用户名: 密码: 验证码:
含复杂界面非均匀材料断裂力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料已经在越来越多的领域中得到应用。尽管人们将许多复合材料设计成宏观上属性连续变化的非均匀材料,但各种复合材料都会或多或少地存在材料界面,尤其是颗粒增强复合材料。颗粒增强材料能够明显改善材料的刚度、强度和耐磨性,但其断裂韧性有时明显地低于基体材料。复合材料的服役环境一般都比较苛刻,断裂破坏是其最常见的失效模式之一。当考察复合材料的断裂性能时,我们不得不面对复合材料内部的材料界面。为此,本文将对复杂界面环境中裂纹的力学行为进行研究。
     第1章首先回顾了颗粒增强复合材料断裂问题的研究现状,接着介绍了扩展有限元方法,最后总结了当前用于求解裂纹尖端断裂参数的数值计算方法,包括求解裂纹尖端的应力强度因子和T应力。由于扩展有限元方法允许裂纹面或材料界面独立于有限元网格,所以该方法可以方便地求解含复杂界面材料的静态断裂问题和裂纹扩展问题。然而,当裂纹尖端附近存在复杂的材料界面时,目前却没有一种方法能够方便、准确地提取裂纹尖端的断裂参数。因此,本文的研究目的是给出一个在裂纹尖端附近存在复杂材料界面情况下能够容易提取裂纹尖端断裂参数的方法。
     第2章推导了用于求解裂纹尖端应力强度因子的相互作用积分,得到了一个新的区域积分表达式。相互作用积分基于一个包含两个相容力学场(真实场和辅助场)的守恒积分。我们对相互作用积分做了两项改进:第一,通过定义一个恰当的辅助场,可以发现相互作用积分中的材料导数项消失了。第二,证明了积分区域内的材料界面并不影响相互作用积分的有效性。因此,本章得到的相互作用积分可以方便地求解属性连续或不连续变化的材料内部裂纹尖端的应力强度因子。将相互作用积分方法与扩展有限元方法相结合,求解了一些典型断裂问题,很好地验证了相互作用积分的有效性和区域无关性。然后,通过选择四种材料属性来考察材料连续性对混合型应力强度因子的影响。数值结果显示,材料属性及其一阶导数的连续性对I型和II型应力强度因子影响很大,而材料属性的高阶导数对应力强度因子的影响不大。
     实际上,裂纹可能在单一材料中扩展,也可能沿材料界面向前扩展。因此,第3章考察了界面裂纹问题。首先,求解了两个非均匀材料界面间的界面裂纹尖端应力奇异性。然后,推导了求解界面裂纹尖端应力强度因子的相互作用积分。与第2章中的相互作用积分相似,本章得到的相互作用积分的区域积分形式也不含有材料导数,并且也不受积分区域内部其它材料界面的影响。因此,本章得到的相互作用积分可以求解含复杂界面的材料内部界面裂纹尖端的应力强度因子。结合扩展有限元法,验证了相互作用积分方法的可靠性和积分区域无关性。最后,我们考察了几个典型的非均匀材料的界面断裂问题。
     与二维断裂问题相比,三维断裂问题无疑更具有工程实际意义。第4章考察了用于求解三维曲线裂纹前沿应力强度因子的相互作用积分方法,导出了一个不含有材料属性导数项的三维区域积分表达式,该表达式也允许积分区域内部的材料属性不连续。将其与有限元法结合计算了典型的三维断裂问题,将结果与已发表文章对比,两者吻合很好,这说明相互作用积分方法能够有效求解三维裂纹尖端的应力强度因子。相互作用积分的区域无关性在算例中也得到了很好的验证。
     除了应力强度因子之外,T应力也是一个重要的断裂控制参数。为此,第5章通过选择作用于裂纹尖端的集中力所引起的力学场作为辅助场,获得了求解裂纹尖端T应力的相互作用积分。它与求解裂纹尖端应力强度因子的相互作用积分相同,也具有积分不含材料导数项和不要求积分区域内材料属性连续的优点。接着,我们对相互作用积分求解T应力的可行性给出了严格证明。通过计算典型的断裂问题,相互作用积分求解T应力的有效性和区域无关性得到了数值验证。最后,我们考察了材料连续性对裂纹尖端T应力的影响。结果显示,材料属性及其一阶导数的连续性对T应力影响非常大,而其高阶导数的连续性对T应力无明显影响。
Composite materials have been applied in more and more fields. Although composite materials have been designed with continuous and nonhomogeneous properties in macro scale, there are more or less material interfaces in various composite materials, especially, in particle reinforced composite materials (PRCMs). It is often found that although PRCMs can significantly improve the strength, stiffness and wear resistance of materials, the fracture toughness is significantly lower than that of the matrix material. Since composite materials are usually used in severe conditions, fracture is one of the most common failure modes. The material interfaces have to be taken into account when the fracture performance of these composites is concerned. Therefore, the mechanical behaviors of a crack in the environment containing complex interfaces are investigated in this thesis.
     In Chapter 1, the fracture problems of PRCMs are reviewed firstly. Then, the extended finite element method (XFEM) is introduced. Finally, the numerical methods are described for extracting fracture parameters, including the stress intensity factors (SIFs) and the T-stress. Since the XFEM allows cracks or material interfaces to be independent of the mesh, it can be used to deal with static crack problems and crack propagation problems of the materials with complex interfaces conveniently. However, up to the present day, there is no method which can not extract fracture parameters exactly and conveniently for the crack surrounded by complex interfaces. Accordingly, the aim of this article is to develop a method for extracting the fracture parameters easily when the crack tips lie in the vicinity of complex interfaces.
