用户名: 密码: 验证码:
热挤压Mg-Mn-RE合金的组织、力学性能及耐蚀性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg-Mn合金具有良好的抗腐蚀性能,是非常有应用前景的工程材料,但由于强度较低,限制了其在受力结构件上的应用。本文以Mg-Mn合金为基体材料,通过Y、Nd稀土元素合金化的方法,制备了六种新型Mg-Mn-RE挤压变形镁合金。采用体积比为1:99的SF6与COB2B的混合气体保护下的电阻炉熔炼方法,在通水冷却的圆柱锭模中浇铸成直径为88mm的圆棒,经520°C固溶处理后,车削加工成直径82mm的光滑圆棒,然后在630吨的挤压机上挤压成直径20mm的小圆棒,用线切割机制备了相关检测样品;采用扫描电镜、透射电镜、X-射线衍射仪及材料力学试验机等实验设备,系统地研究了Mg-Mn-RE挤压镁合金在不同应变速率及不同温度下的相组成、微观组织、常规性能及拉伸变形行为的变化规律及机理;采用盐雾腐蚀实验、极化分析和交流阻抗谱等实验方法,研究了Mg-Mn-RE挤压镁合金的腐蚀机理、与材料腐蚀相关的关键性问题(腐蚀速率及影响因素)和Mg-Mn-RE挤压镁合金在不同条件下的腐蚀特性。取得了如下创新性成果:
     1.发现了单一稀土元素Y对Mg-Mn体系挤压合金的微观结构和拉伸行为的影响规律和作用机理。即Y元素具有显著的细化晶粒作用,随Y含量从1%增加到5%,Mg-Mn系挤压合金的平均晶粒尺寸从T~10μm减少到~3μm;T随Y元素含量的增加,Mg-Mn合金的拉伸强度提高,延伸率降低,主要是织构对Mg-Mn系合金的断裂模式与延展性的作用结果:Mg-Mn-1Y中的织构T类型T为T晶粒的(T1011T)T晶面T垂直于挤压方向,有利于提高合金的塑性,拉伸断口为微孔聚集型断裂;TMg-Mn-5Y合金中的织构类型为晶粒的(T1010T)晶面平行于挤压方向导致其拉伸断裂方式为解理断裂,表现出高的屈服强度和较差的塑性。
     2.找出了稀土元素Y和Nd对Mg-Mn系挤压合金的微观组织和拉伸行为的影响规律及作用机理:Y为Mg-Mn系挤压合金的强化元素,Nd为Mg-Mn系挤压合金的韧化元素的同时还能提高材料的高温强度,Y和Nd共同作用可提高Mg-Mn系挤压合金的综合机械性能。这种明显差异主要是由于Y和Nd的不同配比使Mg-Mn系合金的变形滑移面、Mg24Y5析出相的数量发生改变引起的。Mg-Mn-3.5Y合金的拉断口形貌为解理断裂,而Mg-Mn-Y-2.5Nd合金断口上有细小的韧窝存在,韧性断裂机制起作用,Nd元素的加入可显著增加Mg-Mn系合金的塑性。
     3.研究了Nd元素的含量对Mg-Mn-2Y系合金的微观组织和力学性能的影响变化规律。微观组织观察表明,Mg-Mn-2Y-2Nd合金中发生了明显的再结晶,再结晶晶粒尺寸变大,同时形成粗大的Mg12Nd相和细小的Mg24Y5相;拉伸结果显示,在室温条件下,Mg-Mn-2Y-2Nd合金的屈服强度和拉伸强度较高,延伸率较低。而在100°C和200°C情况下,Mg-Mn-2Y-2Nd合金的强度和延伸率均较高。
     4.研究了稀土元素Y和Nd的加入对Mg-Mn系合金的腐蚀行为的影响规律并探讨了其电化学腐蚀机理。极化曲线、电化学交流阻抗谱及盐雾腐蚀实验结果表明,随Y含量的增加,Mg-Mn合金的腐蚀倾向减弱,腐蚀速率降低。而Nd的加入却使Mg-Mn系合金的抗腐蚀性能降低。
Mg-Mn alloys are kind of the metallic materials, which have the good corrosion resisitance properties. However, the further development of magnesium alloys has been limited due to its low mechanical performance. Therefore, the research on developing new-type magnesium alloys with high strength and perfect corrosion resistance is one of the hotspot in the research field of magnesium alloys. Basing on Rare earth (RE) alloying method, the six kinds of Mg-Mn-RE alloys were developed by adding Y and Nd element into extruded Mg-Mn alloy. The alloys were prepared by conventional casting method from high purity 99.9% Mg, Mg-9.9%Mn, and Mg-21.5%Y alloy under a shielding gas of COB2B-0.05%SFB6B. The melts were poured into a steel die with the diameter of 80mm at 750°C. The determination of the phases in the investigated alloys was carried out by energy-dispersive spectroscopy and X-ray diffractmeter. The MTS, SEM and TEM were used for the deformational behavior and mechanical properties. The corrosion properties and effect factors of the Mg-Mn-RE alloys in different corrosive mediums were studied by atlas electric devices, potentiodymatic polarization curve and electrochemical impedance spectra. The innovative results have been obtained as follows:
     First, the effect of Y element on the microstructure and mechanical properties of extruded Mg-1Mn alloy are studied. The results show that Y element is beneficial for the grain refinement of the Mg-1Mn-5Y alloys. The average grain size of the Mg-1Mn-5Y alloys is finer than that of Mg-1Mn-1Y alloy. As a result, Mg-1Mn-5Y alloy exhibits higher tensile strengths, but lower elongation rate by comparing with Mg-1Mn-1Y alloy in a temperature range from room temperature to 300°C. Furthermore, the fracture surface analyses show that the Mg-1Mn-5Y alloy fractures by the cleavage mode, while that of the Mg-1Mn-1Y alloy by the dimple mode. The results demonstrate that the texture type is an important factor influencing the fracture mode and the ductility of Mg-1Mn-1Y and Mg-1Mn-5Y alloys. The experimental results show that the most T(T1010T)T crystal planes in the Mg-1Mn-1Y alloy are parallel to the normal direction, while the most (T1011T)T crystal planes in the Mg-1Mn-1Y alloy are parallel to the normal direction.
