用户名: 密码: 验证码:
骨修复药物控释微球支架的多级构建及干细胞介导分化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控的器官再生与功能重建是人类有史以来长期的梦想,组织工程的发展为这一梦想的最终实现提供了新的途径。组织工程支架是组织工程研究的重要构成部分,本文致力于骨修复药物控释支架的构建及其细胞生物学特性的研究。
     由感染、肿瘤、外伤等造成的骨组织缺损是临床上的普遍问题,自体或异体骨移植是最常见的骨修复手段。然而,有限的来源和免疫排斥反应限制自体及异体骨移植应用。有鉴于此,通过构建能够快速介导细胞生长,诱导细胞特异性分化、维持细胞分化表型以及形成特定形态功能的组织的骨修复支架作为早期植入的支撑方法便成为现代骨组织修复重要手段,也即为本文的主旨所在。
     本文构建具有多级成分和纳米(纳米颗粒)—微米(微球)—宏观(支架)多级结构的支架作为植入载体,承载干细胞的移植,并同时原位控释相关药物,以期得到最佳的修复效果。本研究将广泛应用于控释领域的聚乳酸-羟基乙酸(PLGA)微球通过低温焙烧的方法形成形貌可控的三维立体支架。与常见的骨修复支架相比,该支架有以下优点:优良的力学性能;可控的降解性能;优良的药物负载和控释性能等。本文对药物控释的PLGA微球支架及其对干细胞的介导分化作用进行深入研究和探讨。
     (1)药物控释骨修复支架的多级构建
     由于PLGA表面缺少有利于细胞黏附的基团,为提高支架的药物负载性能、生物相容性及细胞生物学特性,需要对PLGA微球支架进行必要的改性并构建细胞特异性识别位点。本论文分别通过复合生物分子和复合纳米材料两种技术对PLGA支架进行多级构建,并考察了它们的理化性能、药物控释和细胞生物学性能。(1)构建复合生物分子的多级成分支架:将卵磷脂天然生物分子引入到支架中,发现卵磷脂含量为5%的支架表现出优良的细胞生物学性能,如较高的碱性磷酸酶活性、I型胶原表达等。但是随着卵磷脂在支架中的含量提高,该性能则显著降低; (2)构建具有纳米(纳米颗粒)—微米(微球)—宏观(支架)多级结构支架:将三种纳米材料(介孔硅/羟基磷灰石(MSH)、羟基磷灰石(HA)和二氧化钛)分别引入到PLGA微球支架。结果显示改性后支架的力学性能、蛋白黏附性能和细胞生物学性能都有明显改善。比较研究发现,复合纳米材料的微球支架特别是复合MSH和HA的支架具有低的细胞毒性、优良的力学性能及优良的生物学性能,本研究选择这两种支架材料作为药物控释载体。
     (2)骨修复药物控释微球支架对干细胞的特异性介导
     通过体外实验研究微球及微球支架的药物缓释功能及对干细胞的介导分化作用。结果发现PLGA/MSH以及PLGA/HA支架对阿伦膦酸钠以及地塞米松都有良好的控释性能,控释周期长达一个月以上。控释的阿伦膦酸盐能够抑制破骨细胞的前体细胞-巨噬细胞的增殖和活性,同时能够提高成骨细胞的活性和促进成骨细胞相关成骨基因的表达和蛋白分泌,这一性能对骨缺损再生修复具有重要作用。更有意义的是负载了阿伦膦酸钠和地塞米松的PLGA微球还成功的诱导了滑膜干细胞的成骨转化,这方面的研究鲜有报道。使易于成软骨且具有高增殖速率的滑膜干细胞向成骨方向分化,可以解决骨髓间质干细胞增殖速度慢及随着细胞代数提高细胞分化能力降低的问题。体内实验发现,埋植于裸鼠皮下的阿伦膦酸钠与地塞米松控释微球支架与干细胞的复合体在4周时,异位生成骨组织。此外,在建立的兔骨缺损模型中,将负载阿伦膦酸钠与地塞米松的PLGA/HA微球支架植入兔体内8周后发现其骨修复效果明显好于未负载任何药物的PLGA/HA微球支架。
     负载阿伦膦酸钠的PLGA微球支架为具有刺激细胞生物应答的功能化组织工程支架的构建提供了崭新的途径。这种方法是控释技术与组织工程相互结合的新的探索,并通过领域交叉赋予了组织工程支架新的功能。
Controlled organ regenerational and fuction construction is always a dram for human being . The development of tissue engineering offer a path for this dream. The aim of this thesis is developing a functional controlled release tissue engineering scaffold for bone repair.
     The current replacement procedures for bone defect therapy mainly depended on autologous tissue which is the golden standard. Unfortunately, the origination of autologous bone is often limited in supply, and the allogenous bone takes an increased risk of disease transmission. Tissue engineering strategy, which utilizes an alternative approach to assist tissue repair via forming a microenvironment that effectively promotes cellular growth and proliferation in a synthetic or natural scaffold to produce extracellular matrix and regenerate tissue, can overcome the limitations that were induced by autologous and allogenous tissuetransplantation for bone repair.
     Microsphere sintering technique was used in this thesis for fabricating the scaffolds with muti-component and muti-structure (nano scale-micro scale-macro scale). PLGA based microspherical sintering scaffolds were developed in this studies. These scaffolds possess regulated biodegradation, drug controlled release, as well as good mechanical property.
     (1) Muti-level construction of cntrolled release tissue engineering scaffolds
     Firstly, as a synthetic polymer, PLGA lacks functional groups, and the improvement of biocompatibility is also demanded. Many approaches have been carried out to enhance the bio-functionality of PLGA, and blending PLGA with biomolecules or nano bioceramic particles provides a simple and effective pathway for this purpose. In this work, two methods were applied to modify PLGA scaffold: modification with natural biomolecules and blending with nano particles. (1) Modification with natural biomolecules: lecithin was introduing into PLGA scaffold, and the results indicated that the scaffold with 5% lecithin showed better cell biological properties such as higher alkaline phosphatase (ALP) activity, higher calcium secretion and stronger type I colllagen gene expression. Howerver, the rising lecithin content in the scaffolds produced a lower cell biological properties, which may be due to the higher hydrophilicity of scaffold surfaces. (2) Modification with nano particles: Mesoporous silica-HA (MSH), nano TiO2, and HA were introducing into PLGA scaffolds respectively. The results demonstrated that after modifiaction by nano particles, the scaffolds showed improved mechanical propertes, trapping protein and cell biliogical properties. Additionally, PLGA-MSH scaffolds also exhibited beneficial drug delivery property. After a comprison among PLGA-MSH, PLGA-HA and PLGA-TiO2 scaffolds, PLGA-MSH and PLGA-HA scaffolds showed better properties than PLGA-TiO2, therefore our following studies will focus on these scaffolds.