     In Chapter 2, a new domain expression of the interaction integral is derived for the computation of mixed-mode SIFs. This method is based on a conservation integral that relies on two admissible mechanical states (actual and auxiliary fields). Two improvements are provided for the interaction integral. First, by a suitable definition of the auxiliary fields, it is found that in the interaction integral, the terms related to the derivatives of material properties vanish. Second, we provide the proof that the formulation is still valid even when the integral domain contains material interfaces. Therefore, the interaction integral derived here can be used to solve the SIFs of a crack in nonhomogeneous materials with continuous or discontinuous properties. The interaction integral method combined with the XFEM is used to solve several representative fracture problems to verify the validation and domain-independence of the interaction integral. Then, the influences of material continuity on the mixed-mode SIFs are investigated by selecting four types of material properties. Numerical results show that the mechanical properties and their first-order derivatives affect mode I and II SIFs greatly, while the higher-order derivatives affect the SIFs slightly.
     In practice, a crack may grow in one material or along the material interface. Therefore, in Chapter 3, the interface crack problems are investigated. At the beginning of Chapter 3, the stress singularity of the interface crack between two nonhomogeneous materials is solved. Then, an interaction integral is derived for obtaining mixed-mode SIFs of an interface crack. Similarly to the expression in Chapter 2, the domain integral form of the interaction integral does not contain any derivatives of material properties and is valid when there are other material interfaces in the integral domain. Thus, the derived formulation can be applied to deal with interfacial fracture problems of the materials with complex interfaces. The interaction integral combined with the XFEM is employed to solve some fracture problems and the results show that the method is very reliable and domain-independent. Finally, several representative examples of complicated interface crack problems between nonhomogeneous materials are considered.
     There is no doubt that three-dimensional (3D) fracture problems are more significant in engineering fields compared with two-dimensional (2D) crack problems. In Chapter 4, the interaction integral for solving mixed-mode SIFs along a 3D curved crack front is discussed. A new 3D domain formulation without containing any derivatives of material properties is obtained. The interaction integral is still valid when the material properties in the integral domain are discontinuous. This method in conjunction with the finite element method (FEM) is employed to solve several representative 3D fracture problems. According to the comparison between the results and those from the published lectures, good agreement demonstrates the validation of the interaction integral. The domain-independence of the interaction integral is also shown in the results.
     Except for the SIFs, the T-stress is also an important fracture parameter. Therefore, in Chapter 5, the method for extracting the T-stress is described. Selecting the auxiliary field which is caused by a centralized force at the crack tip, we derived a new domain expression of the interaction integral for the computation of the T-stress. The interaction integral for extracting the T-stress has the same advantage as that for solving the SIFs, i.e., the interaction integral does not contain the terms related to the derivatives of material properties and does not require the material properties in the integral domain to be continuous. Then, the feasibility to use the interaction integral to extract the T-stress is proved rigorously. The interaction integral shows good validation and domain-independence by solving several representative fracture problems. Finally, the influences of material continuity on the T-stress are investigated. It can be found that the mechanical properties and their first-order derivatives affect the T-stress greatly, while the higher-order derivatives affect the T-stress slightly.
引文
1沈观林,胡更开.复合材料力学.清华大学出版社. 2006: 3-5
    2王自强,陈少华.高等断裂力学.科学出版社. 2009: 1-4
    3 Z.Z. Chen and K. Tokaji. Effects of particle size on fatigue crack initiation and small crack growth in SiC particulate-reinforced aluminium alloy composites. Materials Letters. 2004, 58: 2314-2321
    4 A. Pirondi and L. Collini. Analysis of crack propagation resistance of Al-Al2O3 particulate-reinforced composite friction stir welded butt joints. International Journal of Fatigue. 2009, 31: 111-121
    5 B. Roebuck and J.D. Lord. Plane strain fracture toughness test procedures for particulate metal matrix composites. Journal of Materials Science and Technology. 1990, 6: 1199-1209
    6 J.W. Leggoe, X.Z. Hu and M.B. Bush. Crack tip damage development and crack growth resistance in particulate reinforced metal matrix composites. Engineering Fracture Mechanics. 1996, 53(6): 873-895
    7 P. Mummery and B. Derby. The influence of microstructure on the fracture behaviour of particulate metal matrix composites. Materials Science and Engineering A. 1991, 135: 221-224
    8 D.J. Lloyd. Aspects of fracture in particulate reinforced metal matrix composites. Acta Materialia. 1991, 39: 59-71
    9 T.J. Downes and J.E. King. The effect of microstructure on the fracture toughness of a metal-matrix composite. Composites. 1993, 24: 276-281
    10 S.B. Wu and R.J. Arsenault. The fracture mode in SiC-Al composites. Materials Science and Engineering A. 1991, 138: 227-235
    11 M. Manoharan and J.J. Lewandowski. In situ Scanning electron microscope studies of crack growth in an aluminium metal-matrix composite. Scripta Metallurgica et Materialia. 1990, 24: 2357-2362
    12 D.L. Davidson. Fracture characteristics of Al-4 pet Mg mechanically alloyed with SiC. Metallurgical and Materials Transactions A. 1987, 18: 2115-2128
    13 D.L. Davidson. Tensle deformation and fracture toughness of 2014+15 pet SiC particulate composite. Metallurgical and Materials Transactions A. 1991, 22: 113-123
    14 S. Kumai, J. Hu, Y. Higo and S. Numomura. Effects of denfrite cell size and particle distribution on the near-threshold fatigue crack growth behaviour of cast Al-SiCp composites. Acta Materialia. 1996, 44(6): 2249-2257
