用户名: 密码: 验证码:
客体相似性表征的认知和发展机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类在与环境发生作用时,总是遵循着简约、经济的原则,通过一定的方式把许多客体划为一类。通过分类(categorization)可以将数量庞杂的信息统一编码,有序存储,利于快捷提取,极大地提高了人类的认知效率。基于相似性的分类是人类最基本最常用的分类方式之一,也是其它分类方式(比如概念)产生和发展的基础。相似性是指人在感官上对事物内在联系的一致性的认识,是知觉目标与内在源类别表征之间包含相同的特征或结构。尽管不少归纳和分类方面的研究涉及到相似性表征,但是并没有具体探讨人类相似性表征的认知机制。即使一些研究专门探讨了视知觉相似性表征,但这些研究都是考察灵长目动物的相似性表征的脑机制。由于相似性表征在人类归纳和推理等高级认知中起着基础性作用,因此很有必要对人类的相似性表征的认知和发展机制进行深入系统地探讨。
     基于以前的研究,本研究通过6个实验比较系统地探讨了人类客体相似性表征的心理物理特征、电生理机制以及随年龄的发展变化特点。
     在实验1中,从互联网上图片库中选取430幅不同动物图片,进行黑白处理。根据形状相似、关键性特征部位在图片上的构图位置相似等原则对这些图片进行配对,最后确定60对图片作为候选图片。让40名(20男20女)在校大学生从熟悉度、清晰度、轮廓相似度以及关键特征在构图中位置的相似度共4个维度对这些配对图片的相似度进行评判打分,最终23对符合选择要求,最后从这23对图片中按照分数从高到低选取10对作为本研究后续实验的标准原型图片。
     在实验2中,对实验1中选定的10对配对图片进行Morph处理,每对配对图片生成与其相似度(依次为90%、80%、70%、60%)不同的对称图片8张。来自某高校的50名在校大学生(25男25女)参与了本实验研究。在每个trial中,被试的任务是快速准确地判断刺激图片和这2张标准原型图片中的哪一张最像,同时电脑自动记录被试的反应时和按键反应。整个实验包括10个block,每个block只有一对标准原型图片,刺激图片为2张原型图片及其Morph产生的8张图片。结果统计和分析表明,被试的反应时随着刺激图片与原型图片相似度的增高而降低,反应概率随着刺激图片与原型图片相似度的增高而增高。曲线回归分析表明,对客体相似性的主观反应与客体相似度之间大致呈二次函数曲线关系。
     在实验3和实验4中,采用ERP技术探讨了成人的客体相似性表征的时间进程和电生理机制。实验3采用实验1筛选出来的10对图片作为标准原型图片进行9级Morph处理。刺激图片为2张原型图片以及对其Morph处理产生的9张相似度依次为:90%、80%、70%、60%、50%的左右对称图片共11张。来自某高校的17名在读大学生(7男10女)参与了本实验。整个实验流程和任务与实验2一致,同时同步记录被试的脑电活动。实验结果表明,在行为指标上,随着刺激图片相似度水平的增高,被试进行客体识别判断的反应速度和正确概率都逐渐提高,表现出和实验2较为一致的结果;在ERP指标上,发现脑电成分N2和P300对客体相似敏感,相似度为50%、60%、70%条件下比80%、90%、100%条件下诱发的N2波幅明显大;更有意思的是,相似度为60%的刺激图片不但比50%的刺激图片诱发的P300波幅明显小,而且比相似度为70%、80%、90%、100%的刺激图片诱发的P300波幅也明显小。这似乎表明客体相似度为60%左右很可能为客体相似性识别的一个转折点。偶极子溯源定位分析结果表明,后扣带回和海马旁回很可能涉及到相似性表征加工。
     在实验3的基础上,实验4选取相似度变化跨度为2%且与60%接近的55%、57%、59%、61%、63%、65%作为实验中相似度的6种水平。整个实验流程和任务与实验2、3一致,同时同步记录被试的脑电活动。行为结果表明,在反应时上,随着刺激图片与原型图片相似度的增高,反应时也随着显著变小;在反应概率上,对相似度为55%、57%、59%的刺激图片的反应概率之间没有差异,但是它们显著小于对相似度为61%、63%、65%的刺激图片的反应概率,而相似度为61%与63%的刺激图片的反应概率之间差异不显著,63%与65%差异不显著,但61%与65%之间差异显著。更重要的是,在ERP结果上发现了与行为数据同样的结果。在N2成分上相似度为55%、57%、59%的刺激图片诱发的N2波幅显著小于61%的刺激图片诱发的N2波幅,同时61%与63%的刺激图片诱发的N2波幅没有显著性差异,但是都大于65%的刺激图片诱发的N2波幅;在P300成分上,与标准原型图片的相似度为55%、57%、59%的刺激图片诱发的P300波幅显著大于61%的刺激图片诱发的波幅,同时65%的刺激图片诱发的P300波幅也显著大于61%的刺激图片诱发的波幅,但是61%与63%的刺激图片诱发的P300波幅没有显著性差异。实验4的这些行为和脑电结果一致表明相似度大约61%~63%很可能为客体相似性识别过程中的过渡范围,刺激图片相似度低于61%,由于缺乏足够的信息,无法把这张图片识别为相对应的原型图片;相似度高于65%,所包含的相似性信息能足以对刺激图片进行正确表征识别。
     实验5和实验6探讨了4~5岁儿童的客体相似性表征的心理物理特征和认知机制。在实验5中,实验材料、程序和任务和实验3完全相同。42名4~5岁的儿童(22男20女)参与本次实验。结果表明,和实验2、3一样,儿童的反应时随着刺激图片与原型图片相似度的增高而降低,反应概率随着刺激图片与原型图片相似度的增高而增高;对客体相似度与儿童的主观相似度判断反应概率进行曲线回归分析发现,儿童对客体相似性的主观感觉与客体相似度之间也大致呈二次函数曲线关系。为了考察儿童与成人的客体相似度表征加工机制是否完全相同,对实验3中成人的行为数据和实验5中儿童的行为数据做了统计对比。结果表明,儿童的反应时在任意相似度水平条件下都比成人的显著大,这可能与儿童的按键反应速度较慢有关。更重要的是,儿童的反应概率仅在相似度为60%时比成人的显著高,而在其它相似度水平上二者之间没有差异。这说明客体相似性识别时相似度为50%时,无论儿童还是成人从客体中都未获取足够信息进行知觉辨别加工;当相似度为60%时,儿童从客体中获取的相似性信息比成人要多,因此正确反应的概率比成人要明显高;当相似度超过70%以后,成人和儿童在客体获取的相似性信息足够能进行客体识别加工,故二者之间的反应概率没有差异(反应概率都达到90%以上)。这个结论也说明儿童的客体相似性加工能力比成人要强,尤其是在客体之间包含的相似性信息有限时。这也从另一个侧面印证了儿童和成人在分类加工中采用的加工策略不同:儿童更多采用知觉相似性进行分类加工,而成人可能更多采用抽象概念进行分类加工,这和前人的研究一致。