     (2) controlled release tissue engineering scaffolds for cell differentiation
     In this work, dexamethasone (Dex), ascorbic acid (AA) andβ-glycerophosphate (GP) , the key components of ostoegenic media, were loaded into PLGA micropspherical scaffolds, and the osteogenesis in situ of mesenchymal stem cells (MSCs) on the scaffolds were evaluated. Ther results indicated that, after 14 days and 28 days of culture, MSCs on the drug laden scaffold exhibited strong osteoblastic properties. In-vitro osteogenesis was induced in the mesenchymal stem cells from the highly chondrogenic synovium mesenchymal stem cells (SMSCs) and the bone marrow (BMSCs), and also the effect on macrophages and osteoblasts by controlled release of a nitrogenous bisphosphonate additive - alendronate (AL) from PLGA/MSH and PLGA/HA scaffolds were assessed. AL is a nitrogenous bisphosphonate (BP) consisting of stable analogues of natural pyrophosphate compounds that inhibit bone resorption by osteoclasts. The resulted demonstrated that AL can inhibite the activity of macroiphages and also promote tha activity of osteoblast. In addition, AL and Dex laden PLGA/MSH microspheres was successfully induced in-vitro osteogenesis in SMSCs. AL and Dex laden PLGA/HA also exhibited the similar effect on BMSCs osteogenic commitment in vitro and in vivo. BMSCs laden PLGA/HA-AL-SMS and PLGA/HA-Com-SMS were also implanted into the back subcutis of mice and bone defects surgically created on rabbit femurs. The histology and immunohistochemistry results indicated that the scaffolds promoted MSCs osteogenic commitment and also the new bone formation in vivo. In addtion, these in situ AL delivery systems could effectively inhibit the growth of macrophage while enhance the proliferation and commitment of osteoblasts.
引文
[1] Burchardt, H. Biology of bone transplantation[J]. Orthop Clin N Am, 1982, 18: 187–196.
    [2] Marks, S. C. and Odgren, P. R. Structure and development of the skeleton. In Principles of Bone Biology[M]. New York : Academic Press, 2007: 3–15.
    [3] Gerber, HP, Ferrara N. Angiogenesis and bone growth[J]. Trends Cardiovasc Med, 2000, 10:223-228.
    [4] Meyer U, Wiesmann HP. Bone and Cartilage Engineering[M]. Heidelberg: Springer. 2005, 15-17.
    [5] http://sc.hrd.gov.tw/ebintra/Con...D%3D3327.
    [6] Sandy C, Marks JR, Steven NP. Bone cell biology: the regulation of development, structure, and fuction in the skeleton[J]. American J Anatomy 1988, 183:l-44.
    [7] http://caresengclub.com/caresengclub/tw/remedy/image
    [8]童成莉,陈璐璐,丁桂芝.成骨细胞的形成机制研究进展[M].中国骨质疏松杂志,1999, 5: 60-63.
    [9] Karsenty, G. The genetic transformation of bone biology[J]. Genes Dev, 1999, 13: 3037–3051.
    [10] Boyan BD, Batzer R, Kieswetter K, et al. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 alpha,25-(OH)2D3[J]. J Biomed Mater Res, 1998, 39:77–85.
    [11] Audran, M. The physiology and pathophysiology of vitamin D[J]. Mayo Clin. Proc, 60:851-866.
    [12] Burger EH, Boonekamp PM, Nijweide PJ. Osteoblast and osteoclast precursors in primary cultures of calvarial bone cells[J]. Anat Rec, 1986, 214:32-40.
    [13] Ecarot-Charrier B, Broekhuyse H. Proteoglycans synthesized by cultured mouse osteoblasts[J]. J Biol Chem, 1987, 262:5345-5351.
    [14] Gaillard PJ. Parathyroid gland and bone in vitro[J]. Dev. Biol, 1959, 1:152-181.
    [15] Goldberg M and Boskey AL. Lipids and biomineralizations[J]. Prog Histochem Cytochemistry 1996, 31, 1–187.
    [16] Boskey AL. Biomineralization: conflicts, challenges, and opportunities[J]. J CellBiochem 1998, Suppl. 30–31: 83–91.
    [17] Aubin JE. Regulation of osteoblast formation and function[J]. Rev Endocr Metab. Disorders 2001,2:81–94.
    [18] Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation[J]. Oral Dis. 2002, 8:147–159.
    [19] Rhinelander FW. Circulation of bone In: The Biochemistry and Physiology of Bone[M]. New York :Academic Press, 2002, 2:1-77.
    [20] Chambers TJ. The pathobiology of the osteoclast[J]. J Clin Pathol, 1985, 38:241-252.
    [21] Mundy GR. Monocyte-macrophage system and bone resorption[J]. Lab Invest, 1985, 49:119-121.
    [22]Loutit JF, Nisbet NW. The origin of osteoclasts[J]. Immunobiology, 1982, 161:193-203.
    [23] Burger EH, van der Meer JWM, Nijweide PJ. Osteoclast formation from mononuclear phagocytes: Role of bone-forming cells[J]. J Cell Biol, 1984, 99:1901-1906.
    [24] Chambers TJ. The cellular basis for bone resorption[J]. Clin. Orthop, 1980, 152:283-293.
    [25] Urist MR, Silverman BF, Buring K, et al. The bone induction principle[J]. Clin Orthop Rel Res 1967, 53:243.
    [26] Gehron Robey P. The biochemistry of bone[J]. Endocrinol Metab Clin North Am 1989, 18:859,.
    [27] Urist MR. Bone: formation by autoinduction[J]. Science, 1965: 150, 893.
    [28] Hall BK. The role of movement and tissue interactions in the development and growth of bone and secondary cartilage in the clavicle of the embryonic chick[J]. J Embryol Exp Morphol. 1986, 93: 133–152.
    [29] Blair HC, Zaidi M, Schlesinger PH. Mechanisms balancing skeletal matrix synthesis and degradation[J]. Biochem J, 2002, 364:329–341.
    [30] Liu SK. Metabolic disease in animals[J]. Semin Musculoskelet Radiol. 2002, 6: 341–346.
    [31] Cohen MM Jr. Merging the old skeletal biology with the new: I. Intramembranous ossification, endochondral ossification, ectopic bone, secondary cartilage, and pathologic considerations[J]. J Craniofac Genet Dev Biol. 2000, 20: 84–93.
    [32] Bronckers AL, Sasaguri K, Engelse MA. Transcription and immunolocalization ofRunx2/Cbfa1/Pebp2alphaA in developing rodent and human craniofacial tissues: further evidence suggesting osteoclasts phagocytose osteocytes[J]. Micros. Re. Tech 2003, 61: 540–548.
    [33] Goldberg V, Lance E. Revascularization and accretion in transplantation[J]. J Bone Joint Surg. 1972, 54A:807–816.
    [34] Burchardt H, Busbee G, Enneking W. Repair of experimental autologous grafts of cortical bone[J]. J. Bone Joint Surg. 1975, 57A:814.
    [35] Heiple K, Chase S, Herndon C. A comparative study of the healing process following different types of bone transplantation[J]. J. Bone Joint Surg. 1963, 45A:1593–1616.