     Secondly, the effect of earth element Y and Nd on the microstructure and mechanical properties of extruded Mg-Mn alloy are studied. Y element can improve the strength of Mg-Mn alloy, and Nd element can enhance the toughness as well as the strength in high temperature condition of Mg-Mn alloy. The collective effects of Y and e Nd elements on the overall performances of Mg-Mn alloy is more singnificant than effect of signel Y lement. The Mg-1Mn-3.5Y and Mg-1Mn-1Y-2.5Nd alloys, which contain the same weight percentage of rare earth elements. The tensile tests at room temperature, 100°C and 200°C show that the extruded Mg-1Mn-3.5Y alloy exhibits lower yield strength andr elongation rate to failure as compared with the extruded Mg-1Mn-1Y-2.5Nd alloy. These differences in tensile mechanical properties between two alloys are mainly attributed to their different slip planes and amount and distribution of Mg24Y5 precipitation phases. The Mg-1Mn-3.5Y alloy shows the cleavage fracture mode, while the fracture surface of Mg-1Mn-1Y-2.5Nd alloy exhibits the some toughnessive dimples.
     Fourthly, the effect of Nd element on the microstructure and mechanical properties of extruded Mg-Mn-2Y alloy are studied. The obvious recrystallization occurred in the Mg-2Y-1Mn-2Nd alloy leads to the large average grain size as well as a number of Mg12Nd phase particles and fine Mg24Y5 phase particles.Tensile tests showed that the Mg-2Y-1Mn-1Nd alloy exhibits higher yield and ultimate tensile strengths, but lower elongation to failure at room temperature and, in contrast, the Mg-2Y-1Mn-2Nd alloy shows higher strengths and ductility at 100°C and 200°C, respectively. These differences in the tensile mechanical properties between the two alloys arise from the different contributions of the strengthening due to the grain refinement and the precipitation and dispersion strengthening effects generated by the coarse Mg12Nd phase particles and the fine Mg24Y5 phase particles.
     Finally, the effects of Y and Nd elements on the corrosion behaviors and mechanisms of Mg-Mn-Y alloys are studied by observing and analyzing the corrosion behaviors. The results show that the corrosion rate of Mg-Mn-Y is decreasing with increasing Y content. but the Nd elements make Mg-Mn alloy suffer corrosion easily.
引文
[1]何良菊,李培杰.中国镁工业现状与镁合金开发技术[J].铸造技术,2003, 3:161-162.
    [2] Lui Hong Wu, Pang Quan Shi, and Mary Lee. The Present Situation and Development of Magnesium Industry in China [C]. In IMA-53 Program Committee. Japan: Yamaguchi, 1996, 22-23.
    [3]史文方,周昆,王怀国.我国镁合金开发应用现状与展望[C].中国汽车工程学会汽车材料分会第十五届年会论文汇编,2007, 1-2.
    [4]赵志远.镁合金铸件在汽车上的应用[J].特种铸件及有色合金,1990, (6):37-39.
    [5]吉泽升,李德锋,孙荣滨.镁合金压铸技术的发展现状[J].轻合金加工技术,2001, (12): 1-4.
    [6]曹荣昌,何伟,徐水凌等. Mg合金的最新进展及应用前景[J].金属学报,2001, 37(7): 673-385.