     在实验5的基础上,实验6采用与实验4完全相同的实验材料、程序和任务,进一步探讨儿童的客体相似性表征的认知机制。42名4~5岁的儿童(16男26女)参与本次实验。结果表明,儿童反应概率和实验4中成人的不同,儿童的反应时随着相似度的增加而显著减小,其中在相似度为57%到59%之间反应时的减小值最大,在59%与61%之间反应时的减小值最小。同时,除了相似度为63%和65%之间反应概率不显著外,相似度的其余条件之间差异都显著,而且从55%到57%增加量最大,随后每相邻两个水平条件的增加量没有差异。最后,也对实验4中成人的行为数据和实验6中儿童的行为数据做了统计对比。结果表明,和实验3和实验5对比结果基本趋向一致,反应时在相似度各个水平上儿童的都比成人的明显大;反应概率在相似度为55%时儿童和成人之间没有差异,在57%、59%时儿童比成人显著高,在61%、63%、65%时二者之间差异边缘显著,儿童比成人稍微高。这个结果进一步证实和推进了实验5的结论:在相似度为55%以下,儿童对客体识别的能力与成人没有差异,也就是说儿童和成人都无法从刺激图片中获得足够的信息进行识别加工;而在相似度为57%~61%时儿童对客体识别的能力明显强于成人;在相似度为61%~65%之间二者的识别能力差别逐渐减小,当达到65%以上时儿童和成人客体识别的能力基本没有差异,这也从另一方面说明客体相似性表征时,我们能把正在识别加工的靶刺激比较恒定地知觉为某一目标刺激时,靶刺激与目标刺激的相似度至少在65%以上。
     总之,本研究发现:对客体进行相似性表征时主观反应概率与客体相似度大致呈二次函数关系;4~5儿童比成人的客体相似性识别能力要强,尤其是在相似度约为57%~59%时儿童客体相似性识别明显比成人强;无论成人还是儿童在相似度低于55%以下都未能对客体进行识别,而至少高于65%以上两者才能对客体比较正确地进行识别;脑电成分N2和P300对客体相似性表征敏感;偶极子溯源分析表明扣带后回和海马旁回很可能涉及到客体相似性表征加工。
When interacting with the environment, human beings categorize them by simple and economic principles by. The categorization process can remarkably increase the efficiency of cognition as it lends itself to orderly and quickly encoding, storing and retrieving immense and complicated information. The similarity-based categorization is one of the most common ways to classify information and lays the basis for many other categorizations, such as concepts. Similarity refers to common features or structures between perceived objects and the representation of its prototype categorization, based on which humans can obtain the essential relationship of the world. Few studies so far have been done to explore the mechanism of the similarity-based representation, even though a couple of researches about categorization mentioned this issue. Also there exist several researches which specialize in the similarity-based representation, but the research objects are the brain mechanism on primates. The core and basic role of the similarity-based representation in induction and reasoning cognition motivate us to examine its mechanism deeply and systematically. On the basis of prior studies, six experiments have been done in the present research to explore the mechanism of the similarity representation of objects in human beings in a developmental perspective with using psychophysical, electrophysiological methods.