    [36] Chase S, Herndon C. The fate of autogenous and homogenous bone grafts. A historical review[J]. J. Bone Joint Surg, 1955, 37A: 809–841.
    [37] Bos G. The effect of histocompatibility matching on canine frozen bone allograft [J]. J Bone Joint Surg. 1983, 65A: 89–96.
    [38] Goldberg V. Improved acceptance of frozen bone allografts in genetically mismatched dogs by immunosuppression[J]. J Bone Joint Surg. 1984, 66: 937–950.
    [39] Goldberg V. Bone grafting: role of histocompatibility in transplantation[J]. J Orthop Res 1985, 3(4):389–404.
    [40] Bos D. The long-term fate of fresh and frozen orthotopic bone allografts in genetically defined rats[J]. Clin Orthop. 1985, 197: 245–254.
    [41] Stevenson, S. The immune response to osteochondral allografts in dogs[J]. J Bone Joint Surg. 1987, 69A: 573–582.
    [42] Stevenson S, Li S, Martin B. The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteochondral allografts in dogs[J]. J Bone Joint Surg. 1991, 73A: 1143–1156.
    [43] Stevenson S, Horowitz M. Current concepts review: the response to bone allografts[J]. J. Bone Joint Surg Am, 1992,74A: 939–950.
    [44] Ray RD. Bone grafts and bone implants[J]. Otolaryngol Clin N Am, 1972, 5:389.
    [45]顾其胜.实用生物医用材料学[M].上海:上海科技出版社,2005:102-108
    [46]俞耀庭.生物医用材料[M].天津:天津大学出版社,2000:120-122
    [47]高长有,马列[M].北京:化学工业出版社,2006:14-30
    [48] Langer R, Vacant JP. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation[J]. Lancent, 1999, 354:32-34.
    [49] Langer R, Vacanti JP. Tissue engineering[J]. Science, 1993,260:920-926.
    [50] Marler JJ, Upton J, Langer R, et al. Transplantation of cells in matrices for tissue engineering[J]. Adv Drug Deliv Rev. 1998, 33:165-182.
    [51] Habraken WJEM, Wolke JGC, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering[J]. 2007, 59:234-248.
    [52]顾汉卿,徐国风.生物医学材料学[M].天津:科技翻译出版社, 1993.
    [53]姚康德,尹玉姬.组织工程相关生物材料[M].北京:化学工业出版社, 2003.
    [54] Peppas N. A.,Larger R. New challenges in biomaterials [J]. Science 1994;263:1715-1720.
    [55] Crane G. M., Lshaug S. L.,Mikos A. G. Bone Tissue Engineering[J]. Nature Medicine 1995;1(12):1322-1326.
    [56] Mikos AG, Thorsen CH, et al. Preparation and characterization of poly(L-lacid acid ) foams[J]. Polymer, 1994, 35:1068-1077.
    [57] Freyman T, Yannas I, Gibson L. Cellular materials as porous scaffolds for tissue engstudentineering[J]. Prog Mater Sci, 2001, 46:273-282.
    [58] Mooney DJ, Baldwin D, Suh N, et al. Novel approach to fabricate porous sponges of poly(D, L-lactic-co-glycolic acid) without the use of organci solvents[J]. Biomaterials, 1996,17:1417-1422.
    [59] Chen GP, Ushida T, Tateishi T, Preparation of poly(L-lacid acid) and poly(DL-lactic-co-glycolic acid) foam by use of ice microparticulates[J]. Biomaterials, 2001,22:2563-2567.
    [60] Gong Y, Zhou Q, Gao C. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method[J]. Acta Biomater, 2007, 3:531-540.
    [61] Li J, Chen Y, Mak AFT. A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens[J]. Acta Biomater. In press.
    [62] Li J, Mak AFT. Transfer of colllagen coating from porogen to scaffold: collagen coatingwithin poly(dl-lactic-co-glycolic acid)scaffold[J]. Compos B: Eng, 2007,38:317-323.
    [63] Gao CY, Li A, Feng LX, et al. Factors controlling surface morphology of porous polystyrene membranes prepared by thermally induced phase seprartion[J]. Polymer Int, 2000, 49:323-328.
    [64]龚逸鸿,高长有,马祖伟等.热致相分离技术制备聚氨酯多孔膜的条件控制[M].生物医学工程杂志,2002, 19增:93-94.
    [65] Liu XH, Ma PX. Polymeric scaffolds for bone tissue engineering[J]. Ann Biomed Eng, 2004, 32:477-486.
    [66] Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally phase separation[J]. J. Biomed Mater Res, 1999, 20:1783-1790.
    [67] Huang ZM, Zhang YZ, Kotakic M. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Biomaterials, 2003,63:2223-2253.
    [68] Chong EJ, Phan TT, Lim IJ. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution[J]. Acta Biomater. 2007, 3:321-330.
    [69] Jose MV, Thomas V, Dean DR. Fabrication and characterization of aligned nanofibrous PLGA/collagen blends as bone tissue scaffolds[J]. Polymer, 2009, 50:3778-3785.
    [70]杨春蓉,骨组织工程支架研究现状及面临的问题[J].中国组织工程研究与临床康复, 2009, 21
    [71] Tan H, Wu J, Lao L, et al. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering[J]. Acta Biomater 2009, 5:328-337.
    [72] Habraken WJEM, Boerman OC, Wolke JGC, et al. In vitro growth factor release from injectable calcium phosphate cements containing gelatin microspheres[J]. J. Biomed Mater Res A. 2009, 91:614-622.
    [73] Habraken WJEM, De Jonge LT, Wolke JGC. New processing approaches in calcium phosphate cements and their applications in regenerative medicine[J]. J Biomed Mater Res A. 2008, 87:643-655.
    [74] Habraken WJEM, Zhang Z, Wolke JGC, Grijpma DW, et al. Introduction of enzymatically degradable poly(trimethylene carbonate) micropsheres into an injectable calcium phosphate cement[J]. Biomaterials, 2008, 29:2464-2476.
    [75] Habraken WJEM, Wolke JGC, Mikos AG, et al. Injectable PLGA microsphere/calciumphosphate cements: physical properties and degradation characteristics[J]. J Biomater Sci, 2006, 17:1057-1074.
    [76] Kim S.-S. Gwak S-J, Kim BS, et al. Orthotopic bone formation by implantation of apatite-coated poly(lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2[J]. J Biomed Mater Res, 2008, 87:245-253.
    [77] Wang X, Wenk E, Zhang X. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering[J]. J Control Rel, 2009, 134:81-90.
    [78] Kempen DHR, Lu L, Hefferan TE, et al. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering[J]. Biomaterials 2008,29:3245-3252.
    [79] Kempen DHR, Lu L, Heijink A, et al. Effect of local VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration[J]. Biomaterials, 2009, 30:2816-2825.
    [80] Ashton RS, Banerjee A, Punyani S. Scaffolds based on degradable alginate hydrogels and poly(lacide-co-glycolide) microspheres for stem cell culture[J]. Biomaterials, 2007, 28:5518-5525.
