51]Clinical and Laboratory Standards Institute.2005.Performance standards for antimicrobial susceptibility testing[M].Fifteenth informational supplement M100-S15.CLSI,Wayne,Pa.
    [52]Wang SA,Harvey AB,Conner SM,et al.Antimicrobial resistance for Neisseria gonorrhoeae in the United States,1988 to 2003:the spread of fluoroquinolone resistance[J].Ann Intern Med,2007,147(2):81-88.
    [53]Stamm WE,Non'by SR.Urinary tract infections:disease panorama and challenges[J].J Infect Dis,2001,183(Suppl 1):S1-4.
    [1]Recommendations from MENSURA for selection of antimicrobial agents for susceptibility testing and criteria for the interpretation of antibiograms[J].Rev Esp Quimioter,2000,13(1):73-86.
    [2]Ginocchio C C.Role of NCCLS in antimicrobial susceptibility testing and monitoring[J].Am J Health Syst Pharm,2002,59(8 Suppl 3):S7-S11.
    [3]Jones R N.Method preferences and test accuracy of antimicrobial susceptibility testing:updates from the College of Amercian Pathologists Microbiology Surveys Program[J].Arch Pathol Lab Med,2001,125(10):1285-1289.
    [4]Barry A L,Fuchs P C.Comparison of agar media used for determining antimicrobial susceptibility of Neisseria gonorrhoeae[J].J Antimicrob Chemother,1991,28(1):149-151.
    [5]Dillon J A,Tostowaryk W,Pauze M.Effects of different media and methods of inoculum preparation on results of antimicrobial susceptibility testing of Neisseria gonorrhoeae by agar dilution[J].Antimicrob Agents Chemother,1987,31(11):1744-1749.
    [6]Muller G.Simple agar media for the isolation and differentiation of Neisseria gonorrhoea[J].Dermatol Monatsschr,1983,169(9):576-580.
    [7]Chaitram J M,Jevitt L A,Lary S,et al.The World Health Organization's External Quality Assurance System Proficiency Testing Program has improved the accuracy of antimicrobial susceptibility testing and reporting among participating laboratories using NCCLS methods[J].J Clin Microbiol,2003,41(6):2372-2377.
    [8]孟甄,金建玲,刘玉庆,等.细菌耐药性的诱导与消除[J].中国药理学通报,2003,19(9):1047-1051.
    [9]袁喆,肖永红,王其南.体外诱导铜绿假单胞菌对环丙沙星及亚胺培南交叉耐药[J].中国抗感染化疗杂志,2001,1(02).
    [10]陈瑞,唐英春,朱家馨,等.亚抑菌浓度亚胺培南体外诱导铜绿假单胞菌耐药[J].中华医院感染学杂志,2005,15(02):42-43.
    [11]赵江花,杨健英,赵文申,等.259例金黄色葡萄球菌对红霉素、g林霉素的诱导耐药性研究[J].中国实用医药,2008,3(27):40-41.
    [12]邹明祥,范学工,张科,等.金黄色葡萄球菌临床分离株耐药谱分析[J].实用预防医学,2008,15(05):1553-1556.
    [13]赖维,龚子,黄朝伟,等.抑制性消减杂交结合基因芯片研究淋球菌耐头孢曲松的分子机制[J].中华皮肤科杂志,2008,41(05):288-291.
    [1]Tapsall J W.Antibiotic resistance in Neisseria gonorrhoeae[J].Clin Infect Dis,2005,41Suppl 4:S263-S268.
    [2]Ye S,Su X,Wang Q,et al.Surveillance of antibiotic resistance of Neisseria gonorrhoeae isolates in China,1993-1998[J].Sex Transm Dis,2002,29(4):242-245.
    [3]蒋法兴,钱革,其木格,等.南京地区1999-2006年淋球菌青霉素耐药性及耐药质粒基因型研究[J].国际皮肤性病学杂志,2008,34(01).
    [4]赖维,龚子,黄朝伟,等.抑制性消减杂交结合基因芯片研究淋球菌耐头孢曲松的分子机制[J].中华皮肤科杂志,2008,41(05):288-291.