    15 J.J. Mason and R.O. Ritchie. Fatigue crack growth resistance in SiC particulate and whisker reinforced P/M 2124 aluminum matrix composites. Materials Science and Engineering A. 1997, 231: 170-182
    16 L. Wang, M. Niinomi, S. Takahashi, M. Hagiwara, S. Emura, Y. Kawabei and S.J. Kim. Relationship between fracture toughness and microstructure of Ti–6Al–2Sn–4Zr–2Mo alloy reinforced with TiB particles. Materials Science and Engineering A. 1999, 263: 319–325
    17 S.E. Stanzl-Tschegg and H. Mayer. Fatigue and fatigue crack growth of aluminium alloys at very high numbers of cycles. International Journal of Fatigue. 2001, 23: S231–S237
    18 H.Z. Ding, O. Hartmann, H. Biermann and H. Mughrabi. Modelling low-cycle fatigue life of particulate-reinforced metal-matrix composites. Materials Science and Engineering A. 2002, 333: 295–305
    19 S. Skolianos. Mechanical behavior of cast SiCp-reinforced Al-4.5% Cu-1.5% Mg alloy. Materials Science and Engineering A. 1996, 210: 76-82
    20 N. Chawla, C. Andres, J.W. Jones and J.E. Allison. Cyclic Stress-Strain Behavior of Particle Reinforced Metal Matrix Composites. Scripta Materialia. 1998, 38(10): 1595-1600
    21 N. Chawla and V.V. Ganesh. Fatigue crack growth of SiC particle reinforced metal matrix composites. International Journal of Fatigue. 2010, 32: 856-863
    22 S. Kitaoka and Y. Ono. The effect of second principal stress on the fatigue propagation of mode I surface crack in Al2O3/Al alloy composites. International Journal of Fatigue. 2003, 25:1347-1355
    23 Y.C. Zhou, S.G. Long and Y.W. Liu. Thermal failure mechanism and failure threshold of SiC particle reinforced metal matrix composites induced by laser beam. Mechanics of Materials. 2003, 35: 1003-1020
    24 M.B. Bush. The interaction between a crack and a particle cluster. International Journal of Fracture. 1997, 88: 215-232
    25 Y. Liu and N. Xu. Modeling of interface cracks in fiber-reinforced composites with the presence of interphases using the boundary element method. Mechanics of Materials. 2000, 32: 769–783
    26 E. Ergun, K. Aslantas and S. Tasgetiren. Effect of crack position on stress intensity fator in particle-reinforced metal-matrix composites. Mechanics Research Communications. 2008, 35: 209-218
    27 M.S. Bruzzi and P.E. McHugh. Methodology for modelling the small crack fatigue behaviour of aluminium alloys. International Journal of Fatigue. 2002, 24(10): 1071-1078
    28 M.S. Bruzzi and P.E. McHugh. Application of closure based fatigue modellingmethodology to Al–SiC MMCs. International Journal of Fatigue. 2003, 25(7): 577-584
    29 M.S. Bruzzi and P.E. McHugh. Micromechanical investigation of the fatigue crack growth behavior of Al-SiC MMCs. International Journal of Fatigue. 2004, 26: 795-804
    30 A. Ayyar and N. Chawla. Microstructure-based modeling of crack growth in particle reinforced composites. Composites Science and Technology. 2006, 66: 1980-1994
    31 A. Ayyar and N. Chawla. Microstructure-based modeling of the influence of particle spatial distribution and fracture on crack growth in particle-reinforced composites. Acta Materialia. 2007, 55: 6064-6073
    32 R. Krueger. Virtual crack closure technique: History, approach and applications. Applied Mechanics Reviews. 2004, 57: 109-143
    33 T.M. Mower and A.S. Argon. Experimental investigations of crack trapping in brittle heterogeneous solids. Mechanics of Materials. 1995, 19: 343-364
    34 P. Lipetzky and Z. Knest. Crack-particle interaction in a two-phase composite 2: Crack deflection. International Journal of Fracture. 1995, 73(1): 81-92
    35 K. Saito, S. Araki and T. Nakamura. Stereological modeling and micromechanical analysis of rubber particle-reinforce epoxy composite materials. Mechanics of Composite Materials. 1996, 32(3): 217-226
    36 K. Tohgo, K. Fukuhara and A. Hadano. The influence of debonding damage on fracture toughness and crack-tip field in glass-particle-reinforced Nylon 66 composites. Composites Science and Technology. 2001, 61: 1005-1016
    37 M. Kotoul and J. Vrbka. Crack bridging and trapping mechanisms used to toughen brittle matrix composite. Theoretical and Applied Fracture Mechanics. 2003, 40: 23-44
    38 M. Kotoul and I. Dlouhy. Metal particles constraint in glass matrix composites and its impact on fracture toughness enhancement. Materials Science and Engineering A. 2004, 387-389: 404-408
    39 R. Kitey and H.V. Tippur. Dynamic crack growth in particulate bimaterials having discrete and diffuse interfaces: Role of microstructure. Engineering Fracture Mechanics. 2005, 72: 2721-2743
    40 V. Cannillo, C. Leonelli, T. Manfredini, M. Montorsi, P. Veronesi, E.J. Minay and A.R. Boccaccini. Mechanical performance and fracture behaviour of glass-matrix composites reinforced with molybdenum particles. Composites Science and Technology. 2005, 65: 1276-1283
    41 S.C. Zunjarrao and R.P. Singh. Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles.Composites Science and Technology. 2006, 66: 2296-2305
    42 J.C. Lin. Investigation of impact behavior of various silica-reinforced polymeric matrix nanocomposites. Composite Structures. 2008, 84: 125-131
    43 S.Y. Fu, X.Q. Feng, B. Lauke and Y.W. Mai. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-ploymer composites. Composites Part B-Engineering. 2008, 39(6): 933-961
    44 B.C. Kim, S.W. Park and D.G. Lee. Fracture toughness of the nano-particle reinforced epoxy composite. Composite Structures. 2008, 86(1-3): 69-77
    45 F.C. Zhang, H.H. Luo, T.S. Wang, M. Zhang and Y.N. Sun. Stress state and fracture behavior of alumina-mullite intragranular particulate composites. Composites Science and Technology. 2008, 3245-3250
    46 K. Legorju-jago and C. Bathias. Fatigue initiation and propagation in natural and synthetic rubbers. International Journal of Fatigue. 2002, 24: 85–92
    47 B.N. Kim, M. Watanabe, M. Enoki and T. Kishi. Simulation of Fracture behavior in particle-dispersed ceramic composites. Engineering Fracture Mechanics. 1998, 59(3): 289-303
    48 M.O. Nandy, S. Schmauder, B.N. Kim, M. Watanabe and T. Kishi. Simulation of Crack Propagation in Alumina Particle-dispered SiC Composites. Journal of the European Ceramic Society. 1999, 19: 329-334
    49 N. Chawla, B.V. Patel, M. Koopman, K.K. Chawla, R. Saha, B.R. Patterson, E.R. Fuller and S.A. Langer. Microstructure-based simulation of thermomechanical behavior of composite materials by object-oriented finite element analysis. Materials Characterization. 2003, 49: 395-407