     In experiment 1,430 animal pictures were selected from the internet and were decolorized so that to make them look black and white.60 pairs of pictures met the requirement of candidate pictures by matching the similarity of their shapes and the position of the key features.40 college students were asked to evaluate the similarity of the candidate pictures according to the familiarity, similarity of the shapes, similarity of the profiles and the position of the key features.23 pairs of pictures met the final requirements and 10 pairs which ranked higher scores were chosen as the standard pictures for the following experimental materials.
     In experiment 2,8 symmetrical pictures were generated as stimulus pictures based on the different levels of similarity (90%,80%,70% and 60%) to the standard pictures for each of the 10 pairs using Morph technique.50 college students (25 males and 25 females) participated in the experiment and were asked in each trial to judge which of the two standard pictures was more similar to a stimulus picture as quickly and accurately as possible. Reaction time and responses were recorded.2 standard pictures and the corresponding 8 morphed pictures were contained in each of the whole 10 blocks. The results showed that the reaction time while decreased and the accuracy rate increased as the similarity between the stimulus pictures and the standard pictures increased. Curvilinear regression analyzing indicated that quadratic function can explain the relation between the perceptual similarity of objects and the physical similarity of objects.
     In experiment3, ERP techniques were employed to explore the time course and the electrophysiological mechanism of the similarity representation of objects in adults.2 standard pictures and 9 symmetrical pictures which were generated based on the 5 levels of similarity (90%,80%,70%,60% and 50%) to the standard pictures were contained in the experiment materials.17 college students (7 males and 10 females) participated in the experiment. The procedure and the task were same as those in experiment 2. Consistent behavioral results with those in experiment 2 were obtained: The reaction speed and accuracy increased as the level of the similarity increased. The ERP data showed that N2 and P300 were sensitive to the similarity information:the levels of 50%,60%,70% elicited larger amplitude of N2 than the levels of 80%,90%, 100%. Interestingly, the level of 60% elicited smaller amplitude of P300 not only than the level of 50%, but also compared to the levels of 70%,80%,90%,100%, which seemingly indicated that the similarity level of 60% might be a turning point in the perception of similarity for humans. The results of dipole source analysis indicated that the posterior cingutate and parahippocampal gyrus might involve in the processing of similarity representation.
     Based on experiment 3,6 levels of similarity which were all closed to the level of 60% and differed from each other in the amount of 2% were employed as 6 conditions in experiment 4. The experiment procedure and the task were as same as those in experiment 2 and 3. Behavioral data showed that reaction time decreased significantly as the similarity level increased. In terms of the accuracy rate, no difference were found among the levels of 55%,57%,59%, but they were all lower than the levels of 61%, 63%,65%; No difference was observed between the level of 61%and 63%,63% and 65%, but the only difference was found between 61% and 65%. More importantly, interesting ERP results were observed:for the N2 component, the condition of 55%, 57%,59% induced smaller amplitude than the condition of 61%, at the same time, no difference were observed between the conditions of 61% and 63% both of which induced larger amplitude than the condition of 65%. As for the P300 amplitude, the conditions of 55%、57%、59% elicited larger amplitude than the condition of 61% did, at the same time, the condition of 65% elicited larger p300 amplitude than the condition of 61%. No difference was observed between 61% and 63%. Both the behavioral and the ERP results suggested that similarity levels around 61%-63% were likely to be the transition bound in similarity perception. When the similarity level was lower than 61%, people hardly recognized the picture as the prototype picture for a lack of sufficient information. While those levels which were higher than 65% contained enough information for people to correctly represent and recognize the morphed pictures.
     In Experiment 5 and 6, we explored the cognitive and electrophysiological mechanism of similarity representation of objects for children aged around 4-5 years old. The materials, the procedure and the task in experiment 5 were same as those in experiment 3. Forty-two 4-5 years old children (22 males and 20 females) participated in the experiment. The results showed the same behavioral pattern as that in experiment 3:the reaction time decreased and the accuracy rate increased as the similarity between the stimulus pictures and the standard pictures increased. Also, curvilinear regression analysis indicated that the relation between the perceptual similarity of objects and the physical similarity of objects conformed to quadratic function. To further examine the patterns between the children and the adults, we compared the behavioral results of adults in experiment 3 and those of children in the experiment 5. As a result, it was found that children responded slower than adults did, which might be due to the fact that it took longer time for them to press the keys. More importantly, the accuracy rate for the children was higher than that for the adults only when the similarity level was 60%, which suggested that neither children nor adults could discriminate objects in the perceptual level when the similarity level were around 50%; It seems children could perceive more similarity information than adults when the level was 60%. However, the advantage disappeared when the level was higher than 70% as both of the groups could easily obtain enough information for the similarity perception. The results suggested that children were better than adults to perceive similarity information especially when limited information was available. The reason might be that the two groups adopted different strategies:children were more likely to categorize objects based on perceptual similarity while adults were more likely to categorize objects based on abstract concepts.