    [5]蒋法兴,其木格,戴秀琴,等.2003-2006年南京地区淋球菌分离株抗菌药物敏感性监测[J].中国麻风皮肤病杂志,2008,24(01):23-25.
    [6]李蕾,应万涛,杨何义,等.蛋白质组研究中的二维电泳分离技术[J].色谱,2003,21(1):27-31.
    [7]Hansen S H.Sample preparation and separation techniques for bioanalysis of morphine and related substances[J].J Sep Sci,2009,32(5-6):825-834.
    [8]Park S A,Kim M R,Kim P K,et al.Sample preparation method for plasma membrane proteome analysis[J].J Chromatogr B Analyt Technol Biomed Life Sci,2008,872(1-2):177-180.
    [9]Adams L D,Gallagher S R.Two-dimensional gel electrophoresis[J].Curr Protoc Mol Biol,2004,Chapter 10:10-14.
    [10]Chevallet M,Tastet C,Luche S,et al.Preparing protein extracts for quantitative two-dimensional gel comparison[J].Curr Protoc Protein Sci,2004,Chapter 22:22-24.
    [11]孙言伟,姜颖,贺福初.差异蛋白质组学的研究进展[J].生命科学,2005,17(2):137-140.
    [12]黄振烈,杨杏芬,越飞,等.差异蛋白质组学技术及其在免疫相关疾病中应用的研究进展[J].中国职业医学,2007,34(3):234-236.
    [13]Tulp A,Verwoerd D,Benham A,et al.High-resolution density gradient electrophoresis of proteins and subcellular organelles[J].Electrophoresis,1997,18(14):2509-2515.
    [14]常胜合,舒海燕,秦广雍,等.凝胶电泳蛋白质染色方法研究进展[J].河南农业科学,2006(6):8-12.
    [15]Miura K.Imaging technologies for the detection of multiple stains in proteomics[J].Proteomics,2003,3(7):1097-1108.
    [16]Marengo E,Robotti E,Bobba M.2D-PAGE maps analysis[J].Methods Mol Biol,2008,428:291-325.
    [17]Church S.Advances in two-dimensional gel matching technology[J].Biochem Soc Trans,2004,32(Pt3):511-516.
    [1]Proft T,Baker E N.Pili in Gram-negative and Gram-positive bacteria - structure,assembly and their role in disease[J].Cell Mol Life Sci,2009,66(4):613-635.
    [2]Jr Brinton C C.The structure,function,synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria[J].Trans N Y Acad Sci,1965,27(8):1003-1054.
    [3]Brancia F L.Recent developments in ion-trap mass spectrometry and related technologies[J].Expert Rev Proteomics,2006,3(1):143-151.
    [4]Ma S,Zhu M.Recent advances in applications of liquid chromatography-tandem mass spectrometry to the analysis of reactive drug metabolites[J].Chem Biol Interact,2009,179(1):25-37.
    [5]Klammer A A,Park C Y,Noble W S.Statistical Calibration of the SEQUEST XCorr Function[J].J Proteome Res,2009,8(4):2106-2113.
    [6]Jiang X,Jiang X,Han G,et al.Optimization of filtering criterion for SEQUEST database searching to improve proteome coverage in shotgun proteomics[J].BMC Bioinformatics,2007,8:323.
    [7]Sun W,Li F X,Gaol Y H,et al.Evaluation of sequest result filter-Xcorr and Unified Score[J].Chin Med Sci J,2005,20(2):99-103.
    [8]Maccoss M J,Wu C C,Jr Yates R.Probability-based validation of protein identifications using a modified SEQUEST algorithm[J].Anal Chem,2002,74(21):5593-5599.
    [9]Lopez-Ferrer D,Martinez-Bartolome S,Villar M,et al.Statistical model for large-scale peptide identification in databases from tandem mass spectra using SEQUEST[J].Anal Chem,2004,76(23):6853-6860.
    [10]张纪阳,朱云平,谢红卫,等.蛋白质组研究中离子阱串联质谱数据搜库结果解释方法[J].生物物理学报,2006,22(4):244-250.
