用户名: 密码: 验证码:
预应力碳纤维板(CFRP)加固钢板受拉静力及疲劳性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力碳纤维(CFRP)板加固钢结构技术结合CFRP板加固技术与预应力技术各自的优势,能克服传统钢结构加固技术的缺点,更有效的改善钢结构的静力与疲劳性能及耐久性能,提高受损钢结构的使用性能和承载能力,是一项很有发展前途的加固技术。本文对预应力CFRP板加固钢结构的静力与疲劳行为,从理论和试验两个方面进行研究和分析。
     首先总结钢结构疲劳损伤问题的研究背景和基本方法,综述现有钢结构加固技术的研究成果。研究非预应力CFRP板加固钢结构的静力,疲劳和耐久性能,结果发现:CFRP材料利用率低是其应用的瓶颈,施加预应力是有效的解决方法。
     通过一维线弹性理论和三维实体单元有限元模型分析预应力CFRP板加固钢板在轴心受拉情况下应力分布,获得的应力理论值和相应的静力试验应力平均值基本吻合。分析结果表明:CFRP板在高应力条件下蠕变很小,力学性质稳定。因钢板不平直和定位偏差导致的预应力偏心作用会产生弯曲应力,影响钢板厚度方向上的应力分布。施加预应力后CFRP材料利用率大大提高,钢板的拉应力水平降低很多,加固后试件的承载能力有很大提高,刚度没有明显提高。
     从整体加固效应和局部加固效应两方面来分析预应力CFRP板加固钢板构件的疲劳行为,采用考虑有效应力强度因子幅的修正Pairs公式,简单方便,但偏于保守。通过Bassti中心缺口钢板加固试件疲劳试验对循环荷载应力比,CFRP板刚度预应力及粘结胶等参数的分析,结果表明:预应力及循环荷载应力比对疲劳寿命都有很大影响,试件在预应力CFRP板加固后疲劳寿命提高16倍以上,调整CFRP板中预应力水平来阻止疲劳裂纹扩展,提高疲劳寿命是很有潜力的。
     对粘贴不同预应力水平CFRP板加固的双边缺口钢板进行静力和疲劳试验,结果表明:预应力水平成为影响加固结构应力分布和疲劳寿命的主要因素,其他因素如CFRP板刚度,粘结胶性能成为次要因素。采用修正的Pairs公式计算出的加固前后相对疲劳寿命值与疲劳试验结果基本吻合。
     从整体加固效应上分析,预应力CFRP板加固钢板后循环应力状态发生很大变化,最大最小应力及应力比都有大幅度的降低,疲劳寿命也延长很多倍。疲劳荷载是裂纹扩展的动力,因此对疲劳荷载的正确评估是获得理想加固效果的重要前提之一
     从局部加固效应上分析,引入的预压应力对试件裂纹裂尖区域产生重要影响:1)减小裂尖前缘屈服区域及脱胶面积;2)因预应力偏心作用产生的弯曲应力导致厚度方向裂纹扩展的不均匀性;3)其他应力集中点处次要裂纹的萌生和扩展。
     在疲劳试验中采用热成相技术和疲劳断口分析技术来探测裂纹扩展过程取得很好的效果,分析结果表明:疲劳裂纹的扩展可分表面裂纹扩展和穿透裂纹扩展两个阶段,表面裂纹扩展阶段裂纹扩展长度很小(小于5mm),但消耗掉总疲劳寿命的50%以上,因此对加固效果影响很大。表面裂纹的扩展主要取决于初始裂纹,因此对初始裂纹的合理评估和处理是非常重要的,如钻孔后再粘贴CFRP板加固效果会更好。
     预应力CFRP板的锚固与预应力损失分析是非常重要的,研究发现:机械夹持粘结型锚具结合机械夹持式锚具和粘结型锚具的优点,安全可靠,适合预应力CFRP板的锚固。预应力损失分为预加应力阶段损失和长期损失。预加应力阶段损失主要是锚固装置变形和结构弹性压缩造成的。试验结果表明:CFRP材料力学性质稳定,在疲劳循环荷载作用作用下预应力长期损失值很小,因此预应力损失主要是预加应力阶段的短期损失。粘结型锚具锚固CFRP板预应力损失因为较大的锚固装置变形可达张拉预应力的30%-50%。机械夹持粘结型锚具锚固的CFRP板预应力损失主要是结构弹性压缩造成,一般是张拉预应力的10%左右,锚固效率比粘结型锚具高。
     在裂纹理论分析的基础上建立CFRP板加固钢板实体单元三维有限元断裂力学模型,分别分析了预应力水平,粘结胶性能及CFRP板弹性模量等参数对应力强度因子的影响,结果表明:对于粘贴预应力CFRP板的裂纹钢板,预应力水平是主要的影响加固结构疲劳性能的因素,粘结胶性能及CFRP板刚度的影响相对很小。
     采用经典梁理论分析预应力CFRP板加固的工字钢梁静力行为,如正应力,挠度及破坏模式。粘贴预应力CFRP板加固受损钢梁疲劳试验结果表明加固后疲劳寿命提高达10倍,比传统方法有效得多。根据修正Pairs公式提出预应力CFRP板加固简化计算方法和设计程序,可以很方便的估计加固所需的预应力值。
Bonding prestressed CFRP plates to old steel structures is an innovative and effective reinforcement technique, and it provides a higher static and fatigue strength as well as a non-corroding alternative to other traditional rehabilitative methods. This specialized application combines the benefits of passively bonded CFRP laminates systems with advantages associated with external prestressing, to improve the serviceability and ultimate load of the damaged steel structure. This dissertation focused theoretically and experimentally on the static and fatigue behavior of the pre-crack steel structure strengthened with prestressed CFRP laminates.