    [7]邓云勇,朱江,李立.新型金属材料镁合金的发展前景分析[J].化工技术经济,2002, (8): 9-13.
    [8] Eeiji Ohshimo. Application of Die-cast Magnesium to AVCC [C]. In IMA-53 Program Committee. Japan: Yamaguchi, 1996. 1-16.
    [9]王渠东,曾小勤,吕宜振.高温铸造镁合金的研究及应用[J].材料导报,2000, 14(3): 21-23.
    [10]张诗昌,段汉桥等.镁合金中的夹杂物及检测方法[J].铸造技术,2001, (4): 3-5.
    [11]余琨,黎文献,李松瑞等.含稀土镁合金的研究与开发[J].特种铸造及有色合金,2001, (1): 41-43.
    [12]罗治平,张少卿等.稀土在镁合金溶液中作用的热力学分析[J].中国稀土学报,1995, (2): 119-122.
    [13]王渠东,吕宜振等.稀土在铸造镁合金中的应用[J].特种铸造及有色合金,1999, (1): 40-44.
    [14]唐定骧,孟健,陈云贵等.新型镁稀土合金的研制和应用[J].四川稀土,2003, (2): 14-18.
    [15]张景怀,唐定骧,张洪杰,等.稀土元素在镁合金中的作用及其应用[J].稀有金属,2008, 32(5): 659-665.
    [16] Polmear I J. Light Alloys-Metallurgy of the Light Metals [M]. 3rd edition, Amold, 1995, 5: 153.
    [17] Friedrich H, Schumann S. Research for a new age of magnesium in the automotive industry [J]. Journal of Materials Processing Technology, 2001, 117: 276-281.
    [18]马图哈K H.材料科学与技术丛书-非铁合金的结构与性能[M].北京:科学出版社,1999.
    [19]萨绍茨基E M.稀土金属学[M].莫斯科出版社,1975.
    [20]沙林P E.金属材料中的稀土元素[J].材料工程,1993, (1): 1-5.
    [21]刘先华.稀土固体物理学[M].北京:机械工业出版社,1997.
    [22] Hall EO. The Deformation and Ageing of Mild Steel [J]. Proc Phys Soc B, 1951, 64: 747-753.
    [23] Petch NJ. The Cleavage Strength of Polycrystals [J]. Journal of Iron Steel Industry, 1953, 174: 25-28.
    [24] Wang YX, Zeng XQ, Ding WJ. Efect of A14Ti5B Master Alloy on the Grain Refinement of AZ31 Magnesium Alloy [J]. Scripta Materialia, 2006, 54: 269-273.
    [25] Zhang JH, Niu XD, Qiu X, Liu K, Nan CM, Tang DX, Meng J. Effect of Yttrium-Rich Misch Metal on The Microstructures, Mechanical Properties and Corrosion Behavior of Die Cast AZ91 alloy [J]. Journal of Alloys and Compounds, 2009, 471: 322-330.
    [26] Gao L; Liang SM; Chen RS, et al. HMicrostructure evolution during reheating of extruded Mg-Gd-Y-Zr alloy into semisolid stateH [J]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20(9): 1585-1590.
    [27] Sviderskaya ZA, Padezhnova EM. Izv Akad Nauka SSSR [J]. Met, 1968, 183-190.
    [28] Luo A, Pekguleryuz MO. Cast Magnesium Alloys for Elevated Temperature Applicatioins [J]. Journal of Materials Science, 1994, 29(20): 5259-5271.
    [29] Aune TK, Westengen H, Ruden TJ. The Effect of Varying Aluminum and Rare-Earth Content on The Mechanical Properties of Die Cast Magnesium Alloys [M]. SAE Technical Paper, 1994, 777, 940.
    [30] Yang J, Wang LD, Wang LM, Zhang HJ, Microstructures and Mechanical Properties of the Mg-4.5Zn-xGd (x=0, 2, 3, 5) Alloys [J]. Journal of Alloys and Compounds, 2008, 459: 274-280.
    [31] Kim IJ, Bae DH, Kim DH, Precipitates in a Mg-Zn-Y Alloy Reinforced by an Icosahedral Quasicrystalline Phase [J]. Materials Science and Engineering A, 2003, 359: 313-318.
    [32] Wang J, Meng J, Zhang D P, Tang DX, Effect of Y for Enhanced Age Hardening Response and Mechanical Properties of Mg-Gd-Y-Zr Alloys [J]. Materials Science and Engineering A, 2007, 456: 78-84.
    [33] T.E. Leontix. The properties of sand cast Mg-RE alloys [J]. Trans. AIME, 1949, 191: 257-269.