    50 H.K. Lee and D.K. Shin. A computational investigation of crack evolution and interactions of microcracks and particles in particle-reinforced brittle composites. Composite Structures. 2004, 64: 419-431
    51 J. Segurado and J. LLorca. A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites. Acta Materialia. 2005, 53: 4931-4942
    52 G.D. Seidel, D.H. Allen, K.L.E. Helms and S.E. Groves. A model for predicting the evolution of damage in viscoelastic particle-reinforced composites. Mechanics of Materials. 2005, 37: 163-178
    53 Y.W. Bao, C.C. Liu and J.L. Huang. Effects of residual stresses on strength and toughness of particle-reinforced TiN/Si3N4 composite: Theoretical investigation and FEM simulation. Materials Science and Engineering A. 2006, 434: 250-258
    54 G. Cusatis and L. Cedolin. Two-scale study of concrete fracturing behavior. Engineering Fracture Mechanics. 2007, 74: 3~17
    55 W.H. Wang, K. Sadeghipour and G. Baran. Finite element analysis of the effect of an interphase on toughening of a particle-reinforced polymer composite. Composites Part A. 2008, 39: 956-964
    56 A. Carpinteri, B. Chiaia and P. Cornetti. On the mechanics of quasi-brittle materials with a fractal microstructure. Engineering Fracture Mechanics. 2003, 70: 2321~2349
    57 M. Koizumi. FGM Activities in Japan. Composites Part B. 1997, 28: 1-4
    58陈健.功能梯度材料及结构的断裂力学研究.哈尔滨工业大学博士学位论文. 2000: 4-99
    59金鑫. ZrO2/NiCr功能梯度材料的断裂行为研究.哈尔滨工业大学博士学位论文. 2009: 33-34
    60 S. Rahman and A. Chakraborty. A stochastic micromechanical model for elastic properties of functionally graded materials. Mechanics of Materials. 2007, 39: 548-563
    61 V. Birman and L.W. Byrd. Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews. 2007, 60: 195-216
    62 F. Delale and F. Erdogan. The crack problem for a nonhomogeneous plane. Journal of Applied Mechanics. 1983, 50: 609-614
    63 F. Erdogan. The Crack Problem for Bonded Nonhomogeneous Materials under Antiplane Shear Loading. Journal of Applied Mechanics. 1985, 52: 823-828
    64 F. Delale and F. Erdogan. Interface Crack in a Nonhomogeneous Elastic Medium. International Journal of Engineering Science. 1988, 26(6): 559-568
    65 F. Erdogan and M. Ozturk. Diffusion problem in bonded nonhomogeneous materials with an interface cut. International Journal of Engineering Science. 1992, 30:1507-1523
    66 Z. H. Jin and N. Noda. Crack-Tip Singular Fields in Nonhomogeneous Materials. Journal of Applied Mechanics. 1994, 61: 738-740
    67黄干云,汪越胜,余寿文.功能梯度涂层中的Ⅲ型周期裂纹问题. 2004, 26: 97-99
    68王保林,杜善义,韩杰才.非均匀复合材料反平面裂纹的动态断裂力学研究.复合材料. 1998, 15(4): 119-127
    69果立成.功能梯度材料静态与冲击断裂行为的研究.哈尔滨工业大学博士学位论文. 2004: 113-137
    70 S. Ueda, Y. Shindo. Crack Kingking in Functionally Graded Materials due to an Initial Strain Resulting from Stress Relation. Journal of Thermal Stresses. 2000, 23: 285-290
    71何沛祥,李子然,吴长春.无网格法与有限元法的耦合及其对功能梯度材料断裂计算的应用.中国科学技术大学学报. 2001, 31: 673-680
    72 Y.D. Lee and F. Erdogan. Interface Cracking of FGM Coating under Steady State Heat Flow. Engineering Fracture Mechanics. 1998, 59(3):361-380.
    73 P. R. Marur, H. V. Tippur. Dynamic response of biomaterial and graded interface cracks under impact loading. International Journal of Fracture. 2000, 103: 95-109
    74 L.C. Guo, L.Z. Wu, T. Zeng and L. Ma. Mode I crack problem for a functionally graded orthotropic strip. European Journal of Mechanics A/Solids. 2004, 23: 219-234
    75 L.C. Guo and N. Noda. Modeling method for a crack problem of functionally graded materials with arbitrary properties– piecewise-exponetial model. Interantional Journal of Solids and Structures. 2007, 44: 6768-6790
    76 L.C. Guo and N. Noda. Fracture mechanics analysis of functionally graded layered structures with a crack crossing the interface. Mechanics of Materials. 2008, 40: 81-99
    77 B. Yildirim, S. Dag, F. Erdogan. Three dimensional fracture analysis of FGM coatings under thermomechanical loading. International Journal of Fracture. 2005, 132: 369-395
    78 C. Comi and S. Mariani. Extended finite element simulation of quasi-brittle fracture in functionally graded materials. Computer Methods in Applied Mechanics and Engineering. 2007, 196: 4013-4026
    79 V. Kouznetsova, W.A.M. Brekelmans and F.P.T. Baaijens. An approach to micro-macro modeling of heterogeous materials. Computational Mechanics. 2001, 27: 37-48
    80 V. Kouznetsova, M.G.D. Geers and W.A.M. Brekelmans. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engineering. 2002, 54: 1235-1260
    81 ?. Kaczmarczyk, C.J. Pearce and N. Bi?ani?. Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. International Journal for Numerical Methods in Engineering. 2008, 74: 506-522
    82 A. Shukla and N. Jain. Dynamic damage growth in particle reinforced graded materials. International Journal of Impact Engineering. 2004, 30: 777-803
    83 X. Jin, L.Z. Wu, L.C. Guo, H.J. Yu and Y.G. Sun. Experimental investigation of the mixed-mode crack propagation in ZrO2/NiCr functionally graded materials. Engineering Fracture Mechanics. 2009, 76: 1800-1810
    84 V. Cannillo, T. Manfredini, M. Montorsi, C. Siligardi and A. Sola. Microstructure-based modelling and eperimental investigation of crack propagation in glass-alumina functionally graded materials. Journal of the European Ceramic Society. 2006, 26: 3067-3073
    85 K. Tohgo, M. Iizuka, H. Araki and Y. Shimamura. Influence of microstructure on fracture toughness distribution in ceramic–metal functionally graded materials. Engineering Fracture Mechanics. 2008, 75: 4529-4541
    86 L. Leon and L. Mishnaevsky. Functionally graded metal matrix composites: numerical analysis of the microstructure-strength relationships. Composites Science and Technology. 2006, 66: 1873-1887
    87 L. Mishnaevsky. Three-dimensional numerical testing of microstructures of particle reinforced composites. Acta Materialia. 2004, 52: 4177-4188
    88 L. Mishnaevsky. Automatic voxel based generation of 3D microstructural FE models and its application to the damage analysis of composites. European Journal of Mechanics A/Solids. 2005, 407: 11-23
    89 L. Mishnaevsky, K. Derrien and D. Baptiste. Effect of microstructures of particle reinforced composites on the damage evolution: probabilistic and numerical analysis. Composites Science and Technology. 2004, 64: 1805-1818.