     In experiment 6, we further explored the cognitive mechanism of the similarity representation of objects for children by applying the same experiment materials, procedure and task. In addition, forty-two 4 or 5-year-old children participated in the experiment (16 males and 26 females). The results showed that the reaction time decreased as the similarity level increased. The maximal and minimal decrease amounts were found respectively between the level of 59% and 61%. Meanwhile, the difference of the accuracy rate were observed among all the levels except between the level of 63% and 65%, among them, the increase amount reached highest between the levels of 55% and 57%. No difference was found for the increase amount between any other following two consecutive levels. Finally, we statistically compared the behavioral data in experiment 6 and the one in experiment 4. The results agreed with the comparison results betweent the experiment 3 and 5:children reacted faster than adults in all levels of similarity. As for the accuracy rate, no difference was observed when the rate was 55%. And children perceived more accurately than adults when the level of similarity was 57%. A marginally significant difference was found between the two groups when the level was 61%,63% and 65%. The pattern further confirmed the results obtained in experiment 5:When the level of similarity was lower than 55%, hardly could any people recognize the objects and when the level was around 57%-61%, children demonstrated better capability to perceive similarity than adults; And when the level reached 61%-65%, the difference between the two groups disappeared. It is possible that the similarity level should at least reach 65% for people to stably perceive the target-object as some prototype object when representing the similarity of objects.
     To sum up, in the present research, we find that the relation between the perceptual similarity of objects and the physical similarity of objects conform to quadratic function; 4-5-year old children are better to perceive the similarity of objects than adults do, especially when the similarity is 57%-59%. When the level of similarity is lower than 55%, hardly can any people recognize the objects and when the level is higher than 65%, both children and adults are equally able to perceive objects correctly; The ERP component N2 and P300 are sensitive to the similarity representation. Furthermore, a hypothesis needs to be inspected in the future research in which the posterior cingutate and parahippocampal gyrus might be involved in the processing of similarity perception.
引文
艾森克,M.W.,基恩,M.T.A.(2004).认知心理学.高定国,肖哓云译.华东师范大学出版社.第四版.
    陈安涛,李红.(2010).人工类别学习研究范式述评.心理科学,33,900-909.
    陈安涛,李红.(2002).信息加工的中介状态——国外对表征的一种新看法.贵州师范大学学报,20,99-103.
    陈庆友,阴国恩.(2002).儿童分类发展的特点及影响因素的实验研究.天津师范大学学报(社会科学版),6,67-72.
    丁锦红,林仲贤.(2000).图形颜色、形状及质地表征特性的研究.心理学报,32,253-257.
    杜建政,鲁中义,刘国学.(2001).以产生式为单元的工作记忆容量研究.心理科学,24,479-481.
    冯廷勇,李宇,李红,苏缇,龙长权.(2006).3-5岁儿童表面与结构相似性类比推理的实验研究.心理科学,29,1091-1095.
    傅小兰.(2006).表征、加工和控制在认知活动中的作用.心理科学进展,14,551-559.
    顾本柏,冯廷勇,袁文萍,马晓清.(2011).3-5岁幼儿在主题—规则冲突条件下的类比推理.心理发展与教育,27,126-132.
    李富洪,李红,曹碧华,陈安涛,龙长权.(2008).视觉归纳概括的加工机制与策略.心理科学,31,332-335.
    李鹏,沈模卫,郎学明,陈硕.(2007).客体的视觉工作记忆研究进展.应用心理学,13,3-10.
    刘飞,王恩国.(2010).客体工作记忆研究的现状与展望.心理科学进展,18,200-209.
    刘强,陈安涛,王琪,周柳,孙弘进.(2008).知觉加工中存在颜色类别知觉效应的证据.心理学报,40,8-13.
    刘万伦,张奇.(2008).类别学习的神经心理学研究.心理科学进展,16,36-41.
    吕静,庞虹,王文鋆,卢琬君.(1987).3-6岁幼儿在分类实验中的概括能力的发展.心理学报,19,1-9.
    莫雷,陈琳.(2009).类别不确定下的特征推理是基于类别还是基于特征联结.心理学报,41,103-113.
    莫雷,常建芳.(2003).类别特征的相似性与竞争性对归类的影响.心理学报,5,628-635.
    彭聃龄.(2006).基础心理学,北京师范大学出版社.北京
    单西娇,李寿欣.(2010).由两个模型看视觉工作记忆容量机制的研究.心理科学进展,18,1684-1691.
    邵志芳.(2006).认知心理学——理论、实践和应用.上海教育出版社.
