用户名: 密码: 验证码:
竹材的断裂特性及断裂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹材的力学性质是竹材研究的主要方向,也是竹材加工利用的重要基础。竹材是一种天然生物质梯度复合材料,具有分级复合结构;其中空、壁薄、离散分布的竹节等外观形态,维管束的梯度分布和细胞壁多层结构造就了竹材强度高、韧性好的优良特性,被广泛应用于结构建筑等领域。断裂是断裂力学的研究范畴,也是构件使用过程中选择和设计的重要依据。
     本研究以毛竹(Phyllostachys pubescens Mazel ex H.de Lebaie)为研究对象,以杉木(Cunninghamia lanceolata[Lamb.]Hook.)为对照材料,基于线弹性断裂力学理论,研究竹材Ⅰ型(张开型)断裂韧性KIC;运用数字散斑相关法、电子显微镜与加载联用装置和同步辐射μ-CT技术研究竹材断裂破坏的演变过程和破坏模式,揭示竹材的韧性破坏机理。竹材断裂特性的研究不仅是竹材基础性质研究的重要补充,更重要的是为竹材在结构建筑等领域的优化设计、合理、科学、高效和安全使用提供科学指导。
     本论文的主要研究结果归纳如下:
     1.预置LR方向裂纹竹材的Ⅰ型断裂韧性KIC明显高于杉木;从竹青到竹黄竹材的KIC呈下降趋势。紧凑拉伸法测得竹材KLRIC平均值为12.211 MPa?m1/2。
     2.三点弯曲法研究竹材预置LR裂纹的断裂韧性KLRIC表明,由于竹材纤维在竹材内部分布的不均匀性,裂纹预置在竹黄面K LRIC为9.81 MPa?m1/2,裂纹预置在竹青面K LRIC5.476 MPa?m1/2高78.82%。
     3.三点弯曲法研究预置LT裂纹竹材的K LTIC,竹青、竹肉和竹黄部位竹材K LTIC分别为9.636 MPa?m1/2,6.533 MPa?m1/2和4.361 MPa?m1/2,呈梯度下降,竹材的断裂韧性K LTIC与纤维含量相关。
     4.沿径向分层竹片预制LT的竹材断裂韧性KLTIC从竹青到竹黄逐渐下降;杉木木片断裂韧性KLTIC介于竹片竹肉2和竹肉3之间,比竹肉2低42.47%,比竹肉3高出5.9%,竹材的I断裂韧性总体上高于杉木。
     5.数字散斑相关法研究竹材受力过程中应变场演变过程表明,随着拉伸载荷增加,应变量增大,在裂纹顶端区域应变场集中,随着载荷增加应变场集中范围扩大;相同拉伸载荷水平下从竹青到竹黄,应变量应变集中区逐渐增大。三点弯曲加载方式下,预制LR裂纹的竹材,裂纹预制在竹黄面的应变量小于裂纹预制在竹青面应变量;前者应变场集中区域在裂纹顶端沿垂直预置裂纹方向扩展,而后者沿裂纹预置方向扩展,主要受竹材内纤维不均匀分布影响。相同条件下,杉木应变量和裂纹顶端的集中区域都大于竹材,对比表明竹材抗断裂能力高于杉木。
     6.电子显微镜与加载装置联用,原位观察竹材破坏过程显示,竹材受拉伸和弯曲荷载时其裂纹扩展方式不同。顺纹拉伸时,裂纹先沿着原来方向扩展至纤维束之后,裂纹扩展方向发生改变,沿着纤维束与薄壁组织界面顺纹扩展,主要由于界面强度远小于纤维束的拉伸强度。不同部位竹材拉伸断裂方式不同,竹青为沿界面发生劈裂,竹肉呈台阶式破坏,竹黄断面齐整,破坏模式与竹材的纤维含量相关。三点弯曲加载方式竹材破坏路径呈“Z”字形,纤维束逐层破裂破坏,裂纹扩展需要较多的能量,与木材裂纹扩展过程中会产生很多小裂纹不同,表现出很好的韧性。
     7. ESEM观察竹材拉伸破坏断面显示,薄壁组织拉伸破坏为整齐破坏,维管束先拔出、拉长,到逐渐破坏。三点弯曲破坏特征为,纤维束被拉出竹材,界面破坏;外侧拉伸纤维束长度较内层长。杉木破坏断面整齐断裂,断面粗糙。竹材的破坏模式为复合材料的断裂特性。
     8.同步辐射μ-CT技术观察竹材破坏内部结构,竹材拉伸破坏的内部断裂模式为:基质断裂,界面损伤,基质破坏、纤维桥联,纤维断裂。竹青纤维含量高,主要发生界面破坏,纤维断裂;竹肉纤维含量适中,发生基质破坏、纤维桥联;竹黄纤维含量较少发生基质断裂,纤维拉出断裂。断面观察纤维束破坏呈塔状。弦向三点弯曲加载时,竹黄侧破坏比竹青侧快,纤维束逐层剥裂,表现出典型的韧性破坏模式。
     9.竹材竹青、竹肉和竹黄三个部位的维管束拉伸强度和模量逐渐下降。纤维的拉伸强度和模量分别为1702.98MPa和33.33GPa。维管束拉伸破坏过程为纤维束被拉出,部分纤维先破坏,到最后纤维束完全被拉断,破坏断面有明显纤维束拉出薄壁组织。纤维破坏方式呈阶梯状螺旋式破坏,破坏断面为锯齿状,这与纤维细胞壁的多层结构以及微纤丝的排列方式有关。从细胞水平到宏观水平竹材独特的分级结构与复合材料特性赋予其强度高好、韧性好的特点。
The mechanical properties of bamboo are the basis for the use of bamboo and the main research direction in bamboo science. Bamboo is a natural biocomposite material with non-homogeneous and anisotropic characteristics. The shape, structure and composition endow bamboo the characteristics of high strength and good toughness. So bamboo is widely used in structural engineering. Fracture is the major failure performance in engineer. Fracture character is the important criteria for choosing and designing structural parts. In this study, Moso bamboo (Phyllostachys pubescens Mazel ex H.de Lebaie) was taken as the research object, and Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) was taken as the control material. The bamboo fracture toughness KIC in the crack opening manner (I) was studied based on linear-elastic fracture mechanics theory of fracture toughness,. Bamboo failure process and the fracture surface characters were studied by