    [81] Kang S-W, Jeon O, Kim B-S. Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering[J]. Tissue Eng, 2005, 11:438-447.
    [82] Zhu XH, Wang C-H, Tong YW. In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold[J]. J. Biomed Mater Res A, 2009, 89:411-423.
    [83] Shi X, Wang Y, Varsheny, et al. In- vitro osteogenesis of synovium stem cells induced by controlled release of bisphosphate additives from microspherical mesoporous silica composite[J]. Biomaterials, 2009, 30:3996-4005.
    [84] Shi X, Wang Y, Ren L, et al. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair[J]. Acta Biomater, 2009, 5:1697-1707.
    [85] Shi X, Wang Y, Ren L, et al. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications[J]. Pharm Res, 2009, 26:422-430.
    [86] Shen H, Hu X, Yang F. An injectable scaffold: rhBMP-2 loadedpoly(lactide-co-glycolide)/hydroxyapatite composite microsphere[J]. Acta Biomater 2010, 6:455-465.
    [87]竺亚斌,胺解改性含酯基聚合物生物材料及其细胞相容性研究[R],浙江:浙江大学博士论文, 2003年.
    [88] Zhu Y, Gao C, Shen J. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompability[J]. Biomaterials, 2002, 23:4889-4895.
    [89] Lao L, Tan H, Wang Y, et al. Chitosan modified poly(l-lactide) microspheres as cell microcarriers for cartilage tissue engineering[J]. Colloid Surf B, 2008, 66:218-225.
    [90] Nojehdehian H, Motarzzadeh F, Baharvand H, et al. Preparation and surface characterization of poly-l-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering in vitro study[J]. Collid Surf B, 2009, 73:23-29.
    [91] Na K, Kim S, Park K, et al. Heparin/poly(l-lysine) nanoapricle-coated polymeric microspheres for stem-cell therapy[J]. J Am Chem Soc, 2007,129:5788-5789.
    [92] Park K, Park JS, Woo DG, et al. The use of chondrogenic differetiation drugs to induce stem cell differetiation using double bead microsphere structure[J]. Biomaterials, 2008, 16:2490-2500.
    [93] Kim TK, Yoon JJ, Lee DS, et al. Gas foamed open porous biodegradable polymeric microspheres[J]. Biomaterials, 2006, 27:152-159.
    [94] Kim HK, Chung HJ, Park TG. Biodegradable polymeric microsphere with“open/closed”pores for sustained release of human growth hormone[J]. J Control Release, 2006, 112:167-174.
    [95] Borden M, Attawia M, Khan Y, et al. Tissue engineered microsphere-based matrics for bone repair:design and evaluation[J]. Biomaterials, 2002, 23:551-559.
    [96] Lv Q, Nair L, Laurencin CT. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors[J]. J Biomed Mater Res. A 2009, 91:679-691.
    [97] Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering[J].Biomaterials, 2006, 27:4894-4903.
    [98] Yao J, Radin S, Leboy PS, et al. The effect of bioactive glass content on synthesisi and bioactivity of composite poly(lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering[J]. Biomaterials, 2005, 26:1935-1943.
    [99] Jabbarzadeh E, Nair LS, Khan YM, et al. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: Implications for protein adsorptin[J]. J Biomater Sci, 2007, 18:1141-1152.
    [100] Jabbarzadeh E, Jiang T, Deng M, et al. Human endothelia cell growth and phentypic expression on three dimentional poly(lactide-co-glycolide)sintered microsphere scaffolds for bone tissue engieering[J]. Biotech Bioeng, 2007, 98:1094-1102.
    [101] Brown JL, Nair LS, Laurencin CT. Solvent/non-solvent sintering: A novel route to create porous microsphere scaffolds for tissue regeneration[J]. J Biomed Mater Res B , 2008, 86:396-406.
    [102] Jaklenec A, Wan E, Murray ME, et al. Novel scaffolds fabricated from protein loaded microspheres for tissue engineering[J]. Biomaterials, 2008, 29:185-192.
    [103] Liu H, Chang J. pH-compensation effect of bioactive inorganic filler on the degradation of PLGA[J]. Comp Sci Tech, 2005, 65: 2226-2232.
    [104] Kim S-S, Park M.S., Jeon O. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27:1399-1409.
    [105] Kothapalli CR, Shaw MT, Wei M. Biodegradable HA-PLA 3-D porous scaffolds: Effect of nano-sized filler cotent on scaffold properties[J]. Acta Biomater, 2005, 1:653-662.
    [106] Lin P-L, Fang H-W, Tseng T, et al. Effect of hydroxyapatite dosage on mechanical and biological behaviors of polyactic acid and composite materials[J]. Mater Letter, 2007, 61:14-15.
    [107]崔福斋,冯庆玲等,生物材料学[M].北京:清华大学出版社, 2004:1-7
    [108] Slavkin H, Price P. Chemistry and Biology of Mineralized Tissues[J]. Excerpa Medica,1992:158-162.
    [109] Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res.,1998,13:94-117.
    [110] Langer R ,Vacanti J P. Tissue engineering [J]. Science,1993,260:920 -926.
    [111]崔福斋,杜昶.骨组织工程,世界医疗器械, 1999,5:50-54.
    [112] Hutmacher D W. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials,2000,21(24):2529-2543.
    [113]张立德.纳米材料[M].北京:化学工业出版社,2000,86-93.
    [114] Webster JJ.Biomaterials,1999,20(13):1221-1227
    [115]朱曾惠.纳米材料在复合材料中的应用.化工新型材料,1999,10:28.
    [116]潘颐,吴希俊.纳米材料的制备、结构及性能.材料科学与工程,1993,11:16.
    [117] Hersel, U., et al., RGD modified polymers: biomaterials for stimulated cell adhesion and beyond[J]. Biomaterials , 2003, 24:4385
    [118] Zourob, M., et al., Amicropatterned hydrogel platform for chemical systhesis and biological assay[J]. Adv. Mater, 2006, 18: 655
    [119]Silva, G. A., et al., Selective differentiation of neural progenitor cells by high-epitope density nanofibers[J]. Science, 2004, 303:1352
    [120] Rajangam, K., et al., Heparin binding nanostructures to promote growth of blood vessels[J]. Nano Lett, 2006, 6:2086
    [121] Wang, D.-A., et al., Bioresponsive phosphoester hydrogels for bone tissue engineering[J].Tissue Eng, 2005, 11: 201
    [122] Kneser U, Schaefer DJ, Polykandriotis E, Horch RE, Tissue engineering of bone: The reconstructive surgeon’s point of view[J], J. Cell. Mol. Med. 2006, 10; 7-19
    [123] Jo I, Lee JM, Suh H, Kim H, Bone tissue engineering using marrow stromal cells[J], Biotechnol. Bioproc. E. 2007,12: 48-53
    [124] Jadlowiec JA, Celil AB, Hollomger JO, Bone tissue engineering: Recent advances and promising therapeutic agents[J], Expert Opin. Biol. Th. 2003, 3: 409-423.