    [34] R.J.M. Payne, N. Bailey. Improvement of the age hardening properties of MG-RE alloys by addition of Ag [J]. J. Inst. Met, 1959-1960, 88: 417-427.
    [35]张洪杰,孟健,唐定骧.高性能镁-稀土结构材料的研制、开发与应用[J].中国稀土学报,2004, (22): 40-46.
    [36]丁文江等.镁合金科学与技术[M].北京:科学出版社,2007.
    [37]陈振华.耐热镁合金[M].北京:化学工业出版社,2007.
    [38]余强国,等.稀土镁合金的发展、应用及开发[J].稀有金属与硬质合金,2006,3: 36-38.
    [39] Rokhlin LL. Magnesium Alloys Containing Rare earth Metals [M]. London and New York: Taylor & Francis Group, 2003.
    [40] Kamado S, Kitaguchi Y, Harima Y, Kojima Y, Taniikeand S, Nakatsugava I. High Temperature Deformation Characteristics and Forgeability of Mg-Heavy Rare Earth Element-Zr Alloys [J]. Journal of Japan Institute of Light Metals, 1994, 48: 168-173.
    [41] Iwasawa S, Negishi Y, Kamado S, Kojima Y, Ninomiy R, Age Hardening Characteristics and High Temperature Tensile Properties of Mg-Gd and Mg-Dy alloys [J]. Journal of Japan Institute of Light Metals, 1994, 44: 3-8.
    [42] Kamado S, Iwasawa S, Ohuchi K, Kojima Y, Ninomiy R, Age Hardening Characteristics and High Temperature Tensile Properties of Mg-Gd and Mg-Dy Alloys [J]. Journal of Japan Institute of Light Metals, 1994, 42: 727-733.
    [43]郭旭涛,李培杰,熊玉华,刘树勋,曾大本.稀土在铝、镁合金中的应用[J].材料工程,2004,8:60-64.
    [44]特别报道,第63届世界镁业大会备受瞩目[J].中国金属通报,2006,21:1-20.
    [45]孟健,佟国栋,张洪杰等.稀土镁中间合金的研究与应用[C].第63届世界镁业大会暨国际镁协2006年年会论文集,2006:38-47.
    [46] I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock. Microstructural stability and creep of rare-earth containing magnesium alloys [J]. Scripta Materialia, 2003, 48: 1029-1034.
    [47]周海涛,马春江,曾小勤等.变形镁合金材料的研究进展[J].材料导报,2003, 17(11): 16-18.
    [48] Kojima Y. Platform Science and Technology for Advanced Magnesium Alloy [J]. Material Science Forum, 2000, 6: 3-7.
    [49]曾小勤,丁文江,卢晨. Mg-Zn-Al系合金组织和力学性能研究[J].上海交通大学学报,2005,1:212-219.
    [50] Y. Miyahara, Z. Horita, T. G. Langdon. Exceptional super plasticity in an AZ61 magnesium alloy processed by extrusion and ECAP [J]. Materials Science and Engineering A, 2006, 420: 240–244.
    [51]李忠盛,潘复生,张静. AZ31镁合金的研究现状和发展前景[J].金属成形工艺,2004,1:54-57.
    [52] Li, WP; Wang, XM; Zhu, LQ, et al. HFormation mechanism of an aluminium-based chemical conversion coating on AZ91D magnesium alloyH [J]. INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2010, 17(5): 641-647.
    [53] Ben-Hamu, G; Eliezer, D; Shin, KS. HThe Relation Between Microstructure andCorrosion Behavior of New Mg-Al-X Alloys for Transportation ApplicationH [J]. CORROSION, PROCESSES AND ADVANCED MATERIALS IN INDUSTRY, 2010, (95): 43-46.
    [54] Garboggini A, Mcshane HB. Effect of Zn and Si Additions on Structure and Properties of Rapidly Solidified Mg-Al alloys [J]. Materials Science and Technology, 1994, 9: 763-769.
    [55] Wei LY, Development of Microstructure in Cast Mg-Al-RE Al1oys [J]. Materials Science and Technology, 1996, 9: 741-750.
    [56] Unsworth WM, King JF, A New Magnesium Al1oys System [J]. Light Metal Age, 1979, 8: 29-32.
    [57] Srinivasan, A; Pillai, UTS; Pai, BC. HEffects of elemental additions (Si and Sb) on the ageing behavior of AZ91 magnesium alloyH [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (24-25): 6543-6550.
    [58] Polmear I J. Magnesium alloys and application [J]. Mater Sci Tech, 1994, 10: 1-14.
    [59] Maeng DY, Kim T S, Lee JH, Hong SJ, Seo SK, Chun BS. Microstructure and Strength of Rapidly Solidified and Extruded Mg-Zn alloys [J]. Scripta Materialia, 2000, 43(5): 385-389.