     Firstly the research significance on fatigue damages of steel structure was presented and the existing reinforcement technologies were also investigated. And an attempt was made to analyze the static and fatigue performance, and durability of steel structure strengthened with non-prestressed CFRP laminates. It was noted that un-efficient use of CFRP material limits its wide application, and introduce of prestress is an excellent solution.
     Secondly the tension steel plate strengthened with pre-stressed CFRP laminates was investigated based on one-dimensional linear elastic theory and a three-dimensional element finite element method (FEM) model. These theoretical results are in a good agreement with the value of the static test. The results show that, the mechanical property of CFRP material is relatively stable with lower creep under high stress state. The prestress eccentricities lead to the bending effect which affects the stress distribution across the steel thickness. By applying a prestress of the laminate, the material is used much more efficiently and the ultimate capacity and stiffness of the reinforced structure increase.
     Then a modification of Pairs'law, which considers both the global and local reinforcement effect, was used to analysis the fatigue behaviour of central-cracked tension steel plates strengthened with single-prestress-level CFRP laminates in Basseti's test series. Test results show that depending on the ratio of the applied load, reinforcement and prestress level, the application of CFRP laminates results in an increase in the fatigue life by more than 16 times. The application of a high prestress level is a promising method to achieve a significant improvement in term of remaining fatigue life of the damaged structure.
     The author conducted experimental studies of static and fatigue behaviour of double-edge-notched tension steel plates reinforced by multi-prestress-level CFRP laminates. The test results indicate that the static and fatigue performance depends on stiffness of CFRP laminate and, largely, the prestress level. The relative fatigue life predicted by the modified Paris law is in a reasonable agreement with test results.
     From the view of the global reinforcement effect, introduce of prestress prolongs significantly the remaining fatigue life of reinforced structure since a greater portion of reduction of cyclic stress and stress ratio is engaged. The fatigue loading, as the driving force for crack propagation, is an important factor for estimation of the fatigue life.