    [125] Vacanti CA, Vacanti JP, Bone and cartilage reconstruction with tissue engineering approaches[J], Otol. Clin. N. Am. 1994, 27: 263-276.
    [126] Bell E. Strategy for the selection of scaffolds for tissue engineering[J]. Tissue Eng, 1995, 1: 163-179
    [127] Steffens L, Wenger A, Bj?rn Stark G, Finkenzelller G. In vivo engineering of a human vasculature for bone tissue engineering applications[J]. J Cell Mol Med. doi.10.1111/j.1582-4934.2008.00418.x.
    [128] Meyer U, Wiesmann HP. Bone and cartilage engineering[M]. Heidelberg: Springer, 2006, 7-43.
    [129]杨志明.组织工程基础与临床[M].成都:四川科学技术出版社.2000.
    [130]杨志明.组织工程.化学工业出版社[M],2002.
    [131] Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering[J]. Adv Drug Deliver Rev. 2008,60: 229-42.
    [132] Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease[J]. Nature. 2008, 8: 726-36.
    [133] Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells[J]. Adv Drug Deliver Rev. 2008, 60: 199-214.
    [134] Allori AC, Sailon AM, Warren SM. Biological basis of bone formation, remodeling, and repair-part I: Biochemical signaling molecules[J]. Tissue Eng. 2008, 14: 259-73,.
    [135] Service RF. Tissue engineers build new bone[J]. Science. 2000, 289: 1498-500.
    [136] Bialopiotrowicz T, Janczuk B, Fiedorowicz M, et al. Hyaluronan-lecithin foils and their properties[J]. Materials Chemistry and Physics, 2006, 95: 99-104.
    [137] Medlicott NJ. Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy[J]. Inter J Pharm, 2007, 337: 40-47.
    [138] http://baike.baidu.com/view/200925.htm
    [139] Lodish H. Molecular Cell Biology[M]. New York: W.H.Freeman, 2005: 43-46.
    [140] Wuthier, RE, Wu LNY, Sauer GR, et al. Mechanism of matrix vesicle calcification : characterization of ion channels and the nucleational core of growth plate vesicles[J].Bone Miner, 1992; 17: 290-295.
    [141] Wuthier RE, Eanes ED. Effect of phospholipids on the transformation of amorphous calcium phosphate to hydroxyapatite in vitro[J]. Calcified Tissue Int, 1975; 19: 197-210.
    [142] Shi XT, Wang Y, Ren L, et al. A novel hydrophilic poly(lactide-co-glycolide)/ lecithin hybrid microspheres sintered scaffold for bone repair[J]. J Biomed Mater Res A, 2010, 3: 963-972.
    [143] Tantipolphan R, Rades T, Mcquillan AJ, Medlicott NJ. Adsorption of bovine serumalbumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy[J]. Int J Pharm, 2007, 337:40-47.
    [144] Zhu N, Cui FZ, Hu K, Zhu L. Biomedical modification of poly(L-lactide) by blending with lecithin[J]. J Biomed Mater Res A 2007, 82: 455-461.
    [145] Berkland C, Kim K, Pack DW. PLG microsphere size control drug release rate through several competing factors[J]. Pharm Res, 2003, 20:1055-1062.
    [146] Laurent F, Bignon A, Goldadel J, et al. A new concept of gentamicin loaded HAP/TCP bone substitute for prophylactic action: in vitro release validation[J]. J Mater Sci-Mater Med, 2008, 19: 947-951.
    [147] Nicholas MKD, Waters MGJ, Holford KM, et al. Analysis of rheological properties of bone cements[J]. J Mater Sci-Mater Med, 2007, 18:1407-1412.
    [148] Kofron MD, Cooper JA, Kumbar SG, et al. Novel tubular composite matrix for bone repair[J]. J Biomed Res A, 2007, 82:415-425.
    [149] Ma Z, Gao C, Gong Y, Shen J. Chondrocyte behaviors on poly- -lactic acid (PLLA) membranes containing hydroxyl, amide or carboxyl groups[J]. Biomaterials, 2003; 24:3725-3730.
    [150] Hay DI, Moreno, E C. Differential adsorption and chemical affinities of proteins for apatitic surfaces[J]. J. Dental Res, 1979:58, 930–942.
    [151] Stephansson SN, Byers BA, Garcia AJ. Enhanced expression of the osteoblastic phenotype on substrates that modulate fibronectin conformation and integrin receptor binding[J]. Biomaterials, 23, 2527–2534.
    [152] Hukkanen MV, Batten JJ, Buttery LD, et al. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: implications and applications for bone tissue engineering[J]. Calcif Tissue Int. 2000, 67: 321–329.
    [153] Loty C, Sautier JM, Tan M T.,et al. Bioactive glass stimulates in vitro osteoblast differentiation and creates a favorable template for bone tissue formation[J]. J Bone Miner Res, 2001, 16: 231–239.
    [154] Xynos ID, Edgar AJ, Buttery LD, et al. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis[J]. Biochem Biophys Re. Commu. 2000, 276:461–465.
    [155] Hollinger JO, Einhorn TA, Doll BA, et al [M]. Bone tissue engineering. Boca Raton:CRC Press, 2004, 53
    [156] Lohmann CH, Tandy EM, Sylvia VL,et al. Response of normal female human osteoblasts (NHOst) to 17beta-estradiol is modulated by implant surface morphology[J]. J Biomed Mater Res, 2002, 62: 204–213.
    [157] Rubin CT, Donahue HJ, Rubin JE et al. Optimization of electric field parameters for the control of bone remodeling: exploitation of an indigenous mechanism for the prevention osteopenia[J]. J Bone Miner Res, 1993,8: 573–581.
    [158] Reich KM., McAllister TN, Gudi S et al. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts[J]. Endocrinology, 1997,138:1014–1018.
    [159] Johnson DL, McAllister TN, Frangos JA. Fluid flow stimulatesrapid and continuous release of nitric oxide in osteoblasts[J]. Am J Physiol Endocrinol Metab. 1996,34: 205-208.
    [160] Reich KM, Gay CV, Frangos JA. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production[J]. J Cell Physiol, 1990,143:100–104.
    [161] You J, Reilly GC, Zhen X, et al. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts[J]. J Biol Chem, 2001, 276: 13365–13371.
    [162] Owan I, Burr DB, Turner CH, et al.Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain[J]. Am J Physiol Cell Physiol. 1997, 42: 810–815.
    [163] Sakai K, Mohtai M, Iwamoto Y. Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades[J]. Calcif Tissue Int. 1998, 63: 515–520.
    [164] Ogata T. Fluid flow induces enhancement of the Egr-1 mRNA level in osteoblast-like cells: involvement of tyrosine kinase and serum[J]. J Cell Physiol. 1997,170: 27–34.
    [165] Ajubi NE, Klein-Nulend J, Alblas M J, et al. Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes[J]. Am J Physiol. 1999,276:171–178.