digital speckle correlation method (DSCM) and in situ ESEM with loading setup and synchrotron radiationμ-CT techniques, and the fracture failure mechanism of bamboo was revealed. The study of bamboo fracture properties is not only the supplement for bamboo basic properties, more importantly it is the new idea and new method to predict bamboo damage, which is the scientific instruction for bamboo structure optimizing design and efficient use and scientific processing.
     The major findings of this study are summarized as follows:
     1. In LR manner crack condition, bamboo fracture toughness KLRIC is higher than fir. From the outside to the inside of bamboo, KLRIC decreased. The compact tension results showed that the average KLRIC for bamboo was 12.211 MPa?m1/2.
     2. In LR manner crack condition, bamboo and Chinese fir KLRIC were tested by three-point bending method. The KLRIC was 5.476 MPa?m1/2 and 9.81MPa?m1/2 for the rack in the bamboo outer side and in the inner side. The KLRIC for the inner side was 78.82% higher than that of the outer side. That’s due to the uneven fiber percentage.
    
     3. In LT manner crack condition, bamboo and Chinese fir KLTIC were tested by three-point bending method. Bamboo KLTIC decreased along the radius direction from the outer to the inner side. The KLTIC of ouer and intermediary and inner bamboo were 9.636 MPa?m1/2 and 6.533MPa?m1/2 and
     4.361 MPa?m1/2 respectively. The KLTIC of Chinese fir was 4.617 MPa?m1/2. It was 5.87% higher than that of the inner bamboo. In addition, compared with the intermediary and the outer bamboo, Chinese fir KLTIC decreased 41.5% and 108.71% respectively.
     4. Along radial direction, bamboo culms were split to 4 slices. From the outer to inner, the slices’KLTIC decreased gradually. Chinese fir slice KLTIC was between the second and the third bamboo slice KLTIC. It was 42.47% lower than the second slice, and 5.9% higher than the third slice. In all, bamboo KLTIC was higher than that of Chinese fir.
     5. The evolution of bamboo surface strain field during the loading process was studied by digital speckle correlation method (DSCM). With the tensile load increasing, either bamboo or Chinese fir strain increased and the strain concentration region enlarged. Strain concentrated in the tip of crack. At the same tensile load level, from the outer to inner bamboo, the strain value and the concentration region increased gradually. When bamboo with LR crack was loaded in three-point bending mode, the crack at bamboo outer side strain was higher than the crack at bamboo inner side. The first strain concentration region expanded along the crack direction, otherwise the other strain concentration expanded along fiber, which is contributed by the fiber percentage. At the same condition, Chinese fir strain value and strain concentration region were higher than bamboo, which indicated that bamboo had the better crack resistance than Chinese fir.