     From the view of the local reinforcement effect, the prestress influences the local behaviours of crack propagation in the following aspects:1) decrease of the steel plastic zone and the adhesive debonding area in crack front; 2) the crack non-uniform propagation across steel thickness due to bending stress caused by prestress eccentricity; 3) initiation and propagation of the secondary fatigue crack.
     Two different crack growth measurements, infrared thermography testing and Fractographic approach, were used to detect the crack in the fatigue test. The results show that the crack propagation can be defined as surface-crack propagation and through-crack propagation, and the surface crack propagation consumes a major part (more than 50%) of total fatigue life with short crack length (less than 5mm). Surface-crack propagation depends on the size and shape of the initial crack, and therefore the pretreatment of the initial crack is necessary for the reinforcement, for example, the use of stop holes prior to CFRP application will give a better result.
     The anchor system and estimation of pre-stress loss in application of prestressed CFRP laminate are highly significant. It was found that mechanical gripping bond-type anchor combines the benefits of Mechanical gripping anchor and bond-type anchor, and it is more reliable and efficient for the anchorage of prestressed CFRP laminates. The prestress losses related to different anchor systems were also investigated. The total prestress loss of CFRP laminate is consist of not only the short-term prestress losses due to elastic deformations and anchorage set, but also the long-term loss in service stage. Fatigue test results shows that the long-term prestress loss under cyclic load is slight and can be neglected. Hence the estimation of the pre-stress losses relies on the short-term prestress losses. The prestress losses of CFRP laminate with bond-type anchor were 30%-50% of the initial prestress because of the large deformation of anchorage set. The slight prestress losses of CFRP laminate with mechanical gripping bond-type anchor are mainly due to elastic deformations. The mechanical gripping and bond-type anchor was proved to be much more efficient than bond-type anchor in the test.
     Based on the theory of crack analysis, three-dimensional element FEM fracture model was presented to do parameter study on the stress intensity factor, and the effects of the factors such as the stiffness of CFRP laminates, the prestress level and adhesive properties were discussed. The results show that the prestress level becomes the dominated parameter to improve the fatigue behavior of the reinforced structure.
     In the end the classic beam theories were used to analysis the static flexural behavior of steel girder strengthened with prestressed CFRP laminates, including the flexural stress, deflection and failure modes. The fatigue test results indicate that the application of CFRP laminates results in a significant increase of the fatigue life by more than 10 times. Furthermore, a simplified design and calculation method was presented to estimate the demanding prestress level in reinforcement.
引文
[1]福克斯著,漆平生等译.工程中的金属疲劳.北京:中国农业机械出版社,1983.
    [2]S.Suresh著,王中光译.材料的疲劳(第2版).北京:国防工业出版社,1995.
    [3]王元清.钢结构脆性破坏事故分析[J].工业建筑.1998,28(5):55-58.
    [4]Fisher著,项海帆,史永吉等译.钢桥的疲劳和断裂(实例研究).北京:中国铁道出版社.1989.
    [5]傅祥炯.结构疲劳与断裂.西安:西北工业大学出版社,1995,12.
    [6]Chitoshi Miki, Yuichi Ito and Eiichi Sasaki.Fatigue and repair cases in steel bridges.Department of Civil Engineering, Tokyo Institute of Technology
    [7]李志国.既有钢桥裂纹及加固研究[硕士学位论文].成都:西南交通大学.2006
    [8]陈惟珍,D.Kosteas.钢桥疲劳设计方法研究[J].桥梁建设.2000(2):1-3.
    [9]陈惟珍.应用断裂力学方法计算老钢桥剩余寿命[J].华东公路.2000,21(4):43-46.
    [10]徐济民,涂卫东等.铁路旧钢桥中疲劳裂纹扩展寿命的研究[J].铁道学报,1994,9.
    [11]BSI, BS7910-1999:Guide on methods for assessing the acceptability of flaws in metallic structure. British Standard Institution, London,1999.