    [166] Klein-Nulend J, Semeins CM, Ajubi NE, et al. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation[J]. Biochem Biophys Res Commun. 2005, 217: 640–648.
    [167] Deligianni DD, Katsala ND, Koutsoukos PG. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength[J]. Biomaterials, 2001, 22: 87–96.
    [168] Montanaro L, Arciola CR, Campoccia D. In vitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys[J]. Biomaterials 2002,23:3651–3659.
    [169] Wang D-A, Williams CG, Yang F, et al. Bioresponsive phosphoester hydrogels for bone tissue engineering[J]. Tissue Eng, 2005; 11: 201-13.
    [170] http://baike.baidu.com/view/521609.htm?fr=ala0_1_1
    [171] Hollinger JO, Einhorn TA, Doll BA. Bone Tissue Engieering[M]. London: CRC Press. 2005, 45.
    [172] http://www.nahansm.com/19/1901/1901-141.htm
    [173] Carlisle EM. Silicon-An essential element for the chick[J]. Nutrit Rev, 1982, 40:210.
    [174] Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis[J]. Chem Rev, 1997; 97: 2373-2419
    [175] Sakamoto Y, Nagata K, Yogo K, Yamada K., Preparation and CO2 separation properties of amine-modified mesoporous silica membranes[J]. Micropor Mesopor Mat, 2007,101: 303-311.
    [176] Conesa TD, Mokaya R, Yang Z, et al. Novel mesoporous silicoaluminophosphates as highly active and selective materials in the Beckmann rearrangement of cyclohexanone and cyclododecanone oximes[J]. J Catal, 2007; 252: 1-10.
    [177] Tourné-Péteilh C, Lerner DA, Charnay C, Nicole L, Bégu S. Devoisselle JM, The Potential of Ordered Mesoporous Silica for the Storage of Drugs: The Example of a Pentapeptide Encapsulated in a MSU-Tween 80[J]. ChemPhysChem, 2003, 4: 281-286.
    [178] Liu Y, Miyoshi H, Nakamura M. Novel drug delivery system of hollow mesoporous silica nanocapsules with thin shells: Preparation and fluorescein isothiocyanate (FITC)release kinetics[J]. Colloid Surface B, 2007; 58:180-187.
    [179] Vallet-RegíM, Balas F, Arcos D. Mesoporous Materials for Drug Delivery[J], Angew Chem Int Edit, 2007,46:7548-7558
    [180] Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems:A review [J].J Control Release 2006, 113:102-110.
    [181] Ono I, Yamashita T, Jin HY, et al. Combination of porous hydroxyapatite and cationic liposome as a vetor for BMP-2 gene therapy[J]. Biomaterials, 2004, 25:4709-4718.
    [182] Hilder TA, Hill JM. Carbon nanotubes as drug delivery nanocapsules[J], Curr Appl Phys, 2008, 8: 258-261.
    [183] Qu F, Zhu G, Lin H, et al. Drug self-templated synthesis of ibuprofen/mesoporous silica for sustained release[J], Eur J Inorg Chem 2006, 19 :3943–3947
    [184] Andersson J, Rosenholm J, Areva S, et al. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrics[J], Chem Mater. 2004, 16: 4160-4167.
    [185] Rothstein SN, Federspiel WJ, little SR. A simple model framework for the prediction of controlled release from bulk eroding polymer matrices[J]. J Mater Chem, 2008, 18: 1873-1880
    [186]张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社, 2001.2-3
    [187]张立德.纳米材料[M].北京:化学工业出版社, 2000.
    [188]陈仪本,欧阳友生等[M].纳米TiO2光催化剂负载技术研究,工业杀菌剂[M].北京:化学工业出版社,2001
    [189] http://baike.baidu.com/view/1033297.htm?fr=ala0_1
    [190] Torres FG, Nazhat SN, Sheikh Md Fadzullah SH, et al. Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds[J]. Compos Sci Technol, 2007, 67: 1139-1147.
    [191] Boccaccini AR, Blaker JJ, Maquet V. Poly(D,L-lactide) (PDLLA) foams with TiO2 nanoparticles and PDLLA/TiO2-Bioglass? foam composites for tissue engineering scaffolds[J]. J Mater Sci, 2006, 41: 3999-4008.
    [192] Goto K, Tamura J, Shinzato S, et al. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes[J]. Biomaterials, 2005, 26: 6496-6505.
    [193] Lodish H et al. Molecular Cell Biology (5th Edition) [M]. W. H. Freeman and Company (New York) 2007, 197-207
    [194] Temenoff JS, Mikos AG[M]. Biomaterials:The intersection of biology and materials science[M]. New York: Person Education. 298-231.
    [195] Wang C, Gong Y, Lin Y, et al. A novel gellan gel-based microcarrier for anchorage-dependent cell delivery[J]. Acta Biomater, 2008; 4: 1226-1234.
    [196] Fleisch H. Bisphosphonates: mechanisms of action[J]. Endocr Rev, 1998, 19: 80–100
    [197] Russell RG, Rogers MJ. Bisphosphonates: from the laboratory to the clinic and back again[J]. Bone, 1999, 25: 97–106.
    [198] Shinoda H, Adamek G, Felix R, et al. Structure–activity relationships of various bisphosphonates[J]. Calcif Tissue Int, 1983, 35: 87–99.
    [199] van Beek E, Hoekstra M, van de Ruit M, et al. Structural requirements for bisphosphonate actions in vitro[J]. J Bone Miner Res, 1994, 9:1875–82.
    [200] Rodan GA. Mechanism of action of bisphosphonates[J]. Annu Rev Pharmacol Toxicol, 1998, 38:375–388.
    [201] Hughes DE, Wright KR, Uy HL, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo[J]. J Bone Miner Res, 1995, 10:1478–1487.
    [202] Ezra A, Golomb G. Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption[J]. Adv Drug Deliver Rev, 2000, 42:175–195.