     6. Electron microscopy combined with the loading device was a helpful device to study bamboo and wood failure process. It was shown under tension and bending loads bamboo crack propagated in different ways. In tensile loading process, the crack extended in original direction up to meet fibers, the crack propagation direction changed along with the parenchyma and fibers interface extend parallel to the grain, which was mainly because the interface strength was much lower than the fiber bundles strength. Tensile fracture manner were different in different parts of bamboo. The outer bamboo fracture manner was spite along fiber interface,the intermediary bamboo fracture manner was stepped. And the inner bamboo part fractured section was neat. That is because the different fiber content in the three parts of the bamboo. In the loading process of three-point bending, bamboo crack path was "Z" shape. The failure mode was fiber bundle peeled layer by layer. Cracks passed quickly through parenchyma, and after experiencing the axial expanded along fiber bundles. Fiber bundles played an important part in preventing crack expanding.
     7. In situ ESEM showed that tensile failure is neat parenchyma fracture, and surface was neat but vascular bundles were pulled out first and then stretched gradually to destroy. In 3-Point bending loading mode, bamboo fracture characteristics were fiber bundles being pulled out of bamboo, interface failure, and fiber bundle fracture. In addition, fiber bundle was pulled longer than the inner fibers. However, Chinese fir damaged section was neatly broken and with rough sections. The bamboo failure mode was the typical composite fracture characters.
     8. Synchrotron radiationμ-CT technique was helpful to study the internal structure of damaged bamboo. Tensile failure bamboo internal fracture characters were: matrix fracture, interface damage, matrix damage and fiber bridging, fiber broke. The outer part of bamboo which with high fiber content mainly damage mode was interface failure and fiber breakage. The intermediary bamboo which fiber content of the meat medium damage mode was matrix damage but fiber bridging. The damage mode of inner part bamboo with less fiber content was matrix completely fractured and fiber pull-out. Fiber bundles fracture surface was like tower. Under three-point bending load in Tangential direction, fibers were peeled and spite layer by layer. And the inner bamboo damage faster than the outer bamboo that showing a typical ductile failure mode.
     9. Bamboo vascular bundle tensile strength and MOE was decreased gradually along bamboo culms radius direction from outer to inner. Vascular bundle average tensile strength and MOE were 1702.98MPa and 33.33GPa. Vascular bundle tensile failure process was fiber bundles being pulled out with some of the first fiber damage and then fibers were completely pulled off. There is significant damage fiber bundle pull-out section parenchyma. Fiber fracture surface was spiral ladder-like, and the damage section was like jag. That was owing to fiber multi-layered cell wall structure and microfibrils arrangement. From cell level to the macro-level hierarchical structure, bamboo’s unique characteristics and composite materials give high strength and good toughness properties to bamboo.
引文
曹双平,王戈等.微拉伸技术测试几种植物单根纤维力学性能.第三届全国生物质材料科学与技术学术研讨会论文集,2009,200~203.
    陈玲.马尾松不同厚度单板制造结构胶合板工业技术及性能研究.中国林业科学研究院博士论文集.2009
    单炜,李玉顺.竹材在建筑结构中的应用前景.森林工程,2008,2:62~65
    范文英,徐虹,龚蒙.木材断裂韧性Kc测定方法的研究.南京林业大学学报,1993,17(3):80~82
    方伟等.部分国产竹材的比较解剖研究(二).竹子研究汇刊,1989,8 (4):1~11
    费本华,张东升.木材断裂裂纹及应力场的分形研究.木材工业,2003,17(3):7~12
    高庆.工程断裂力学.重庆:重庆大学出版社,1986
    葛罗逊·里斯.关于亚洲竹类的解剖及其维管束.竹子研究汇刊,1982,1 (1):105~129
    龚蒙.木材弹性常数的测定.南京林业大学论文集. 1990
    巩翠芝,刘一星,崔永志等.利用环境扫描电子显微镜原位监测木材的断裂过程.东北林业大学学报,2007,5(6):7~9
    洪起超.工程断裂力学基础.上海:上海交通大学出版社,1987.