    佟秀丽,莫雷,Zhe Chen,吴俊.(2007).空间行为关系类比匹配中客体相似性的作用.心理科学,30,10-18.
    王进,潘志庚,叶澄清.(1999).一种基于轮廓多边形的图象变形算法.计算机研究与发展,36,1358-1363.
    王益文,林崇德.(2006).工作记忆的认知模型与神经机制.心理科学,29,412-414.
    肖英霞,刘昌.(2008).客体工作记忆——行为和认知神经心理学研究.江苏教育学院学报,24,42-45.
    阴国恩,安蓉,郑金香.(2005).分类中相似性的理论与模型.心理学探新,25,41-45.
    杨金钟,陈莉,王章野.(2001).非线性视域插值.浙江大学:CAD & CG国家重点实验室.
    Afraz, S. R., Kiani, R., & Esteky, H. (2006). Microstimulation of inferotemporal cortex influences face categorization. Nature,442,692-695.
    Akrami, A., Liu, Y., Treves, A., & Jagadeesh, B. (2009). Converging neuronal activity in inferior temporal cortex during the classification of morphed stimuli. Cerebral Cortex,19,760-776.
    Alvarez, G. A., & Cavanagh, P. (2004).The capacity of visual short term memory is set both by visual information load and by number of objects. Psychological Science, 15,106-111.
    Axmacher, N., Mormann, F., Fernandez, G, Cohen, M. X., Elger, C. E., & Fell, J. (2007). Sustained neural activity patterns during working memory in the humanmedial temporal lobe. Journal of Neuroscience,27,7807-7816.
    Azizian, A, Freitas, A.L., Parvaz, M. A., & Squires, N. K. (2006). Beware misleading cues:Perceptual similarity modulates the N2/P3 complex. Psychophysiology,43, 253-260.
    Baddeley, A. D. (1986). Working memory. Oxford:Oxford University press.
    Bahrick, H. P., Bahrick, P. O., & Wittlinger, R. P. (1975). Fifty years of memory for names and faces:A cross — Sectional Approach. Journal of Experimental Psychology:General,104,54-75.
    Bays, P. M., Catalao, R. F. G, & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision,9,1-11.
    Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science,321,851-854.
    Beier, T., & Neely, S. (1992). Feature-based image metamorphosis. Computer Graphics, 26,35-42.
    Biederman, I. (1985). Human image understanding:recent research and a theory. Computer Vision, Graphics, and Image Processing,32,29-73.
    Biederman, I., & Cooper, E. E. (1991). Priming contour-deleted images:evidence for intermediate representations in visual object recognition. Cognitive Psychology,23, 393-419.
    Biederman, I., & Cooper, E. (1992). Size invariance in visual object priming. Journal of Expermental Psycholgy.:Human Percepttion Performance,18,121-133.
    Biederman, I., & Gerhardstein, P. C. (1993). Recognizing depth — rotated objects: evidence and conditions for three-dimensional viewpoint invariance. Journal of Expermental Psycholgy:Human Percepttion Performance,19,1162-1182.
    Bruin, K. J., & Wijers, A. A. (2002). Inhibition, response mode, and stimulus probability: A comparative event-related potential study. Clinical Neurophysiology,113, 1172-1182.
    Bundesen, C. (1990). A theory of visual attention. Psychological Review,97,523-547.
    Carretie, L., Hinojosa, A., Martin-Loeches, M., Mercado, F., & Tapia, M. (2004) Automatic attention to emotional stimuli:neural correlates. Human Brain Mapping, 22,290-299.
    Chen, Z. (1995). Analogical transfer:from schematic pictures to problem solving. Memory & Cognition,23,255-269.
    Cohen, J. D., Botvinick, M. M., & Carter, C. S. (2000). Anterior cingulate and prefrontal cortex:Who's in control? Nature Neuroscience,3,421-423.
    Cornelia, H., & Friedrich, W. H. (1996).,Impact of superficial similarity in the application phase of analogical problem solving. American Journal of Psychology, 109,37-57.
    Courtney, S. M., Petit, L., Maisog, J. M, Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science,279, 1347-1351.
    Davenport, J., & Keane, M. T. (1999). Similarity and structural alignment:you can have one without the other. In The Proceeding of the Twenty-First Conference of the Cognitive Science Society. Hillsdale, NJ:Lawrence Erlbaum Associates Inc.
    Delvenne, J. F.,& Bruyer, R. (2004). Does visual short-termmemory store bound features. Visual Cognition,11,1-27.
    Desimone, R., & Duncan, J. (1995).Neural mechanisms of selective visual attention. Annual Review of Neuroscience,18,193-222.
    Donchin, E. (1981). Surprise!....Surprise? Psychophysiology,18,493-513.
    Donchin, E., Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences,11,357-374.
    Downing, P. E. (2000). Interactions between visual working memory and selective attention. Psychological Science,11,467-473.
    Downing, P. E., & Dodds, C. M. (2004).Competition in visual working memory for control of search. Visual Cognition,11,689-703.