    [11]Sun W,Li F,Wang J,et al.AMASS:software for automatically validating the quality of MS/MS spectrum from SEQUEST results[J].Mol Cell Proteomics,2004,3(12):1194-1199.
    [12]Tamerler C,Sarikaya M.Molecular biomimetics:nanotechnology and bionanotechnology using genetically engineered peptides[J].Philos Transact A Math Phys Eng Sci,2009,367(1894):1705-1726.
    [13]Tamerler C,Sarikaya M.Molecular biomimetics:utilizing nature's molecular ways in practical engineering[J].Acta Biomater,2007,3(3):289-299.
    [14]Sarikaya M,Tamerler C,Jen A K,et al.Molecular biomimetics:nanotechnology through biology[J].Nat Mater,2003,2(9):577-785.
    [15]蒋法兴,其木格,戴秀琴,等.2003-2006年南京地区淋球菌分离株抗菌药物敏感性监测[J].中国麻风皮肤病杂志,2008,21(1):23-25.
    [16]Ameyama S,Onodera S,Takahata M,et al.Mosaic-like structure of penicillin-binding protein 2 Gene(penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime[J].Antimicrob Agents Chemother,2002,46(12):3744-3749.
    [17]Whiley D M,Limnios E A,Ray S,et al.Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney,Australia,that are less susceptible to ceftriaxone[J].Antimicrob Agents Chemother,2007,51(9):3111-3116.
    [18]Lindberg R,Fredlund H,Nicholas R,et al.Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone:association with genetic polymorphisms in penA,mtrR,porB1b,and ponA[J].Antimicrob Agents Chemother,2007,51(6):2117-2122.
    [19]Takahata S,Senju N,Osaki Y,et al.Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae[J].Antimicrob Agents Chemother,2006,50(11):3638-3645.
    [20]蒋法兴,其木格,钱革,等.头孢曲松低敏的淋球菌中青霉素结合蛋白2氨基酸替代或插入模式研究[J].中华皮肤科杂志,2008,41(07):451-454.
    [21]赖维,龚子,黄朝伟,等.抑制性消减杂交结合基因芯片研究淋球菌耐头孢曲松的分子机制[J].中华皮肤科杂志,2008,41(05):288-291.
    [22]Ohuchi M,Murakami H,Suga H.In situ generation of aminoacyl-tRNAs assisted by ribozymes in translation apparatus[J].Nucleic Acids Symp Ser(Oxf),2007(51):115-116.
    [23]Faulhammer H G,Joshi R L.Structural features in aminoacyl-tRNAs required for recognition by elongation factor Tu[J].FEBS Lett,1987,217(2):203-211.
    [24]Rajbhandary U L,Soil D.Aminoacyl-tRNAs,the bacterial cell envelope,and antibiotics[J].Proc Natl Acad Sci U S A,2008,105(14):5285-5286.
    [25]Merryman C,Green R.Transformation of aminoacyl tRNAs for the in vitro selection of "drug-like" molecules.[J].Chem Biol,2004,11(4):575-582.
    [26]Gallagher R E,Ting R C,Gallo R C.Transfer RNA methylase alterations in polyoma transformed rat embryo culture cells[J].Proc Soc Exp Biol Med,1971,136(3):819-823.
    [27]Skinner R,Cundliffe E,Schmidt F J.Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics[J].J Biol Chem,1983,258(20):12702-12706.
    [28]Thompson J,Schmidt F,Cundliffe E.Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton.[J].J Biol Chem,1982,257(14):7915-7917.
    [29]顾晓花,沈策,蒋燕群.红霉素对铜绿假单胞菌蹭行运动的抑制[J].中华结核和呼吸杂志,2007,30(3):207-210.
    [30]Munos J W,Pu X,Mansoorabadi S O,et al.A secondary kinetic isotope effect study of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase-catalyzed reaction:evidence for a retroaldol-aldol rearrangement.[J].J Am Chem Soc,2009,131(6):2048-2049.
    [31]Williams S L,Andrew M J.Conformational dynamics of the flexible catalytic loop in Mycobacterium tuberculosis 1-deoxy-D-xylulose 5-phosphate reductoisomerase.[J].Chem Biol Drug Des,2009,73(1):26-38.