    90 A. Chakraborty and S. Rahman. Stochastic multiscale models for fracture analysis of functionally graded materials. Engineering Fracture Mechanics. 2008, 75: 2062-2096
    91 A. Chakraborty and S. Rahman. A parametric study on probabilistic fracture of functionally graded composites by a concurrent multiscale method. Probabilistic Engineering Mechanics. 2009, 24: 438-451
    92李录贤,王铁军.扩展有限元方法(XFEM)及其应用.力学进展. 2005, 35: 5-20
    93 J.M. Melenk and I. Babu?ka. The partition of unity finite element method: basic theory and application. Computer Methods in Applied Mechanics and Engineering. 1996, 39: 289-314
    94 C.A. Duarte and J.T. Oden. An H-P adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering. 1996, 139: 237-262
    95 T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering. 1999, 45(5): 601-620
    96 N. Mo?s, J. Dolbow and T. Belytschko. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering. 1999, 46: 131-150
    97 C. Daux, N. Mo?s and T. Belytschko. Arbitrary cracks and holes with theextended finite element method. International Journal for Numerical Methods in Engineering. 2000, 48(12): 1741-1760
    98 N. Sukumar, N. Mo?s, B. Moran and T. Belytschko. Extended finite element method for three-dimensional crack modeling. International Journal for Numerical Methods in Engineering. 2000, 48(11): 1549-1570
    99 J. Dolbow, N. Mo?s and T. Belytschko. An extended finite element method for modeling crack growth with friction contact. Computer Methods in Applied Mechanics and Engineering. 2001, 19: 6825-6846
    100 N. Sukumar, D.L. Chopp, N. Mo?s and T. Belytschko. Modeling holes and inclusions by level sets in the extended finite-element method. Computer Methods in Applied Mechanics and Engineering. 2001, 190: 6183-6200
    101 T. Belytschko, N. Mo?s, S. Usui and C. Parimi. Arbitrary discontinuites in finite elements. International Journal for Numerical Methods in Engineering. 2001, 50: 993-1013
    102 G.N. Wells, R. Borst and L.J. Sluys. A consistent geometrically non-linear approach for delamination. International Journal for Numerical Methods in Engineering. 2002, 54: 1333-1355
    103 J. Chessa, H.W. Wang and T. Belytschko. On the construction of blending elements for local partition of unity enriched finite elements. International Journal for Numerical Methods in Engineering. 2003, 57: 1015-1038
    104 G. Zi and T. Belytschko. New crack-tip elements for XFEM and applications to cohesive cracks. International Journal for Numerical Methods in Engineering. 2003, 57: 2221-2240
    105 P. Laborde, J. Pommier, Y. Renard and M. Salaün. High-order extended finite element method for cracked domains. International Journal for Numerical Methods in Engineering. 2005, 64: 354-381
    106 T.P. Fries and T. Belytschko. The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns. International Journal for Numerical Methods in Engineering. 2006, 68: 1358-1385
    107 T.P. Fries. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering. 2008, 75(5): 503-532
    108 J.E. Dolbow and M. Gosz. On the computation of mixed-mode stress intensity factors in functionally graded materials. International Journals of Solids and Structures. 2002, 39: 2557-2574
    109 A. Asadpoure, S. Mohammadi and A. Vafai. Modeling crack in orthotropic media using a coupled finite element and partition of unity methods. Finite Elements in Analysis and Design. 2006, 42: 1165-1175
    110 N. Mo?s, M. Cloirec, P. Cartraud and J.F. Remacle. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering. 2003, 192: 3163-3177
    111 T. Elguedj, A. Gravouil and A. Combescure. Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering. 2006, 195: 501-515
    112 R. Gracie, G. Ventura and T. Belytschko. A new fast finite element method for dislocations based on interior discontinuities. International Journal for Numerical Methods in Engineering. 2007, 69: 423-441
    113 T. Belytschko and R. Gracie. On XFEM applications to dislocations and interfaces. International Journal of Plasticity. 2007, 23: 1721-1738
    114 P.A. Guidault, O. Allix, L. Champaney and C. Cornuault. A multiscale extended finite element method for crack propagation. Computer Methods in Applied Mechanics and Engineering. 2008, 197: 381-399
    115 T. Hettich and E. Ramm. Interface material failure modeled by the extended finite-element method and level sets. Computer Methods in Applied Mechanics and Engineering. 2006, 195: 4753-4767
    116 T. Hettich, A. Hund and E. Ramm. Modeling of failure in composites by X-FEM and level sets within a multiscale framework. Computer Methods in Applied Mechanics and Engineering. 2008, 197: 414-424
    117 S. Bordas, P.V. Nguyen, C. Dunant, H. Nguyen-Dang and A. Guidoum. An extended finite element library. International Journal for Numerical Methods in Engineering. 2006, 2: 1-33
    118 S. Bordas, P.V. Nguyen, C. Dunant, A. Guidoum and H. Nguyen-Dang. An extended finite element library. International Journal for Numerical Methods in Engineering. 2007, 71: 703-732
    119余天堂.含裂纹体的数值模拟.岩石力学与工程学报. 2005, 24: 4434-4439
    120杨万托.扩展有限元法在线弹性断裂力学中的应用研究.山西建筑. 2006, 32(12): 36-37
    121李剑波,陈健云,林皋.非网格重剖分模拟宏观裂纹体的扩展单元法(I:基础理论).计算力学学报. 2006, 23(2): 207-213
    122李剑波,陈健云,林皋.非网格重剖分模拟宏观裂纹体的扩展单元法(2:数值实现).计算力学学报. 2006, 23(3): 317-323
    123 G.J. Wagner, N. Mo?s, W.K. Liu and T. Belytschko. The extended finite element method for rigid particles in Stokes flow. International Journal for Numerical Methods in Engineering. 2001, 51: 293-313