    Dumais, S., & Landauer, T. (1997). A solution to Platos problem:The latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review,104,211-240.
    Eimas, P. (1994). Categorization in early infancy and the continuity of development. Cognition,50,83-93.
    Eng, H. Y, Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review,126,1127-1133.
    Fencsik, D. (2003). Representation and processing ofobjects and object features in visual working memory, [dissertation for degree of doctor of philosophy]: University of Michigan.
    Folstein, J. R., & Petten, C. V. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP:Areview. Psychophysiology,45,152-170.
    Franklin, A., & Daies, I. R. L. (2004). New evidence for infant colorcategories. British Journal of Developmental Psychology,22,349-377.
    Franklin, A., Pilling, M., & Davies, I. (2005). The nature of infant color categorization: Evidence from eye movements on a target detection task. Journal of Experimental Child Psychology,91,227-248.
    Freedman, D. J., & Miller, E. K. (2008). Neural mechanisms of visual categorization: Insights from neurophysiology. Neuroscience and Biobehavioral Reviews,32, 311-329.
    Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science,291, 312-316.
    Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2002). Visual categorization and the primate prefrontal cortex:Neurophysiology and behavior. Journal of Neurophysiology,88,929-941.
    Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2003). A comparison of primate prefrontal and inferior temporal cortices during visual categorization. Journal of Neuro science,23,5235-5246.
    Gajewski, D. A., & Brockmole, J. R. (2006). Feature bindings endure without attention: evidence from an explicit recall task. Psychonomic Bulletin & Review,13, 581-587.
    Gelman, S. A. (2009). Learning from Others:Children's Construction of Concepts. Annual Review of Psychology,60,115-140.
    Gelman, S. A.,& Markman, E. (1986). Categories and induction in young children. Cognition,23,183-209.
    Gelman, S. A.,& Markman, E. (1987). Young children's inductions from natural kinds: The role of categories and appearances. Child Development,58,1532-1541.
    Genmer, D. (1983). Structure-mapping:A theoretical framework for analogy. Cognitive Science,7,155-170.
    Gentner, D. (1988). Metaphor 8s Structure Mapping:The Relationsl Shift. Child Development,59,47-59.
    Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist,52,45-56.
    Goldstone, R. L. (1994). The role of similarity in categorization:providing a groundwork. Cognition,52,125-157.
    Goldstone, R. L. (1994). Similarity, interactive, activation, and mapping. Journal of Exprtimental Psychology:Learning, Memory & Cognition,20,3-28.
    Goldstone, R. L., Mardin, D. L., & Gentner, D. (1997). Relational similarity and the nonindependence of features in similarity judgments. Cognitive Psychology,23, 222-262.
    Goodman, N. (1972). Problems and Projects. Indianapolis:Bobbs merill.
    Hahn, U., Chater, N., & Richardson, L. (2003). Similarity as Transformation. Cognition, 87,1-32.
    Huang, Y. X., & Luo, Y. J. (2006). Temporal course of emotional negativity bias:An ERP study. Neuroscience Letters,398,91-96.
    Harnad, S. (1987). Psychophysical and cognitive aspects of Categorical Perception:A criticaloverview. In:S Harnad (Ed.), Categorical Perception:The groundwork of cognitionpp. (pp.535-565). New York:CambridgeUniversity Press.
    Houtkamp, R., & Roelfsema, P. R. (2006). The effect of items in working memory on the deployment of attention and the eyes during visual search. Journal of Experimental Psychology:Human Perception and Performance,32,423-442.
    Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure:a theory of analogical access and mapping. Psychological Review,104,427-466.
    Hung, C. P., Kreiman, G, Poggio, T, & DiCarlo, J. J.(2005). Fast readout of object identity from macaque inferior temporal cortex. Science,310,863-866.
    Isreal, J. B., Chesney, G. L., Wickens, C.D., & Donehin, E. (1980). P300 and tracking difficulty:evidence for multiple resources in dual-task performance. Psychophysiology,17(3),259-273.
    Ito, T. A., Larsen, J. T., Smith, N. K., & Cacioppo, J. T. (1998). Negative information weighs more heavily on the brain:The negativity bias in evaluative categorizations. Journal of Personality and Social Psychology,75,887-900.
    Johnson, J. S., Hollingworth, A., & Luck, S. J. (2005). The role of attention in binding features in visual working memory. Abstracts of VSS 5th Annual Meeting (pp.118). Sarasota, Florida,5,6-11.
    Johnston, V. S., Miller, D. R.,&Burleson, M. H. (1986). Multiple P300s to emotional stimuli and their theoretical significance, Psychophysiology,23,684-694.
    Keil, F. C. (1989). Concepts, kinds, and cognitive development. Cambridge, MA:MIT Press.
    Kiani, R., Esteky. H., Mirpour, K.,& Tanaka, K. (2007). Object category structure in response patterns of neuronal population in monkey inferiortemporal cortex. Journal of Neurophysiology,97,4296-4309.