    [12]M.D.Bowman. Fatigue design and retrofit of steel bridges. Progress in Structural Engineering and Materials,1997, (I):107-114.
    [13]EN 1993-1-9:2005.Eurocode 3, Section 9:Fatigue.2005.
    [14]E.Bruhwiler. Fatigue and fracture of riveted bridge members. Journal of Structural Engineering,1990,116(1):198-214.
    [15]J.W.Proven主编,航空航天工业部(AFFD)系统工程办公室译.概率断裂力学和可靠性[D].北京:航空工业出版社,1989.
    [16]英国标准BS5400.钢桥、混凝土桥及结合桥(第十篇:疲劳设计实用规则).西南交通大学出版社.1987.
    [17]雷宏刚.钢结构事故分析与处理[M].北京:中国建材工业出版社.2003.
    [18]高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社.2000
    [19]何贤锋,彭晖,罗杰.外部粘贴预应力碳纤维板技术加固桥梁结构的工 程应用与评估[J].中国铁道科学.2007,28(2):139-144.
    [20]吴涛.预应力碳纤维布加固钢梁抗弯性能研究[硕士学位论文].武汉大学,2005.
    [21]淳庆,邱洪兴.在役铁路钢桥疲劳损伤机理、检测技术及疲劳寿命预测研究综述[J].特种结构.2005,22(4):80-84.
    [22]布洛克著,王克仁,何明元,高桦译.工程断裂力学基础[D].北京:科学出版社,1980
    [23]叶列平,冯鹏.FRP在工程结构中的应用与发展[J].土木工程学报,2006,39(3):24-36.
    [24]曾宪桃,车惠民.复合材料FRP在桥梁工程中的应用及其前景[J].桥梁建设,2000,(2):66-70.
    [25]郑云,叶列平,岳清瑞.FRP加固钢结构的研究进展[J].工业建筑,2005,35(8):20-25.
    [26]L.C.Hollaway, J.Cadei. Progress in the technique of upgrading metallic structures with advanced polymer composites. Progress in Structural Engineering and Materials,2002,4(2):131-48.
    [27]M.Tavakkolizadeh, H.Saadatmanesh. Fatigue strength of steel girders strengthened with carbon fiber reinforced polymer patch. Journal of Structural Engineering, ASCE,2003,129(2):186-96.
    [28]A.Bassetti, A.Nussbaumer, M.A.Hirt. Crack repair and fatigue extension of riveted bridge members using composite materials. In:Bridge engineering conference, ESE-IABSE-FIB,2000:227-38.
    [29]杨允表,石洞.复合材料在桥梁工程中的应用[J].桥梁建设,1997,(4):1-4.
    [30]C.E.Demers. Fatigue strength degradation of E-glass FRP composites and carbon FRP composites [J].Construction and Building Materials,1998,12 (5):311-318.
    [31]L.C.Hollaway, J.Cadei.Progress in the technique of upgrading metallic structures with advanced polymer composites. Progress in Structural Engineering and Materials,2002,4(2):131-48.
    [32]XiaoLing Zhao, Lei Zhang.State-of-the-art review on FRP strengthened steel structures. Engineering Structures,2007,29:1808-1823.
    [33]A.Shaat, D.Schnerch, A.Fam, S.Rizkalla. Retrofit of steel structures using fiber reinforced polymers (FRP):state-of-the-art. Transportation research board (TRB) annual meeting.2004. CD-ROM (04-4063).
    [34]O.Buyukozturk, E.Karaca.Progress on understanding debonding problems in reinforced concrete and steel members strengthened using FRP composites. Construction and Building Materials.2004,18(1):9-19.
    [35]杨勇新.碳纤维布与混凝土的粘结性能及其加固混凝土受弯构件的破坏机理研究[博士学位论文].天津:天津大学,2001.
    [36]L.C.Bank. Composites for construction:structural design with FRP materials. John Wiley & Sons, Inc.Hoboken, New Jersey, USA.2006.