    124 R. Merle and J. Dolbow. Solving thermal and phase change problems with theeXtended finite element method. Computational Mechanics. 2002, 28: 339-350
    125 N. Mo?s, A. Gravouil and T. Belytschko. Non-planar 3D crack growth by the extended finite element and level sets - Part I: Mechanical model. International Journal for Numerical Methods in Engineering. 2002, 53: 2549-2568
    126 A. Gravouil, N. Mo?s and T. Belytschko. Non-planar 3D crack growth by the extended finite element and level sets - Part II: Level set update. International Journal for Numerical Methods in Engineering. 2002, 53: 2569-2586
    127 N. Sukumar and J.H. Prévost. Modeling Quasi-Static Crack Growth with the Extended Finite Element Method. Part I: Computer Implementation. International Journal of Solids and Structures. 2003, 40: 7513-7537
    128 R. Huang, N. Sukumar and J.H. Prévost. Modeling Quasi-Static Crack Growth with the Extended Finite Element Method. Part II: Numerical Applications. International Journal of Solids and Structures. 2003, 40: 7539-7552
    129 X.Y. Liu, Q.Z. Xiao and B.L. Karihaloo. XFEM direct evaluation of mixed mode SIFs in homogeneous and bi-materials. International Journal for Numerical Methods in Engineering. 2004, 59: 1103-1118
    130 Q.Z. Xiao and B.L. Karihaloo. Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM. Computer Methods in Applied Mechanics and Engineering. 2007, 196: 1864-1873
    131 B. Prabel, A. Combescure, A. Gravouil and S. Marie. Level set X-FEM non-matching meshes application to dynamic crack propagation in elastic-plastic media. International Journal for Numerical Methods in Engineering. 2007, 69: 1553-1569
    132 D. Gregoire, H. Maigre, J. Rethore and A. Combescure. Dynamic crack propagation under mixed-mode loading - Comparison between experiments and X-FEM simulations. International Journal of Solids and Structures. 2007, 44(20): 6517-6534
    133程靳,赵树山.断裂力学.科学出版社. 2006: 9-138
    134范天佑.断裂理论基础.科学出版社. 2006: 73-233
    135 A.O. Ayhan and H.F. Nied. Stress intensity factors for three-dimensional surface cracks using enriched finite elements. International Journal for Numerical Methods in Engineering. 2002, 54: 899-921
    136 A.O. Ayhan. Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements. International Journal of Solids and Structures. 2007, 44(25-26): 8579-8599
    137 A.O. Ayhan. Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements. InternationalJournal of Solids and Structures. 2009, 46: 796-810
    138 B. Yildirim, S. Dag and F. Erdogan. Three dimensional fracture analysis of FGM coatings under thermomechanical loading. International Journal of Fracture. 2005, 132: 369-395
    139 J.R. Rice. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics. 1968, 35: 379-386
    140 R.E. Smelser and M.E. Gurtin. On the J-integral for bi-material bodies. International Journal of Fracture. 1977, 13: 382-384
    141 B. Moran and C.F. Shih. A general treatment of crack tip contour integrals. International Journal of Fracture. 1987, 35: 295-310
    142 B. Moran and C.F. Shih. Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics. 1987, 27(6): 615-642
    143 J.W. Eischen. Fracture of nonhomogeneous materials. International Journal of Fracture. 1987, 34: 3-22
    144 T. Honein and G. Herrmann. Conservation laws in nonhomogeneous plane elastostatics. Journal of Mechanics and Physics of Solids. 1997, 45(5): 789-805
    145 Z.H. Jin and C.T. Sun. Integral Representation of Energy Release Rate in Graded Materials. Journal of Applied Mechanics. 2007, 74: 1046-1048
    146 N. Sukumar, B. Moran, T. Black and T. Belytschko. An element-free Galerkin method for three-dimensional fracture mechanics. Computational Mechanics. 1997, 20: 170-175
    147 M.C. Walters, G.H. Paulino and R.H. Dodds. Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading. International Journal of Solids and Structures. 2004, 41: 1081-1118
    148 M. Stern, E.B. Becker and R.S. Dunham. A contour integral computation of mixed-mode stress intensity factors. International Journal of Fracture. 1976, 12(3): 359-368
    149 J. Yau, S. Wang and H. Corten. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Journal of Applied Mechanics. 1980, 47: 335-341
    150 S.S. Wang, J.F. Yau and H.T Corten. A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity. International Journal of Fracture. 1980, 16(3): 247-259
    151 T. Nakamura. Three-dimensional stress fields of elastic interface cracks. Journal of Applied Mechanics. 1991, 35: 379-386
    152 R. Nahta and B. Moran. Domain integrals for axisymmetric interface crackproblems. International Journal Solids and Structures. 1993, 30(15): 2027-2040
    153 M. Gosz, J. Dolbow and B. Moran. Domain integral formulation for stress intensity factor computation along curved three-dimensional interface cracks. International Journal of Solids and Structures. 1998, 35(15): 1763-1783
    154 M. Gosz and B. Moran. An interaction energy integral method for computation of mixed-mode stress intensity factors along non-planar crack fronts in three dimensions. Engineering Fracture Mechanics. 2002, 69: 299-319
    155 T. Nagashima, Y. Omoto and S. Tani. Stress intensity factor analysis of interface cracks using X-FEM. International Journal for Numerical Methods in Engineering. 2003, 56: 1151-1173
    156 N. Sukumar, Z.Y. Huang, J.H. Prévost and Z. Suo. Partition of unity enrichment for bimaterial interface cracks. International Journal for Numerical Methods in Engineering. 2004, 59: 1075-1102