    Klein, F. C. (1980). Two dogmas of conceptual empiricism:implications for hybrid models of the structure of knowledge. Cognition,65,103-135.
    Kok, A. (2001). On the utility of P3 amplitude a measure of processing capacity. Psychophysiology,38(3),557-577.
    Kolodner, J. L. (1992). An introduction to case-based reasoning. Artificial Intelligence Review,6,3-34.
    Kramer A. E, Wickens, C. D.,& Donchin, E. (1985). Processing of stimulus properties:evidence for dual-task integrality. Journal of Experimental Psychology: Human Perception and Performance,11(4),393-408.
    Larkey, L. B., & Markman, A. B. (2005). Processes of similarity judgment. Cognitive Science,29,1061-1076.
    Lee, D., & Chun, M. M. (2001). What are the units of visual short-term memory, objects or spatial locations? Perception and Psychophysics,63,253-257.
    Lewis, B., Jon, B., Noellie, B., Jill, B., Koen, L. (2006). Perceptual similarity in autism. The Quarterly Journal of Experimantal Psychology,59,1-18.
    Li, M., & Vitanyi, P. (1993). An Introducton to kolmogorov complexity and its applications. New York:Springer.
    Love, B. C. (2002). Similarity and categorization:A review. AI Magazine, Book Review, 103-105.
    Luck, S. J., & Vogel, E.K. (1997). The capacity of visual working memory for features and conjunctions. Nature,390,279-281.
    Mandler, J. M.,& McDonough, L. (1996). Drinking and driving don't mix:Inductive generalization in infancy. Cognition,59,307-335.
    Mandler, J. M., & McDonough, L. (1998). Studies in inductive inference in infancy. Cognitive Psychology,37,60-96.
    Markman, A. B. (2000). Structure alignment, and the internal structure of category representations. In U. Hahn & M. Ramscar. (Eds.) Similarity and Categorization (pp.1-42). Oxford University Press.
    Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three—dimensional shapes. Proceedings of the Royal Society of London. Series B. Biological Sciences,200,269-294.
    Medin, D., Goldstone, R., & Gentner, D. (1993). Respects for similarity. Psychological Review,100,254-832.
    Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K., & Poggio, T. (2008). Dynamic population coding of category information in inferior temporal and prefrontal cortex. Journal of Neurophysiology,100,1407-1419.
    Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin,131,510-532.
    Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2004). Stimulus modality, perceptual overlap, and the go/no-go N2. Psychophysiology,41,157-160.
    Mohr, H. M., Goeble, R., & Linden, D. E. (2006). Content and task specific dissociations of frontal activity during maintenance and manipulation in visual working memory. Journal of Neuroscience,26,4465-4471.
    Nosofsky, R. M. (1998). Exemplar—based accounts of relations between classification, recongnition and typicality. Journal of Experimental Psychology:Learning, Memory & Cognition,14,700-708.
    Oaksford, M. R., & Chater, N. (1991). Against logicist cognitive science. Mind & Language,6,1-38.
    Oh, S. H., & Kim, M. S. (2003). The guidance effect of working memory load on visual search. Journal of Vision,3,629.
    Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the "strong-object" hypothesis. Perception and Psychophysics,64,1055-1067.
    Olson, I. R., Moore, K. S., Stark, M., & Chatterjee, A. (2006). Visual working memory is impaired when the medial temporal lobe is damaged. Journal of Cognitive Neuroscience,18,1087-1097.
    Osherson, D. N., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990). Category-based induction. Psychological Review,97,185-200.
    Pashler, H., & Shiu, L. P. (1999). Do images involuntarily trigger search? A test of Pillsbury's hypothesis. Psychonomic Bulletin and Review,6,445-448.
    Paul, D. D., & Sutton, S. (1972). Evoked Potential Correlates of Response Criterion in Auditory Signal Detection. Science,177,362-364.
    Peissig, J. J., & Tarr, M. J. (2007). Visual Object Recognition:Do We Know More Now Than We Did 20 Years Ago? Annual Review of Psychology,58,75-96.
    Phillips, W. (1974). On the distinction between sensory storage and short-term visual memory. Attention, Perception, & Psychophysics,16,283-290.
    Polich, J. (1987). Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalography and Clinical Neurophysiology,68,311-320.
    Polich, J. (2007). Updating P300:An integrative theory of P3a and P3b. Clinical Neurophysiology,118,2128-2148.
    Porte, B., Bareiss, R., & Holte, R. (1990). Concept learning and heuristic classification. Artificial Intelligence,45,229-263.
    Pratt, J., & Hommel, B. (2003). Symbolic control of visual attention:the role of working memory and attentional control settings. Journalof Experimental Psychology:Human Perception and Performance,29,835-845.
    Ranganath, C. (2006). Working memory for visual objects complementary roles of inferior temporal medial and prefrontal cortex. Neuroscience,139,227-289.