    [32]Giessmann D,Heidler P,Haemers T,et al.Towards new antimalarial drugs:synthesis of non-hydrolyzable phosphate mimics as feed for a predictive QSAR study on 1-deoxy-D-xylulose-5-phosphate reductoisomerase inhibitors[J].Chem Biodivers,2008,5(4):643-656.
    [33]Yajima S,Hara K,Iino D,et al.Structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase in a quaternary complex with a magnesium ion,NADPH and the antimalarial drug fosmidomycin[J].Acta Crystallogr Sect F Struct Biol Cryst Commun,2007,63(Pt 6):466-470.
    [34]Singh N,Cheve G,Avery M A,et al.Targeting the methyl erythritol phosphate(MEP)pathway for novel antimalarial,antibacterial and herbicidal drug discovery:inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase(DXR) enzyme.[J].Curr Pharm Des,2007,13(11):1161-1177.
    [35]Babic M,Hujer A M,Bonomo R A.What's new in antibiotic resistance? Focus on beta-lactamases[J].Drug Resist Updat,2006,9(3):142-156.
    [36]Philippon A,Arlet G.Beta-lactamases of Gram negative bacteria:never-ending clockwork[J].Ann Biol Clin(Paris),2006,64(1):37-51.
    [37]Nocek B,Mulligan R,Bargassa M,et al.Crystal structure of aminopeptidase N from human pathogen Neisseria meningitidis[J].Proteins,2008,70(1):273-279.
    [38]Takahashi H,Watanabe H.Post-translational processing of Neisseria meningitidis gamma-glutamyl aminopeptidase and its association with inner membrane facing to the cytoplasmic space.[J].FEMS Microbiol Lett,2004,234(1):27-35.
    [39]Takahashi H,Hirose K,Watanabe H.Necessity of meningococcal gamma-glutamyl aminopeptidase for Neisseria meningitidis growth in rat cerebrospinal fluid(CSF) and CSF-like medium.[J].J Bacteriol,2004,186(1):244-247.
    [40]Kim H S,Fay J C.Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds[J].Proc Natl Acad Sci U S A,2007,104(49):19387-19391.
    [41]Waldor M K,Friedman D I.Phage regulatory circuits and virulence gene expression[J].Curr Opin Microbiol,2005,8(4):459-465.
    [42]Falke D,Juliano R L.Selective gene regulation with designed transcription factors:implications for therapy.[J].Curr Opin Mol Ther,2003,5(2):161-166.
    [43]雷启义,胡勇,刘祥林.细菌细胞分裂位点的调控机制及其研究进展[J].微生物学通报,2005,32(01).
    [44]Ramirez-Arcos S,Szeto J,Beveridge T,et al.Deletion of the cell-division inhibitor MinC results in lysis of Neisseria gonorrhoeae.[J].Microbiology,2001,147(Pt 1):225-237.
    [45]Murray H,Ferreira H,Errington J.The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites[J].Mol Microbiol,2006,61(5):1352-1361.
    [46]Kitajima T S,Sakuno T,Ishiguro K,et al.Shugoshin collaborates with protein phosphatase 2A to protect cohesin.[J].Nature,2006,441(7089):46-52.
    [47]Akashi H,Han H J,Iizaka M,et al.Growth-suppressive effect of non-steroidal anti-inflammatory drugs on 11 colon-cancer cell lines and fluorescence differential display of genes whose expression is influenced by sulindac[J].Int J Cancer,2000,88(6):873-880.
    [48]戴翔,廖芳,黄进,等.淋病奈瑟菌膜蛋白抗原表位的研究[J].中国皮肤性病学杂志,2007,21(08):458-461.
    [49]雍刚,汪东篱,滕毅,等.淋球菌临床分离株外膜蛋白PI基因序列与耐药性关系初探[J].中华流行病学杂志,2007,28(3):273-276.
    [50]郑磊,阮黎明,程浩,等.淋球菌外膜蛋白Porin I多抗的黏附抑制作用研究[J].浙江大学学报(医学版),2007,36(01):72-78.