    [60] Padezhnova EM, Melnik EV, Miliyevskiy RA, Dobatkina TV, Kinzhibalo VV. Investigation of The Mg-Zn-Y System [J]. Russian Meatl (Engl Transl), 1982, 4: 185.
    [61] Zhang, P; Lindemann, J; Ding, WJ, et al. HEffect of roller burnishing on fatigue properties of the hot-rolled Mg-12Gd-3Y magnesium alloyH [J]. MATERIALS CHEMISTRY AND PHYSICS, 2010, 124 (1): 835-840.
    [62] Miyazaki T, Kaneko J, Sugamata Misrotructures and Properties of Rapidly Solidified Mg-Ca Based Alloys [J]. Materials Science and Engineering A 1994, 181-182: 1410-1414.
    [63] Nair KS, Mittal MC, Rare Earths in Magnesium Alloys [J]. Materials Science Forum, 1998, 30: 89-104.
    [64] Petterson G, Westengen H, Hoier R, Lohne O. Microstructure of A Pressure Die Cast Magnesium-4wt.% Aluminium Alloy Modified with Rare Earth Additions [J]. Materials Science and Engineering A, 1996, 207(1): 115-120.
    [65] Yi S, Park ES, Ok JB, Kim WT, Kim DH. (Icosahedral phase+Mg) Two Phase Microstructures in The Mg-Zn-Y Ternary System [J]. Materials Science and Engineering A, 2001, 300 (1-2): 312-315.
    [66] Yoshida T, Itoh K, Tamura R, Takeuchi S. Plastic Deformation and Hardness in Mg–Zn–(Y, Ho) Icosahedral Quasicrystals [J]. Materials Science and Engineering A, 2000, 294-296: 786-789.
    [67] Zhao DS, Tang YL, Luo ZP, Shen NF, Wang RH, Zhang SQ. The Face-centered Icosahedral Quasicrystalline Phase in Mg-Zn-Y-Zr Alloys [J]. Materials Letters, 1995, 23(4-6): 277-281.
    [68] Luo ZP, Zhang SQ, Tang YL, Zhao DS. On the Stable Quasicrystals in Slowly Cooled Mg-Zn-Y Alloys [J]. Scripta Metallurgica and Materialia, 1995, 32: 1411-1416.
    [69] Luo ZP, Song DY, Zhang SQ, Tang YL, Zhao DS. Effect of Heat-treatment on the Stability of The Quasicrystal in A Mg-Zn-Zr-Y Alloy [J]. Materials Letters, 1994, 21(1): 85-88.
    [70] Tang YL, DS Zhao, Luo ZP, Shen NF, Zhang SQ. On The Chemical Composition Analysis of the Qcosahedral Phase in an Mg-Zn-Y-Zr Ingot [J]. Journal of Alloys and Compounds, 1994, 204(1-2): 17-19.
    [71] Xu DK, Liu L, Xu YB, Han EH, The Micro-mechanism of Fatigue Crack Propagation for a Forged Mg–Zn–Y–Zr Alloy in The Gigacycle Fatigue Regime [J]. Journal of Alloys and Compounds, 2008, 454(1-2): 123-128.
    [72] Yuan GY, Liu Y, Ding WJ, Lu C, Effects of Extrusion on The Microstructure and Mechanical Properties of Mg-Zn-Gd Alloy Reinforced With Quasicrystalline Particles [J]. Materials Science and Engineering A, 2008, 474: 348-354.
    [73] Haferkamp H, Niemeryer M, Boehem R, et al. Development, processing and applications range of magnesiumLithium alloys [J]. Material Science Forum, 2000, 31: 350-351.
    [74] Kamado S, Ashie T, Ohshima Y. Tensile Properties Andformability of Mg-Li grain-refined ECAE process [J]. Mater Sci Forum, 2000, 350-351: 55-62.
    [75]曹富荣,崔建忠,雷方.超轻镁合金的研究历史与发展现状[J].材料工程,1999,9:3-7.
    [76]乐启炽,崔建忠. Mg-Li合金力学性能及拉伸断裂特点[J].材料工程,1997,10:159-162.
    [77]陈振华.变形镁合金[M].北京,化学工业出版社. 2005.
    [78]曾荣昌等. Mg合金的最新发展及应用前景.金属学报[J]. 2001,37,7:673-677.
    [79]北京航空材料研究所,航空材料学[M].上海:上海科学技术出版社,1955.
    [80]王敏,杨振恒.工业用镁合金板材的超塑性能[J].热加工工艺,1995, 5:30-33.
    [81] Buch H' von et al. Development of Mg-Sc-Mn alloys [J]. Materials Science and Engineering A, 1999, 263: 1-7.