    Rissanen, J. (1989). Stochastic Complexity in Statistical Inquirry. New Jersey:World Scientific.
    Roberson, D., Davidoff, J., & Braisby, N. (1999). Similarity and cognition: neuropsychological evidence for a dissociation in explicit categorization tasks. Cognition,7,11-42.
    Ruprecht, D., & Muller, H. (1994). Deformed cross-dissolves for interpolation in scientific visualization. Jouranl of Visualization and Computer Animation,5, 167-181.
    Ruz, M., & Lupianez, J. (2002). A review of attentional capture:On its automaticity and sensitivity to endogenous control. Psicologica,23,283-309.
    Seitz, S., & Dyer, C. (1995). Physically-valid view synthesis by image interpolation. In: IEEE Workshop on representation of visual scene (pp.18-25), Cambridge, MA.
    Shepard, R. N. (1962). The analysis of proximities:multidimensional scaling with an unknown distance function. Part I. Psychometrika,27,125-140.
    Sigala, N. (2004). Visual categorization and the inferior temporal cortex. Behaviral Brain Ressearch,149,1-7.
    Sigala, N., & Logothetis, N. K. (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature,415,318-320.
    Sloutsky, V. M.,& Fisher, A.V. (2005). Similarity,induction, naming, and categorization (SINC):generalization or inductive reasoning? Reply to Heit and Hayes (2005). Journal of Experimnetal Psychology:General,134,606-611.
    Sloutsky, V. M., Lo, Y. F., & Fisher, A. V. (2001). How much does a shared name make things similar? linguistic labels, similarity, and the development of inductive inference. Child Development,72,1695-1709.
    Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociation verbal and spatial working memory using PET. Cerebral Cortex,6,11-20.
    Smythe, D. B. (1990). A two-pass mesh warping algorithm for object transformation and image interpolation. Technical Report 1030, ILM Computer Graphics Department, Lucasfilm Ltd., Sanl Rafael, CA.
    Song, J. H., & Jiang, Y. (2006).Visual working memory for simple and complex features: An fMRI study. Neuroimage,30,963-972.
    Soto, D., Heinke, D., & Humphreys, G. W. (2005). Early, involuntary top—down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance,5,248-261.
    Soto, D., Humphreys, G. W., & Heinke, D. (2006). Working memory can guide pop-out search. Vision Research,46,1010-1018.
    Standing, L. (1973). Learning 10000 pictures. The Quarterly Journal of Experimental Psychology,25,207-222.
    Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature,428,751-754.
    Tversky, A. (1977). Features of similarity. Psychological Review,84,327-352.
    van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task:a functional MRI study. Neuroimage,27,497-504.
    Vladimir, M., & Sloutsky, V. M. (2003). The role of similarity in the development of categorization. Trend in Cognitive Sciences,7,246-251.
    Vladimir, M., Sloutsky, V. M., & Fisher, A. V. (2004). Induction and categorization in young children:A similarity-based model. Journal of Experimental Psychology: General,233,166-188.
    Vladimir, M., Sloutsky, V. M., Kloos, H., & Fishers, A. V. (2007). When Looks Are Everything:Apperaance Similarity Versus Kind Information in Early Induction. Psychological Science,18,179-185.
    Vogle, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions and objects in visual working memory, Journal of Experimental Psychology: Human Perception and Performance,27,92-114.
    Wallace, C, & Boulton, D. (1968). An information measure for classification. Computing Journal,11,95-185.
    Wheeler, M. E., & Treisman, A. M. (2002).Binding in short-term visual memory. Journalof Experimental Psychology:General,131,48-64.
    Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision,4,1120-1135.
    Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology:Human Perception and Performance,33,363-377.
    Wyttenbach, R. A., May, M. L., & Hoy, R. R. (1996). Categorical perception of sound frequency by crickets. Science,273,1542-1544.
    Xiao, X., Qiu, J. & Zhang, Q. (2009). The dissociation of neural circuits in a Stroop task. Neuroreport,20,674-678.
    Xu, Y. (2002). Encoding color and shape from different parts of an object in visual short-term memory. Perception and Psychophysics,64,1260-1280.
    Xu, Y. (2002). Limitations of object-based feature encoding in visual short-term memory. Journal of Experimental Psychology:Human Perception and Performance,28,458-468.
    Xu, Y. (2006).Understanding the object benefit in visual short-term memory:The roles of feature proximity and connectedness. Perception and Psychophysics,68, 815-828.
    Xu, Y, & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature,440,91-95.
    Liu, Y., Jagadeesh, B. (2008). Neural selectivity in anterior inferotemporal cortex for morphed photographic images during behavioral classification or fixation. Journal of Neurophysiology,100,966-982.
    Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature,453,233-235.
    Zimmer, H. D., Speiser, H. R., & Seidler, B. (2003). Spatio-temporal working-memory and short—term object—location tasks use different memory mechanisms. Acta Psychologica,114,41-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700