    [37]于海生,肖建庄.建筑结构粘结剂的研究进展[J].玻璃钢/复合材料.2004,4:46-49.
    [38]张宁,岳清瑞,佟晓利,赵颜,杨勇新,彭福明.碳纤维布加固修复钢结构粘结界面受力性能试验研究[J].工业建筑,2003,33(5):71-73.
    [39]范毅,童谷生,朱成九.复合材料加固技术中粘结破坏问题的探析[J].华东交通大学学报,2005,22(1):40-43.
    [40]David Alan Schnerch. Strengthening of steel structures with high modulus carbon fiber reinforced polymer (CFRP) materials.Ph.D dissertation. North Carolina State University.2005
    [41]岳清瑞.我国碳纤维(CFRP)加固修复技术研究应用现状与展望[J].工业建筑,2000,30(10):23-26.
    [42]彭福明.纤维增强复合材料加固修复金属结构界面性能研究[博士学位论文].西安:西安建筑科技大学,2005.
    [43]马建勋,宋松林,赖志生.粘贴碳纤维布加固钢构件受拉承载力试验研究[J].工业建筑,2003,33(2):1-4.
    [44]杨勇新,岳清瑞,彭福明.碳纤维布加固钢结构的黏结性能研究[J].土木工程学报,2006,39(10):1-5.
    [45]Bjorn Taljsten. Strengthening of beams by plate bonding. Journal of materials in civil engineering.1997,9(4):206-212.
    [46]邓军,黄培彦.CFRP板加固钢梁界面应力的理论与试验研究[J].华南理工大学学报(自然科学版),2007,35(7):10-14.
    [47]D.R.Mertz and J.W.Gillespie. Rehabilitation of steel bridge girders through the application of advanced composite materials. Final Report, NCHRP-93-IDll,Transportation Research Board, Washington D.C.,1996.
    [48]M.Abushaggur, A.A.El Damatty.Testing of steel sections retrofiteed using FRP sheets. Annual Conference of the Canadian society for Civil Engineering. Moncton, Nouveau-Brunswich, Canada.2003,4-7.
    [49]P.Colombi, P.Carlo.An experimental, analytical and numerical study of the static behavior of steel beams reinforced by pultruded CFRP strips. Composites:Part B 37 (2006):64-73.
    [50]T.C.Miller, M.J.Chajes, D.R.Mertz, and J.N.Hastings. Strengthening of a steel bridge girder using CFRP Plates.Journal of Bridge Engineering, ASCE, 2001,6(6):514-512.
    [51]X.Liu, P.F.Silva, and A.Nanni.Rehabilitation of steel bridge members with FRP composite materials.Proc., CCC2001, Composites in Construction, Porto, Portugal,2001:613-617.
    [52]M.Tavakkolizadeh, H.Saadatmanesh. Repair of cracked steel girders using CFRP sheets. Proc. ISEC-01, Hawaii,2001,24-27.
    [53]R.Sen, L.Liby, and GMullins. Strengthening steel bridge sections using CFRP laminates. Composites Part B:engineering,2001:309-322.
    [54]M.Tavakkolizadeh, H.Saadatmanesh. Strengthening of steel-composite girders using carbon fiber reinforced polymer sheets. Journal of Structural Engineering, ASCE 2003,129 (1):30-40.
    [55]H.B.Liu, X.L.Zhao and R.Al-Mahaidi. The effect of fatigue loading on bond strength of CFRP bonded steel plate joints. Proceedings of the International Symposium on Bond Behavior of FRP in Structures (BBFS 2005), Hong Kong,451-456.
    [56]Jun Deng, M.K.Marcus. Fatigue performance of metallic beam strengthened with a bonded CFRP plate. Composite Structure.2007,78:222-231.
    [57]C.Sean, Jones and A.Scott Civjan. Application of fiber reinforced polymer overlays to extend steel fatigue life. Journal of Composites for Construction.2003,7(4):331-338.