    [82] Stulikova et al. Ageing characteristics of Sc rich complex magnesium alloys. In: Proceedings of the Second Israeli International Conference on Magnesium Science & Technology "Magnesium 2000" [C],Dead Sea. Is-rael: 2000: 218.
    [83]范靖亚,康广范. Mg-Y-Mn高性能板材的研究[J].轻合金加工技术,1991,22:45-48
    [84]方西亚,易丹青,王斌等. Mg-Gd-Y-Mn合金挤压及时效过程中的组织与力学性能[J].材料热处理学报,2008,6:108-112.
    [85]黄晓锋,朱凯,曹喜娟. Y对Mg-2%Mn合金显微组织和力学性能的影响[J],材料热处理技术,2008,8:26-27.
    [86]黄晓锋,朱凯,曹喜娟. Nd对Mg-2%Mn合金显微组织和力学性能的影响[J],中国铸造装备与技术,2008,4:20-22.
    [87] G. L. Makar, J. Kruger. Corrosion of magnesium [J]. Int. Mater. Rev., 1993 (38): 138-152.
    [88] Z. Wang. The review of the atmospheric corrosion research on metal materials [J]. General corrosion control, 1995, (4): 1-3.
    [89] M. Pourbaix. Atlas of electrochemical equilibria in aqueous solution [C]. Houston: TX, National Association of Corrosion Engineers, 1974: 141-156.
    [90]李瑛,宋光铃,林海潮,曹楚南.金属镁在腐蚀介质中界面结构特征与负差数效应关系[J].腐蚀科学与防护技术,1999,11(4): 4-10.
    [91] G. Song, A. Atrens, D. ST. John, J. Nairn, Y. Li. The electrochemical corrosion of pure magnesium in 1N NaCl [J]. Corrosion Science, 1997, (39): 855-875.
    [92] K. G. Cowan, J. A. Harrison. The dissolution of magnesium in ClP-P and FP-P containing aquous solution [J]. Electrochem Acta, 1979, (24): 301-308.
    [93] G. G. Perrault. Magnesium. In : A. J. Bard ed. Encyclopedia of Electrochemistry of the Elements [M]. VolⅢ. New York: Marcel Dekker, 1978.
    [94] J. H. Nordlien, S. Ono, N. Masuko, and K.Nisancioglu. HInfluence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloyH [J]. Corrosion Science, 1997, 39(8): 1397-1414.
    [95] G. Song, A. Atrens, M. Dargusch. Influence of microstructure on the corrosion of diecast AZ91D [J], Corrosion Science, 1999, (41): 249-273.
    [96] G. Song, A. Atrens, X. Wu, Z. Bo, B. Zhang. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride [J], Corrosion Science, 1998, (40): 1769-1791.
    [97]朱祖芳.有色金属腐蚀性及其应用[M].北京:化学工业出版社,1995:56-61.
    [98]肖纪美.应力作用下的金属腐蚀[M].北京:化学工业出版社,1990:82-88.
    [99] T. E. Leontis. The properties of sand cast magnesium-rare earth alloys [J]. Trans. AIME, 1949, (185): 968-983.
    [100] I. P. Moreno, T. K. Nandy, J. W. Jones, J. E. Allison, T. M. Pollock. Microstructural characterization of a die-cast magnesium-rare earth alloy [J]. Scripta Materialia, 2001, (45): 1423-1439.
    [101] H. J. McQeen, J. P. Bailon, J. I. Doxkson, J. J. Joans, M. G. Akben. Strength of Metals and Alloys [M]. Oxford: Pergamon Press, 1985: 803-809.
    [102] L. Y. Wei, G. L. Dunlop, H. Westengen. Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys [J]. Metall. Mater. Trans. A, 1995, (26): 1705-1706.
    [103] Qi-chi LE, Zhi-qiang ZHANG, Zhi-wen SHAO, Jian-zhong CUI, Yi XIE. HMicrostructures and mechanical properties of Mg-2%Zn-0.4%RE alloysH [J]. Transactions of Nonferrous Metals Society of China, 2010, 20: 352-356.
    [104] J. M. Costa, A. D. Merce. Progress in the understanding and prevention of corrosion London [J]. The Institute of Materials, 1993: 1249-1254.
    [105] H. Yao, Y. Li, A. T. S. Wee, J. S. Pan, J. W. Chai. Correlation between the corrosion behavior and corrosion films formed on the surfaces of Mg82-xNi18Nd (x=0, 5, 15) amorphous alloys [J]. Applied Surface Science, 2001, (173): 54-61.
    [106] H. Yao, Y. Li, A. T. S. Wee. Passivity behavior of melt-spun Mg-Y alloys. Electrochimica Acta, 2003, (48): 4197-4204.