    [203] Nafea EH, EI-Massik MA, EI-Khordagui LK, et al. Alendronate PLGA microspheres with high loading efficiency fro dental applications[J]. J Microencapsul, 2007, 24: 525-538
    [204] Nieto A, Balas F, Colilla M, et al. Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage[J]. Micropor Mesopor Mat, 2008, 116:4-13
    [205] Balas F, Manzano M, Horcajada P, Vallet-Regi M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials[J]. J Am Chem Soc 2006, 128: 8116-8117
    [206] Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement[J]. Biomaterials, 2006; 27: 4239-4249
    [207] Nie H, Wang C-H. Fabrication and characterization of PLGA/HAP composite scaffolds for delivery of BMP-2 plasmid DNA[J]. J Control Release, 2007, 120:111-121
    [208] Palazzo B, Iafisco M, Laforgia M, et al. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties[J]. Adv Funct Mater, 2007, 17: 2180-2188
    [209] Boanini E, Torricelli P, Gazzano M, et al. Alendronate-hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells[J]. Biomaterials, 2008, 29:790-796
    [210]赖琛,反胶团-热液法合成羟基磷灰石纳米线及其机理研究[R],长沙:湖南大学博士论文,2006
    [211] Ficarra G, Beninati F, Rubino I, et al. Osteonecrosis of the jaws in periodontal patients with a history of bisphosphonates treatment[J]. J Clin Periodontol, 2005, 32: 1123-1128
    [212] Lin JH, Chen IW, Deluna FA. On the absorption of alendronate in rats[J]. J Pharm Sci, 1994, 83: 1741-1746
    [213] Stresing V, Benzaid I, M?nkk?nen H, Clézardin P. Bisphosphonates in cancer therapy[J]. Cancer letter, 2007, 257:16-35
    [214] Fisher JE, Rogers MJ, Halasy JM, et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalionate pathway, prevents inhibition of osteoclasts formation, bone resorption, and kinase activation in vitro[J]. Proc Natl Acad Sci, 1999, 96:133-139
    [215] Kavanagh KL, Guo K, Dunford JE, et al. The molecular mechanism if nitrogen-containing bisphophonates as antiosteoporosis drugs[J]. PNAL, 2006, 103: 7829-7834
    [216] Russll RGG, Watts NB, Ebetino FH, et al. Mechanisms of action of bisphosphonates:silimarities and differences and their potential influence on clinical efficacy[J]. Osteoporos Int, 2008, 19:733-759.
    [217] Ebetino FH, Francis MD, Rogers MJ, et al. Mechanisms of action of etidronate and other bisphosphonates[J]. Rev Contemp Pharmacother, 1998, 9:233–243
    [218] Ebetino FH, Dansereau SM. Bisphosphonate antiresorptive structure–activity relationships. Bisphosphonate on bones[M]. Elsevier, Amsterdam, 1995:139–153
    [219] Luckman SP, Coxon FP, Ebetino FH, et al. Heterocyclecontaining bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages[J]. J Bone Miner Res, 1998,13(11):1668–1678
    [220] Van Beek E, L?wik C, Que I et al. Dissociation of binding and antiresorptive properties of hydroxybisphosphonates by substitution of the hydroxyl with an amino group[J]. J Bone Miner Res, 1996, 11(10):1492–1497
    [221] Benedict JJ. The physical chemistry of the diphosphonates—its relationship to their medical activity, Diphosphonates and bone[M]. Editions Médecine at Hygiène, Geneva, 1982:1–19
    [222] Nancollas GH, Tang R, Phipps RJ, et al. Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite[J]. Bone, 2006, 38:617–627
    [223] Ebrahimpour A, Francis MD. Bisphosphonate therapy in acute and chronic bone loss: physical chemical considerations in bisphosphonate-related therapies[M]. Elsevier, Amsterdam,1995, 125–136.
    [224] Luckman SP, Hughes DE, Coxon FP, et al. Nitrogencontaining bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including ras[J]. J Bone Miner Res, 1998, 13:581–589.
    [225] Van Beek ER, Pieterman E, Cohen L, et al.Farnesyl pyrophosphate synthase is the molecular target of nitrogencontaining bisphosphonates[J]. Biochem Biophys Res Commun, 1999, 264(1):108–111.
    [226] Fisher JE, Rogers MJ, Halasy JM, et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro[J]. Proc Natl Acad Sci USA, 1999, 96(1):133–138
    [227] Dunford JE, Rogers MJ, Ebetino FH, et al. Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases[J]. J Bone Miner Res, 2006,21(5):684–694
    [228] Coxon FP, Thompson K, Rogers MJ. Recent advances in understanding the mechanism of action of bisphosphonates[J]. Curr Opin Pharmacol, 2006, 6(3):307–312
    [229] Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass[J]. Nature, 2003; 423: 349-355
    [230] Rodan GA, Martin TJ. Therapeutic approaches to bone diseases[J]. Science, 2000, 289: 508-1514
    [231] Marks SC, Popoff SN. Bone cell biology: The regulation of development, structure, and function in the skeleton[J]. The American Journal of Anatomy, 1988, 183: 1-44
    [232] Vignery A. Macrophage fusion: the marking of osteoclasts and giant cells[J]. J Exp Med, 2005, 202:337-340
    [233] Quinn JMW, Neale S, Fujikawa Y, MaGee JOD, Athanasou NA. Human osteoclasts formation from blood monocytes, peritoneal macrophages, and bone marrow cells[J]. Calcif Tissue Int, 1998, 62: 527-531
    [234] Quinn JMW, McGee JO’D, Athanasou NA. Cellular and hormonal factors influencing monocyte differentiation in osteoclastic bone-resorbing cells[J]. Endocrinology, 1994, 134: 2416–2423
    [235] Quinn JMW, Sabokbar A, Athanasou NA. Cells of the mononuclear phagocyte series differentiate into osteoclastic lacunar bone-resorbing cells[J]. J Pathol, 1996, 179:106–111
    [236] Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissue: superiority of synovium as a cell source[J]. Arthritis Rheum, 2005, 52: 2521-2529.
    [237] Djouad F, Bony C, H?upl T, UzéG, Lahlou N, Louis-Plence P, et al. Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells[J]. Arthritis Res Ther, 2005, 7: 1304-1315.
    [238] Koga H, Muneta T, Ju Y-J, Nagase T, Nimura A, Mochizuki T, et al. Synovial stem cells are regionally specified according to local microenvironment after implantation for cartilage regeneration[J]. Stem Cell, 2007, 25:689-696.
    [239] Fan, JB, Varshney, RR, Ren, L, Cai, DZ, Wang, DA. Synovium-Derived Mesenchymal Stem Cells: A New Cell Source for Musculoskeletal Regeneration[J]. Tissue Eng B in press. ,
    [240] Fisher JE, Rogers MJ, Halasy JM, et al. Alendronate mechanism of action:geranylgeraniol, an intermediate in the mevalionate pathway, prevents inhibition of osteoclasts formation, bone resorption, and kinase activation in vitro[J]. Proc Natl Acad Sci, 1999; 96: 133-139.
    [241] Kavanagh KL, Guo K, Dunford JE, et al. The molecular mechanism oif nitrogen-containing bisphophonates as antiosteoporosis drugs. Proc Natl Acad Sci, 2006, 103: 7829-7834.
    [242] Gun-II I, Sheeraz AQ, Jennifer K, Harry ER, Arun SS. Osteoblast proliferation and maturation by bisphosphonates[J]. Biomaterials, 2004, 25: 4105-4115.
    [243] von Konch F, Jaquiery C, Kowalsky M, Schaeren S, Alabre C, Martin I, et al. Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells[J]. Biomaterials, 2005, 26: 6941-6949.
    [244] Shi X, Wang Y, Ren L, Gong Y, Wang D-A. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications[J]. Pharm Res, 2009, 26: 442-430.
    [245] Yokoyama A, Sekiya I, Miyazaki K, et al. In vitro cartilage formation of composites of synovium-derived mesenchymal stem cells with collagen gel[J]. Cell Tissue Res, 2005, 322: 289-298.