    157 T. Matsumto, M. Tanaka and R. Obara. Computation of stress intensity factors of interface cracks based on interaction energy release rates and BEM sensitivity analysis. Engineering Fracture Mechanics. 2000, 65: 683-702
    158 A.P. Cisilino and J.E. Ortiz. Three-dimensional boundary element assessment of a fibre/matrix interface crack under transverse loading. Computers and Structures. 2005, 83: 856-869
    159 J.E. Ortiz and A.P. Cisilino. Boundary element method for J-integral and stress intensity factor computations in three-dimensional interface cracks. International Journal of Fracture. 2005, 133: 197-222
    160 M.J. Merzbacher and P. Horst. A model for interface cracks in layered orthotropic solids: Convergence of modal decomposition using the interaction integral method. International Journal for Numerical Methods in Engineering. 2009, 77: 1052-1071
    161 J.H. Kim and G.H. Paulino. Mixed-mode J-integral formulation and implementation using graded elements for fracture analysis of nonhomogeneous orthotropic materials. Mechanics of Materials. 2003, 35: 107-128
    162 J.H. Kim and G.H. Paulino. Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. International Journal for Numerical Methods in Engineering. 2002, 53: 1903-1935
    163 J.H. Kim and G.H. Paulino. An accurate scheme for mixed-mode fracture analysis of funcionally graded materials using the interaction integral and micromechanics models. International Journal for Numerical Methods in Engineering. 2003, 58: 1457-1497
    164 J.H. Kim and G.H. Paulino. T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approachusing the interaction integral method. Computer Methods in Applied Mechanics and Engineering. 2003, 192: 1463-1494
    165 G.H. Paulino and J.H. Kim. A new approach to compute T-stress in functionally graded materials by means of the interaction integral method. Engineering Fracture Mechanics. 2004, 71: 1907-1950
    166 J.H. Kim and G.H. Paulino. The interaction integral for fracture of orthotropic functionall graded materials: evaluation of stress intensity factors. International Journal Solids and Structures. 2003, 40: 3967-4001
    167 J.H. Kim and G.H. Paulino. T-stress in orthotropic functionally graded materials: Lehnitskii and Stroh formalisms. International Journal of Fracture 2004, 126: 345-384
    168 J.H. Kim and G.H. Paulino. Consistent formulations of the interaction integral method for fracture of functionally graded materials. Journal of Applied Mechanics. 2005, 72: 351-364
    169 B.N. Rao and S. Rahman. An interaction integral method for analysis of cracks in orthotropic functionally graded materials. Computational Mechanics. 2003, 32: 40-51
    170 M.C. Walters, G.H. Paulino and R.H. Dodds. Interaction integral procedures for 3-D curved cracks including surface tractions. Engineering Fracture Mechanics. 2005, 72: 1635-1663
    171 M.C. Walters, G.H. Paulino and R.H. Dodds. Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids. Journal of Engineering Mechanics. 2006, 132(1): 1-15
    172 P. Krysl and T. Belytschko. The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks. International Journal for Numerical Methods in Engineering.1999, 44: 767-800
    173 S.H Song and G.H. Paulino. Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method. International Journal of Solids and Structures. 2006, 43: 4830-4866
    174 J. Johnson and J.M. Qu. An interaction integral method for computing mixed mode stress intensity factors for curved bimaterial interface cracks in non-uniform temperature fields. Engineering Fracture Mechanics. 2007, 74: 2282-2291
    175 A. KC and J.H. Kim. Interaction integrals for thermal fracture of functionally graded materials. Engineering Fracture Mechanics. 2008, 75: 2542-2565
    176 J. Réthoré, A. Gravouil, F. Morestin and A. Combescure. Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral. International Journal of Fracture. 2005, 132: 65-79
    177 A. Sutradhar and G.H. Paulino. Symmetric Galerkin boundary element computation of T-stress and stress intensity factors for mixed-mode cracks by the interaction integral method. Engineering Analysis with Boundary Elements. 2004, 28: 1335-1350
    178 J.G. Williams and P.D. Ewing. Fracture under complex stress– the angled crack problem. International Journal of Fracture. 1972, 8(4): 416-441
    179 B. Cotterell and J.R. Rice. Slightly curved or kinked cracks. International Journal of Fracture. 1980, 16(2): 155-169
    180 Y. Ueda, K. Ikeda, T. Yao and M. Aoki. Characteristics of brittle failure under general combined modes including those under bi-axial tensile loads. Engineering Fracture Mechanics. 1983, 18(6): 1131-1158
    181 D.J. Smith, M.R. Aytollahi and M.J. Pavier. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue and Fracture of Engineering Materials and Structures. 2001, 24(2): 137-150
    182 Z.Z. Du and J.W. Hancock. The effect of non-singular stresses on cract-tip constraint. Journal of Mechanics and Physics of Solids. 1991, 39(3): 555-567
    183 P.N. O’Dowd, C.F. Shih and R.H. Dodds. The role of geometry and crack growth on constraint and implications for ductile/brittle fracture. In: Constraint effects in fracture theory and applications. ASTM STP 1244, American Society for Testing and Materials. 1995, 2: 134-159
    184 S.G. Larsson and A.J. Carlson. Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. Journal of Mechanics and Physics of Solids. 1973, 21(4): 263-277
    185 P.S. Leevers and J.C.D. Radon. Inherent stress biaxiality in various fracture specimen. International Journal of Fracture. 1982, 19(4): 311-325