    [58]Katsuyoshi Nozaka. Repair of fatigue steel bridge girders with carbon fiber strips. PhD's Thesis, University of Minnesota,2002.
    [59]V.M.Karbhari.Durability gap analysis for fiber-reinforced polymer composites in civil Infrastructure. Journal of Composites for Construction. 2003,7(3):238-247.
    [60]V. M. Karbhari and S.B.Shuelly. Use of composites for rehabilitation of steel structures-determination of bond durability.Journal of Materials in Civil Engineering.1995,7(4):239-245.
    [61]M.Tavakkolizaddeh, H.Saadatmanesh.Galvanic corrosion of carbon and steel in aggressive environments.Journal of Composites for Construction.2001, 5(3):200-210.
    [62]Amal Alfar. Durability of Reinforced Concrete Members Strengthened with CFRP Plates and Subjected to Moisture and Salts. PhD's Thesis. Technical University of Braunschweig,2006.
    [63]任慧韬,胡安妮,赵国藩.纤维增强塑料与混凝土粘结抗冻融性能研究[J].大连理工大学学报.2003,43(4):495-499.
    [64]任慧韬,胡安妮,赵国藩.碳纤维片材的徐变性能试验研究[J].工程力学.2004,21(2):10-14.
    [65]卞敬玲,陈柏昆.纤维增强复合材料(FRP)的耐候性研究[J].青海大学学报:自然科学版.2007,25(1):7-9.
    [66]任慧韬.纤维增强复合材料加固混凝土结构基本力学性能和长期受力性能研究[博士学位论文].大连:大连理工大学,2003.
    [67]李亚智.飞机结构疲劳和断裂分析中若干问题的研究[博士学位论文].西安:西北工业大学,2003.
    [68]Joris Degrieck and Wim Van Paepegem. Fatigue damage modeling of fiber-reinforced composite materials:Review. Applied Mechanics Reviews.2001,54(4):279-300.
    [69]中国工程建设标准化协会标准.碳纤维片材加固修复混凝土结构技术规程(CECS146:2003).北京.2002.
    [70]A.Baldan.Review Adhesively-bonded joints in metallic alloys, polymers and composite materials:Mechanical and environmental durability performance. Journal of materials science.39 (2004):4729-4797.
    [71]徐建新.复合材料补片胶接修理技术的研究进展.航空学报.1999,20(4):381-383.
    [72]F.Erdogan, K.Arin. A sandwich plate with a part-through and a debonding crack. Engineering Fracture Mechanics,1972,4(2):449-458.
    [73]Rose. An application of the inclusion analogy for bonded reinforcements [J].International Journal of Solids and Structures,1981,17:827-838.
    [74]R.Jones.Crack patching:analysis and design [J]. Journal of Structure
    Mechanics,1982,10(2):177-190.
    [75]C.T.Sun, J.Klug, C.Arendt. Analysis of cracked aluminum plates repaired with bonded composite patches [J].AIAA Journal,1996,34(2):369-374.
    [76]蒋金龙,赵名浮.含裂纹板的复合材料胶贴修补分析[J].航空学报.1991,12(2): 61-67.
    [77]徐建新.损伤金属结构的复合材料胶接修补技术研究[博士学位论文].南京:南京航空航天大学,1996.
    [78]孙洪涛.损伤金属板复合材料胶接修补的热-力分析与试验研究[博士学位论文].西安:西北工业大学,1998.
    [79]孙洪涛,刘元镛.改进的金属裂纹板复合材料胶接修补的有限元模型[J].西北工业大学学报,2000,18(3):446-451.
    [80]吴志平,杨林德.摩擦接触单元在粘钢有限元分析中的应用[J].工业建筑,2006,36(z1):1024-1027.