    [246] De Bari C, Dell’Accio F, Karystinou A, et al. Biomarker-based mathematical model to predict bone-forming potency of human synovial and periosteal mesenchymal stem cells[J]. Arthritis Rheum, 2008, 58: 240-250.
    [247] Harada SI, Rodan GA. Control of osteoblast function and regulation of bone mass[J]. Nature, 2003, 423: 349-355.
    [248] Meyer U, Wiesmann HP. Bone and cartilage engineering[M]. Heidelberg: Springer, 2006, 7-43
    [249] Fleisch H. Bisphosphonates: mechanisms of action[J]. Endocr Rev, 1998, 19(1): 80–100
    [250] Russell RG, Rogers MJ. Bisphosphonates: from the laboratory to the clinic and back again[J]. Bone, 1999, 25: 97–106.
    [251] Nerem RM, Sambanis A. Tissue Engineering: From Biology to Biological Substitutes[J]. Tissue Eng, 1995, 1: 3-13.
    [252] Service RF. Tissue engineers build new bone[J]. Science, 2000, 289: 1498-500.
    [253] Langer R, Vacanti JP. Tissue engineering[J]. Science, 1993,260: 920-926.
    [254] Elaine EYL, Kandel RR, Stanford WL. Application of stem cells in bone repair[J]. Skeletal Radiol, 2008, 37: 601-8.
    [255] Steffens L, Wenger A, Bj?rn Stark G, Finkenzelller G. In vivo engineering of a human vasculature for bone tissue engineering applications[J]. J Cell Mol Med. doi.10.1111/j.1582-4934.2008.00418.x.
    [256] Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering[J]. Adv Drug Deliver Rev, 2008, 60: 229-42.
    [257] Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease[J]. Nature, 2008, 8: 726-36.
    [258] Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells[J]. Adv Drug Deliver Rev, 2008, 60: 199-214.
    [259] Allori AC, Sailon AM, Warren SM. Biological basis of bone formation, remodeling, and repair-part I: Biochemical signaling molecules[J]. Tissue Eng, 2008, 14: 259-73,.
    [260] Nuttelman CR, Tripodi MC, Anseth KS. Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs[J]. J Biomed Mater Res, 2006, 76A: 183-95.
    [261] Akavia UD, Shur I, Rechavi G, Benayahu D. Transcriptional profiling of mesenchymal stromal cells from young and old rats in response to dexamethasone[J]. BMC Genomics, 2006, 7: 95-108.
    [262] Bear M, Butcher M, Shaughnessy SG. Oxidized low-density lipoprotein acts synergistically withβ-glycerophosphate to induce osteoblast differentiation in primary cultures of vascular smooth muscle cells[J]. J Cellular Biochem, 2008, 105: 183-93.
    [263] Anurag G, Tai LD, Fen BH, et al. Osteo-maturation of adipose-derived stem cells required the combined action of vitamin D3,β-glycerophosphate, and ascorbic acid[J]. Biochem Biophy Res Commun. 2007, 362:17-24.
    [264] Takamizawa S, Maehata Y, Imai K, et al. Effects of ascorbic acid and acid 2-phosphate, a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells[J]. Cell Biol Int, 2004, 28: 255-65.
    [265] Kim H, Suh H, Jo SA, Kim HW, et al. In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate[J]. Biochem Biophy Res Commun. 2005, 332: 1053-60.
    [266] Oliveira JM, Sousa RA, Kotobuki N, et al. The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles[J]. Biomaterials, 2009, 30: 804-13.
    [267] Wang Y, Shi X, Ren L, et al. Porous poly(lactic-co-glycolide) microsphere sintered scaffolds for tissue repair appilications[J]. Mater Sci Eng C, 2009, 29:2502-2507.
    [268] Shi X, Wang Y, Ren L, et al. A novel hydrophilic poly(lactide-co-glycolide)/lecithin hybrid microspheres sintered scaffold for bone repair[J]. J Biomed Mater Res. A doi: 10.1002/jbm.a.32423.
    [269] Kofron MD, Griswold A, Kumar SG, et al. The implications of polymer selection in regenerative medicine: a comparison of amorphous and semi-crystalline polymer for tissue regeneration[J]. Adv Funct Mater, 2009, 19: 1-9.
    [270] Walsh S, Jordan GR, Jefferiss C, et al. High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro:Relevance to glucocorticoid-induced osteoporosis[J]. Rheumatology, 2001, 40: 74-83.
    [271] ter Brugge PJ, Jansen JA. In vitro osteogenic differentiation of rat bone marrow cells subcultured with and without dexamethasone[J]. Tissue Eng, 2002, 8: 321-31.
    [272] Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, cultured-expanded human mesenchymal stem cells in vitro[J]. J Cell Biochem, 1997, 64: 295-312.
    [273] Kim H, Kim HW, Suh H. Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells[J]. Biomaterials, 2003, 24: 4671-79.
    [274] Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: Reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular[J].
    .[275]瞿中和.细胞生物学[M].北京:高等教育出版社2007,469-480.
    [276] Zhang JY, Doll BA, Beckman EJ, et al. Three dimensional biocompatible ascorbic acid-containing scaffold for bone tissue engineering[J]. Tissue Eng. 2003; 9: 1143-57.
    [277] Blumberg P, Brenner R, Budny S, et al. Increased turnover of small proteoglycans synthesized by human osteoblasts during cultivation with ascorbate andβ-Glycerophosphate[J]. Calcif Tissue Int,1997, 60: 554-60
    [278] Fratzl-Zelman, N, Fratzl P, H?randner H, et al. Matrix mineralization in MC3T3-E1 cell cultures initiated byβ-Glycerophosphate pulse[J]. Bone, 1998, 23: 511-20.
    [279] Griffith LG, Naughton G. Tissue Engineering-Current challenges and expanding opportunities[J]. Science, 2002, 295:1009-1014.
    [280] Hock H, Orkin SH. Stem Cell: the road not taken[J]. Nature, 2005, 435:573-575.
    [281] Kneser U, Schaefer DJ, Polykandriotis E, et al. Tissue engineering of bone: The reconstructive surgeon’s point of view[J]. J Cell Mol Med, 2006, 10: 7-19
    [282] Jo I, Lee JM, Suh H, Kim H. Bone tissue engineering using marrow stromal cells[J]. Biotechnol Bioproc E, 2007, 12: 48-53
    [283] Jadlowiec JA, Celil AB, Hollomger JO. Bone tissue engineering: Recent advances and promising therapeutic agents[J]. Expert Opin Biol Th, 2003, 3: 409-423.
    [284] Bianco P, Robey PG. Stem cells in tissue engineering[J]. Nature, 2001,414:118-121.
    [285] Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease[J]. Nat Rev Immunol, 2008, 8: 726-736.
    [286] Shi X, Wang Y, Varshney RR, et al. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cell in vitro[J]. Eur J Pharm Sci, 2010, 29: 59-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700