    [107] F. Rosalbino, E. Angelini, S. D. Negri, A. Saccone, S. Delfino. Effect of erbium addition on the corrosion behaviour of Mg-Al alloys [J]. Intermetallics, 2005, (13): 55-60.
    [108] S. Krishnamurthy, M. Khogaib, E. Robertson. Corrosion behavior of rapidly solidified Mg-Nd and Mg-Y alloys [J]. Mater. Sci. Eng., 1988, (99): 507-511.
    [109] A. Froats, T. K. Aune, W. Unsworth. Corrosion of magnesium and magnesium alloys [M]. Corrosion, Vol13, ASM Handbook, ASM International, 1987: 740-754.
    [110] O. Lunder, M. Videm, K. Niasncioglu. Corrosion resistant magnesium alloys [J]. J.Mater.Manufacturing, 1995, (104): 352-357.
    [111] J. M. Costa, A. D. Mercer. Progress in the understanding and prevention of corrosion [M]. London: The Institute of Materials, 1993: 1249-1254.
    [112] C. Suman. The effects of direct aging on mechanical properties and corrosion resistance of diecast magnesium alloys AZ91D and AM60B [J]. SAE Transactions, 1990, (99): 849-859.
    [113] A. P. Nazarov, A. P. Lisovskii, Mikhailovskii. Formation of MgHB2B on electrochemical dissolution of magnesium in aqueous electrolytes [J], Protection of Metals, 1990, (25): 606-610.
    [114] C. H. Brun, J. Pagetti. Investigation of the corrosion of magnesium in aqueous solutions of 3 wt% sodium chloride at room temperature [J]. Sci. Rev. Metall., 1976, (73): 659-668.
    [115] O. Fruhwirth, G. W. Herzog, I. Hollerer, A. Rachetti. Dissolution and hydration kinetics of MgO [J]. Surf. Technol., 1985, (24): 301-317.
    [116] G. L. Maker, J. J. Kruger. Corrosion studies of rapidly solidified magnesium alloys [J]. Journal of the Electrochemical Society, 1990, (137): 414-421.
    [117] G. L. Song, Corrosion and protection of Magnesium alloys [M]. Beijing: Chemical Industry Press, 2006: 51-56.
    [118] G. Song, A. Atrens, D. ST. John, X. Wu, J. Naurn, The anodic dissolution of magnesium in chloride and sulphate solutions [J]. Corrosion Science, 1997, (39): 1981-2004.
    [119] MORDIKE BL, EBERT T. Magnesium: properties-applications-potential [J]. Materials Science and Engineering A, 2001, 302(11): 37-45.
    [120] OBARA T, YOSHINAGA H, MOROZUMI S. {11-22} <-1-123> Slip system in magnesium [J]. Acta Metall, 1973, 21: 845-853.
    [121] KOIKE J, KOBAYASHI T, MUKAI T, WATANABE H, SUZUKI M, MARUYAMA K, HIGASHI K. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Materialia, 2003, 51: 2055-2065.
    [122] ANTION C, DONNADIEU P, PERRARD F, DESCHAMPS A, TASSIN C. PISCH A. Hardening precipitation in a Mg-5Y-3RE alloy [J]. Acta Materialia, 2003, 51: 5335-5348.
    [123] APPS PJ, KARIMZADEH H, KING JF, LORIMER GW. Precipitation reactions in Magnesium-rare earth alloys containing Yttrium, Gadolinium or Dysprosium [J]. Scripta Materialia, 2003, 48: 1023-1028.
    [124] NIE JF, MUDDLE BC. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy [J]. Acta Materialia, 2000, 48: 1691-1703.
    [125] P. Mengucci. Structure evolution of a WE43 Mg alloy submitted to different thermal treatments [J]. Materials Science and Engineering A, 2008, 479: 37-44.
    [126] SAHA GG, MCCORMICK PG, RAMA RAO P. Portevin-Le chatelier effect in an Al-Mn alloy I: Serration characteristics [J]. Mater. Sci. Eng., 1984, 62: 187-196.
    [127] KING JE, YOU CP, KNOTT JF. Serrated yielding and the localized shear failure mode in aluminium alloys [J]. Acta Metall, 1981, 29: 1553-1566.
    [128] CHATURVEDI MC, LLOYD DJ. Serrated flow in a commercial AA2036 aluminium alloy [J]. Mater. Sci. Eng., 1983, 58: 107-111.
    [129] PING DH, HONO K, NIE JF. Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy [J]. Scripta Materialia, 2003, 48: 1017-1022.
    [130] NIE JF, MUDDLE BC. Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C [J]. Scripta Materialia, 1999, 40: 1089-1094.
    [131] ZHU SM, NIE JF. Serrated flow and tensile properties of a Mg-Y-Nd alloy [J]. Scripta Materialia, 2004, 50: 51-55.