    [81]彭福明,郝际平,杨勇新,岳清瑞,刘立杰,李文岭.CFRP加固钢梁的有限元分析[J].西安建筑科技大学学报.2006,38(1):18-22.
    [82]郑云,叶列平,岳清瑞,董嘉林.CFRP加固含疲劳裂纹钢板的有限元参数分析[J].工业建筑,2006,36(6):99-103.
    [83]R.H.Andruet. Special 2-D and 3-D geometrically nonlinear finite elements for analysis of adhesively bonded Joints. Ph.D dissertation. Virginia Polytechnic Institute and State University.1998.
    [84]GJ.Tsamasphyros et al. Study of composite patch repair by analytical and numerical methods. Fatigue Fract Engng Mater Struct.24,631-636.
    [85]张移山,华庆祥.复合材料补片参数对裂纹尖端应力强度因子的影响[J].机械强度,2004,26(S):100-103.
    [86]P.Colombi, A.Bassetti, A.Nussbaumer.Delamination effects on cracked steel members reinforced by prestressed composite patch. Theoretical and Applied Fracture Mechanics.2003,39:61-71.
    [87]P.Cheuk, Liyong Tong.Failure of adhesive bonded composite lap shear joints with embedded pre-crack.Composites Science and Technology.2002, 62:1079-1095.
    [88]梁重云,曾竟成.复合材料补片胶接修补研究进展[J].宇航材料工艺.2002,32(4):7-11.
    [89]杨孚标,肖加余,江大志,曾竟成.复合材料单面修补铝合金裂纹板的 疲劳破坏特性[J].中国表面工程.2006,19(z1):210-214.
    [90]王清远,陶华.复合材料修补件的强度和疲劳性能[J].材料工程.2003(1):21-23.
    [91]刘祖华,朱伯龙.粘钢加固混凝土梁的解析分析[J].同济大学学报.1994,(1):21-26.
    [92]吴智深.Recent developments in FRP strengthening techniques [J].工业建筑.2004,34(z1):4-1-15.
    [93]杨勇新,李庆伟,岳清瑞.预应力FRP片材加固混凝土结构研究现状[J].工业建筑,2004,34(z1):325-330.
    [94]T.C.Triantafillou and N. Deskovic. Innovative prestressing with FRP sheets, mechanics of short-term behavior. Journal of Engineering Mechanics, ASCE, 1991,117(7):1653-1672.
    [95]R.El-Hacha, R.G.Wight and M.F.Green. Pre-stressed fiber-reinforced polymer laminates for strengthening structures. Structure Engineering Material.2001,3:111-121.
    [96]L.C.Hollaway, J.Cadei.Progress in the technique of upgrading metallic structures with advanced polymer composites. Progress in Structural Engineering and Materials.2002,4(2):131-48.
    [97]赵启林,王景全.碳纤维加固的反拱预应力技术及其提高钢结构承载能力的分析[J].钢结构,2002,3(17):51-53.
    [98]邓军,黄培彦.预应力CFRP板加固钢梁的承载力及预应力损失分析[J].铁道建筑.2007(10):4-7.
    [99]A.Bassetti.Lamelles Precontraintes en Fibres Carbone pour le Renforcement de Ponts Rivetes Endommaees par Fatigue (in French), Ph.D. Thesis no. 2440, Swiss Federal Institute of Technology, EPFL, Lausanne,2001.
    [100]A.Bassetti, P.Liechti, A.Nussbaumer.Fatigue resistance and repairs of bridge riveted members. Fatigue Design and Reliability. ESIS Publication 23, Elsevier,1999:207-218.
    [101]P.Colombi, A.Bassetti, A.Nussbaumer. Analysis of cracked steel members reinforced by pre-stress composite patch. Fatigue Fracture of Engineering Materials Structures.2003,26:59-66.
    [102]P.Colombi.Plasticity induced fatigue crack growth retardation model for steel elements reinforced by composite patch. Theoretical and applied
    fracture Mechanics.2005, (43):63-67.