    186 G.E. Cardew, M.R. Goldthorpe, I.C. Howard and A.P. Kfouri. On the elastic T-term. Fundamentals of deformation and fracture: Eshelby memorial symposium. 1985
    187 A.P. Kfouri. Some evaluations of the elastic T-term using Eshelby’s method. International Journal of Fracture. 1986, 30(4): 301-315
    188 T.L. Sham. The determination of the elastic T-term using higher-order weight functions. International Journal of Fracture. 1991, 48(2): 81-102
    189 J. Sladek, V. Sladek and P. Fedelinski. Contour integrals for mixed-mode crack analysis: effect of nonsingular terms. Theory and Applied Fracture Mechanics. 1997, 27(2): 115-127
    190 C.S. Chen, R. Crause, R.G. Pettit, L. Banks-Sills and A.R. Ingraffea. Numerical assessment of T-stress computation using a p-version finite element method. International Journal of Fracture. 2001, 107(2): 177-199
    191 T. Nakamura and D.M. Parks. Determination of T-stress along three-dimensional crack fronts using an interaction integral method. International Journal of Solids and Structures. 1992, 29(13): 1597-1611
    192 L.H. Yang and Z.H. Li. The interaction of mode I crack with multi-inclusions in a three-phase model. International Journal of Fracture. 2004, 127: 193-200
    193 J. Eftis, N. Subramonian and H. Liebowitz. Crack boder stress and displacement equations revisited. Engineering Fracture Mechanics. 1977, 9(1): 189-210
    194 M.L. Williams. On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics. 1957, 24: 109-114
    195 J.W. Hutchinson and Z. Suo. Mixed mode cracking in layered materials. Advances in Applied Mechanics. 1992, 29: 63-191
    196 F. Erdogan, G.D. Gupta and M. Ratwani. Interaction between a circular inclusion and an arbitrarily oriented crack. Journal of Applied Mechanics. 1974, 47: 1007-1013
    197 Y.B. Wang and K.T. Chau. A new boundary element method for mixed boundary value problems involving cracks and holes: Interactions between rigid inclusions and cracks. International Journal of Fracture. 2001, 110: 387-406
    198 N. Konda and F. Erdogan. The mixed mode crack problem in a non-homogeneous elastic medium. Engineering Fracture Mechanics. 1994, 47(4): 533-545
    199 T. Menouillard, T. Elguedj and A. Combescure. Mixed-mode stress intensity factors for graded materials. International Journal of Solids and Structures. 2006, 43: 1946-1959
    200 D.O. Swenson and C.A. Rau. The stress distribution around a crack perpendicular to an interface between materials. International Journal of Fracture Mechanics. 1970, 6(4): 357-365
    201 F. Erdogan and G.D. Gupta. The inclusion problem with a crack crossing the boundary. International Journal of Fracture. 1975, 11: 13-27
    202 Y.D. Li, H.C. Zhang and W. Tan. Fracture analysis of functionally gradient weak/micro-discontinuous interface with finite element method. Computational Materials Science. 2006, 38: 454-458
    203 G. Tursun, U. Weber, E. Soppa and S. Schmauder. The influence of transition phases on the damage behavior of an Al/10vol.%SiC composite. Computational Materials Science. 2006, 37: 119-133
    204 M.L. Williams. The stresses around a fault or crack in dissimilar media. Bulletin of the Seismological Society of America. 1959, 49(2): 199-204
    205 S.P. Timoshenko and J.N. Goodier. Theory of Elasticity, third ed. McGraw-Hill,New York. 1987: 90-110
    206 J.W. Hutchinson, M.E. Mear and J.R. Rice. Crack paralleling an interface between dissimilar materials. Journal of Applied Mechanics. 1987, 54: 828-832
    207 J.R. Rice. Elastic fracture mechanics concepts for interfacial cracks. Journal of Applied Mechanics. 1988, 55: 98-103
    208 P.P.L. Matos, R.M. McMeeking, P.G. Charalambides and M.D. Drory. A method for calculating stress intensities in bimaterial fracture. International Journal of Fracture. 1989, 40: 235-254
    209 R. Yuuki and S.B. Cho. Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials. Engineering Fracture Mechanics. 1989, 34: 179-188
    210 N. Miyazaki, T. Ikeda, T. Soda and T. Munakata. Stress intensity factor analysis of interface crack using boundary element method (application of virtual crack extension method). JSME International Journal Series A: Mechanics and Material Engineering. 1993, 36(1): 36-42
    211 J.R. Rice and G.C. Sih. Plane problems of cracks in dissimilar media. Journal of Applied Mechanics. 1965, 32: 418-423
    212 C.F. Shih, B. Moran and T. Nakamura. Energy release rate along a three-dimensional crack front in a thermally stressed body. International Journal of Fracture. 1986, 30: 79-102
    213 L.P. Pook. Some implications of corner point singularities. Engineering Fracture Mechanics. 1994, 48(3): 367-378
    214 T. Nakamura and D.M. Parks. Three-dimensional stress field near the crack front of a thin elastic plate. Journal of Applied Mechanics. 1988, 55: 805-813
    215 F. Erdogan and G.C. Sih. On the crack extension in plates under plane loading and transverse shear. Transactions of the ASME. Series D, Journal of Basic Engineering. 1963, 85(4): 519-527
    216 B.A. Bilby, G.E. Cardew, M.R. Goldthorpe and I.C. Howard. A finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tips of stationary cracks. In: Size Effect in Fracture (Edited by Atkins, A.G. and Sturgers, G.E.N.), IMechE, London, UK, 1986: 37-46
    217 B. Yang and K. Ravi-Chandar. Evaluation of elastic T-stress by the stress difference method. Engineering Fracture Mechanics. 1999, 64: 589-605

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700