    [132] VON BUCH F, LIETZAU J, MORDIKE BL. Development of Mg-Sc-Mn alloys [J], Materials Science and Engineering A, 1999, 263: 1-7.
    [133] S. Schumann, H. Friedrich. Current and Future Use of Magnesium in the Automobile Industry [J]. Mater. Sci. Forum, 2003, 419: 51-56.
    [134] B. L. Mordike, T. Ebert. Magnesium properties-applications-potential [J]. Mater. Sci. Eng. A, 2001, 302: 37-45.
    [135] P. Cavaliere, P. P. De Marco. HFatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die castingH [J]. Mater. Charact., 2007, 58: 226-232.
    [136] J. L. Wang, J. Yang, Y. M. Wu, H. J. Zhang, L. M. Wang. Microstructures and mechanical properties of as-cast Mg–5Al–0.4Mn–xNd (x=0, 1, 2 and 4) alloys [J]. Mater. Sci. Eng. A, 2008, 472: 332-337.
    [137] Q. M. Peng, Y. M. Wu, D. Q. Fang, J. Meng, L. M. Wang. Microstructures and mechanical properties of Mg-8Gd-0.6Zr-xNd (x=0, 1, 2 and 3 mass%) alloys [J]. J. Mater. Sci., 2007, 42: 3908-3913.
    [138] B. Liu, M. Zhang, R. Wu. HEffects of Nd on microstructure and mechanical properties of as-cast LA141 alloysH [J]. Mater. Sci. Eng. A, 2008, 487: 347-351.
    [139] J. Yang, J. L. Wang, L. D. Wang, Y. M. Wu, L. M. Wang. Microstructure and mechanical properties of Mg–4.5Zn–xNd (x = 0, 1 and 2, wt%) alloys [J]. Mater. Sci. Eng. A, 2008, 479: 339-344.
    [140] Q. M. Peng, J. L. Wang, Y. M. Wu, L. M. Wang. Microstructures and tensileproperties of Mg–8Gd–0.6Zr–xNd–yY (x + y = 3, mass%) alloys [J]. Mater. Sci. Eng. A, 2006, 433: 133-138.
    [141] H. T. Zhou, Z. D. Zhang, C. M. Liu, Q.W. Wang. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy [J]. Mater. Sci. Eng. A, 2007, 445-446: 1-6.
    [142] S. S. Li, B. Tang, D. B. Zeng, HEffect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloyH [J]. J. Alloys Compd., 2007, 427: 115-123.
    [143] P. H. Fu, L. M. Peng, H. Y. Jiang, Z. Y. Zhang, C. Q. Zhai. HFracture behavior and mechanical properties of Mg–4Y–2Nd–1Gd–0.4Zr (wt.%) alloy at room temperatureH [J]. Mater. Sci. Eng. A, 2008, 486: 572-579.
    [144] J. F. Nie, B. C. Muddle. CHARACTERISATION OF STRENGTHENING PRECIPITATE PHASES IN A Mg±Y±Nd ALLOY [J]. Acta Mater., 2000, 48: 1691-1703.
    [145] X. Y. Fang, D. Q. Yi., B. Wang, W. H. Luo, W. Gu. Effect of yttrium on microstructures and mechanical properties of hot rolled AZ61 wrought magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1053-1058.
    [146] S. S. Li, B. Tang, D. B. Zeng, HEffects and mechanism of Ca on refinement of AZ91D alloyH [J]. J. Alloys Compd., 2007, 437: 317-321.
    [147] A. Galiyev, R. Kaibyshev, G. Gottstein. CORRELATION OF PLASTIC DEFORMATION AND DYNAMIC RECRYSTALLIZATION IN MAGNESIUM ALLOY ZK60 [J]. Acta Mater., 2001, 49: 1199-1207.
    [148] C. J. Ma, M. P. Liu, G. H. Wu, W. J. Ding, Y. P. Zhu. Tensile properties of extruded ZK60-/RE alloys [J]. Mater. Sci. Eng. A, 2003, 349: 207-212.
    [149] G. J. Fan, G. Y. Wang, H. Choo, P. K. Liaw, Y. S. Park, B. Q. Han, E.J. Lavernia. Deformation behavior of an ultrafine-grained Al–Mg alloy at different strain rates [J]. Scripta Mater., 2005, 52: 929-933.
    [150] S. M. Zhu, J. F. Nie. Serrated flow and tensile properties of a Mg–Y–Nd alloy [J]. Scripta Mater., 2004, 50: 51-55.
    [151] L. Y. Wei, G. L. Dunlop, H. Westengen. Age hardening and precipitation in acast magnesium-rare-earth alloy [J]. J. Mater. Sci., 1996, 31: 387-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700