    [103]P.Colombi, A.Bassetti and A.Nussbaumerb. Delamination effects on cracked steel members reinforced by prestressed composite patch. Theoretical and Applied Fracture Mechanics.2003, (39):61-71.
    [104]S.Suresh. Fatigue of Materials [M]. Cambridge University Press,1991.
    [105]W.Elber. Fatigue crack closure under cyclic tension.Engineering Fracture Mechanics.1970, (2):37-45.
    [106]J.Schijve.Fatigue crack closure:observations and technical significance, Mechanics of fatigue crack closure.ASTM STP982. ASTM, Philadelphia, 1988,5-34.
    [107]C.H.Wang. Fatigue crack closure analysis of bridged cracks representing composite rePairs. Fatigue Fract Engng Mater Struct,2000,23:477-488.
    [108]J.F.Chen, J.GTeng.Anchorage strength models for FRP and steel plates bonded to concrete.Journal of Structural Engineering.2001,127(7):784-791.
    [109]杨小林等.疲劳裂纹的振动红外热成像检测[J].激光与红外.2007,37(5):442-444.
    [110]崔约贤,王长利.金属断口分析[D].哈尔滨:哈尔滨工业大学出版社,1998.
    [111]铁路钢桥制造规范(TB10212-98).北京:中国铁道出版社,1999.
    [112]L.C.Hollaway. The evaluation of and the way forward for advanced polymer composites in the civil infrastructure. Constructure Building Material.2003,17(6-7):365-78.
    [113]W.Y. Lee, J.J. Lee.Successive 3D FE analysis technique for characterization of fatigue crack growth behavior in composite-repaired aluminum plate. Composite Structures,2004,66:513-520
    [114]刘凤奎,赵志勇,蔺鹏臻.预应力粘钢加固试验研究[J].铁道学报.2004,26(2):105-110.
    [115]田安国.预应力FRP加固混凝土受弯构件试验与设计理论研究[博士学位论文].南京:东南大学,2006.
    [116]何志导,林家瑜,郭馨艳,杨怡,黄培彦.预应力纤维薄板加固T型梁桥技术探讨[J].中南公路工程.2007,32(3):37-41.
    [117]曾宪桃,王兴国.粘贴预应力FRP板加固砼梁预应力方法的研究[J].焦作工学院报.2002,21(3):222-225.
    [118]李庆伟,杨勇新,岳清瑞,陈龙华,张清海.预应力碳纤维布加固混凝土梁锚固方式试验研究[J].工业建筑.2006,36(4):9-11.
    [119]卓静.高强度复合材料FRP片材波形齿夹具锚锚固系统及应用研究[博士学位论文].重庆:重庆大学,2005.
    [120]王鹏飞.波形齿夹具锚给CFRP板施加预应力的施工工艺和应力损失研究[硕士学位论文].重庆:重庆大学,2007.
    [121]卓静,李唐宁.波形齿夹具锚和U型箍锚固作用的力学机理[J].中国公路学报.2007,20(3):48-52.
    [122]岳清瑞,李庆伟,杨勇新.预应力碳纤维布放张时受力性能分析[J].工业建筑.2006,36(4):1-4.
    [123]陈家权,沈炜良,徐家园等.应力强度因子的有限元计算[J].装备制造技术.2003(4):6-9.
    [124]M.M.Ratwani, O.T.Kieboom, R.B.Heslehurst.Crack opening displacement in plate with bonded repair patch. Fatigue Fracture Engineering Material Structure,2006, (29):425-430.
    [125]中华人民共和国交通运输部.公路桥梁加固设计规范(JTG/T 522-2008).北京:人民交通出版社,2008.
    [126]B.Taljsten et.al.Strengthening of old metallic structures in fatigue with prestressed and non-prestressed CFRP laminates. Construction and Building Material.2008:1-13.
    [127]ACI Committee 440. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI.2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700