    [51]刘国庆,张正祥,符兆英.蛋白质折叠的基本原理与分子伴侣[J].延安大学学报(医学科学版),2008,6(02).
    [52]卢丽丽,肖敏,赵晗,等.药物分子伴侣:蛋白质折叠运输缺陷的新疗法[J].生物化学与生物物理进展,2008,35(08):868-875.
    [53]Chapuy B,Koch R,Radunski U,et al.Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration[J].Leukemia,2008,22(8):1576-1586.
    [54]Spiegl-Kreinecker S,Buchroithner J,Elbling L,et al.Expression and functional activity of the ABC-transporter proteins P-glycoprotein and multidrug-resistance protein 1 in human brain tumor cells and astrocytes[J].J Neurooncol,2002,57(1):27-36.
    [1]Rodriguez AS,Espina BH,Espina V,et al.Automated laser capture microdissection for tissue proteomics[J].Methods Mol Biol,2008,441:71-90.
    [2]Lengqvist J,Uhl(?)n K,Lehti(o|¨) J.iTRAQ compatibility of peptide immobilized pH gradient isoelectric focusing[J].Proteomics,2007,7(11):1746-1752.
    [3]Herrero M,Sim(?) C,Ib(?)ez E,et al.Capillary electrophoresis-mass spectrometry of Spirulina platensis proteins obtained by pressurized liquid extraction[J].Electrophoresis,2005,26(21):4215-4224.
    [4]Wasinger VC,Pollack JD,Humphery-Smith I.The proteome of Mycoplasma genitalium.Chaps-soluble component[J].Eur J Biochem,2000,267(6):1571-1582.
    [5]De Jesus JB,Cuervo P,Junqueira M,et ai.Application of two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for proteomic analysis of the sexually transmitted parasite Trichomonas vaginalis[J].J Mass Spectrom,2007,42(11):1463-1473.
    [6]Skipp P,Robinson J,O'Connor CD,et al.Shotgun proteomic analysis of Chlamydia trachomatis[J].Proteomics,2005,5(6):1558-1573.
    [7]Shaw AC,Gevaert K.,Demol H,et al.Comparative proteome analysis of Chlamydia trachomatis serovar A,D and L2[J].Proteomics,2002,2(2):164-186.
    [8]Qi SZ,Zhang GC,Zhang JP,et al.Comparative proteome analysis of human papillomavirus-infected cervical specimens and the difference between the high-and low-risk genotypes of human papillomavirus[J].Zhongguo Yi Xue Ke Xue Yuan Xue Bao,2007,29(5):597-602.
    [9]Thomas M,Dasgupta J,Zhang Y,et al.Analysis of specificity determinants in the interactions of different HPV E6 proteins with their PDZ domain-containing substrates[J].Virology,2008,376(2):371-378.
    [10]Coiras M,Camafeita E,Urena T,et al.Modifications in the human T cell proteome induced by intracellular HIV-1 Tat protein expression[J].Proteomics,2006,Suppl l:S63-73.
    [11]Ciborowski P,Kadiu I,Rozek W,et al.Investigating the human immunodeficiency virus type 1-infected monocyte-derived macrophage secretome[J].Virology,2007,363(1):198-209.
    [12]Berro R,de la Fuente C,Klase Z,et al.Identifying the membrane proteome of HIV-1 latently infected cells[J].J Biol Chem,2007,282(11):8207-8218.
    [13]Burgener A,Boutilier J,Wachihi C,et al.Identification of differentially expressed proteins in the cervical mucosa of HIV-1-resistant sex workers[J].J Proteome Res,2008,7(10):4446-4454.
    [14]Yoo JS,Seong WK,Kim TS,etal.Comparative proteome analysis of the outer membrane proteins of in vitro-induced multi-drug resistant Neisseria gonorrhoeae[J].Microbiol Immunol,2007,51(12):1171-1177.
    [15]Norcross TS,Yeates TO.A framework for describing topological frustration in models of protein folding[J].J Mol Biol,2006,362(3):605-621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700