    胡传炘.断裂力学及其工程应用.北京:北京工业大学出版社,1989
    胡小方,景小宁,赵建华等.应用SR-CT技术研究陶瓷材料的空隙结构及密度分布.实验力学,2003,18(4):485~489
    黄盛霞.毛竹微观构造特征与力学性质关系的研究,安徽农业大学学报,2005,32(2):203~206
    黄盛霞.竹材的构造与力学行为的关系.安徽农业大学硕士毕业论文,2007
    嵇伟兵,姚文斌,马灵飞.龙竹和绿竹竹材壁厚方向的梯度力学性能.浙江林学院学报,2007,24(2):125~129
    贾贤等.天然生物材料及其仿生工程材料.北京:化工工业出版社,2007
    江泽慧,费本华,王正等.新型竹材结构建筑研究初报:结构符合竹材的研究与应用.国际木业,2003,6:12-17
    江泽慧,费本华,张东升等.数字散斑相关方法在木材科学中的应用及展望.中国工程科学,2003,5(11):1~7
    江泽慧,任海青,胡一贯.木材断裂过程的研究.核技术,2000,23(8):572~576
    江泽慧,王正,常亮等.建筑用竹材墙体制造技术研究.北京林业大学学报,2006,28(6):155~158
    江泽慧等.世界竹藤.辽宁:辽宁科学技术出版社,2002
    景小宁,胡小方,赵建华等. SXR-CT技术应用研究烧结陶瓷三维微结构拓扑形貌.材料科学与工程学报,2003,21(3):327~330
    李坚等.木材科学.哈尔滨:东北林业大学出版社,1994
    李庆芬.断裂力学及其工程应用.哈尔滨:哈尔滨工程大学出版社,2008
    李世红,付绍云,周本濂等.竹子—种天然生物复合材料的研究.材料研究学报,1994,8(2):188~192
    李霞镇.毛竹材力学及破坏特性研究.中国林业科学研究院硕士论文集. 2009
    李源哲,张寿槐,白同仁等.中国七种竹材的物理力学性质.中国林业科学研究院木材工业研究所研究报告,木工1986,4号(总18号)
    李正理等.10种国产竹材比较解剖观察.植物学报,1961,9 (1):76~97
    刘亚迪,桂仁意,俞友明等.毛竹不同种源竹材物理力学性质初步研究.竹子研究汇刊,2000,l(27):50~54
    鹿振友.断裂力学在木材加工上的应用.北京林业大学学报,1988,10(3):49~56,
    马红霞.毛竹/杨木复合材料界面胶合性能及其影响因素的研究.中国林业科学研究院博士论文集.2009
    马灵飞,马乃训.毛竹材材性变异的研究.林业科学,1997 ,33(4) :356~364
    潘国强,范荣,徐朝银等.同步辐射X射线衍射装置及其在结构生物学中的应用.实验技术,2003,32(2):119~123
    彭冠云.基于CT技术检测竹材\木材结构特征的研究.中国林业科学研究院博士论文集. 2009
    乔士义,朱建彬,崔东风. 52种竹材维管束的观测报告.竹类研究,1991,1
    任海青,江泽慧.人工林杉木/马尾松木材的断裂特性.林业科学,2001,37(3):118~121
    任海青,邵卓平.断裂力学及其在木材学中的应用.木材工业,1999,13(5):20~23
    任海青.人工林木材断裂性质的研究.中国林业科学研究院,1999
    任宁,刘一星,巩翠芝.木材微观构造与拉伸断裂的关系.东北林业大学学报,2008,36(2):33~35
    邵卓平,陈品,查朝生等.木材损伤断裂过程的声发射特性与Felicity效应.林业科学,2009,45(2):86~91
    邵卓平,黄盛霞,吴福社等.毛竹节间材与节部材的构造与强度差异研究.竹子研究汇刊,2008,2(2):48~52
    邵卓平,江泽慧,任海青.柔度法标定木材断裂韧性的研究.林业科学,2001,37(2):112~116
    邵卓平,任海青,江泽慧.木材横纹理断裂及强度准则.林业科学,2003,39(1):119~125
    邵卓平,任海青,江泽慧.线弹性断裂力学原理在木材中应用的特殊性及木材顺纹理断裂.林业科学,2002,38(6):110~115
    邵卓平,张红为.毛竹的纤维和基本组织的力学性质.第三届全国生物质此阿拉科学与技术学术研讨会论文集,2009,52~55
    邵卓平.竹材的层间断裂性质.林业科学,2008,44(5):122-127
    邵卓平.木材断裂韧性测试研究.力学实践,2002,24(4):49~51
    
    邵卓平.木材损伤断裂与木材细观损伤基本构元.林业科学,2007,43(4):107~110
    申宗圻.木材学.北京:中国林业出版社,1993
    沈观林,胡更开.复合材料力学.北京:清华大学出版社. 2006
    孙健平,王逢瑚.动态载荷下基于声发射技术的杨木破坏过程检测.林业科学,2006:9(42):89~92
    孙艳玲,鹿振友.木材断裂力学的研究.北京林业大学学报,1997,19(3):85~92
    孙艳玲,鹿振友.用有限元计算水曲柳裂纹尖端应力强度因子.北京林业大学学报,1997,21(3):53~57
    万雄,陶建文,于盛林.扇束辐射层析技术重建三维流场.光子学报,2004,33(2):252~256
    汪敏,胡小芳,伍小平等.同步辐射X射线衍射增强CT方法研究.光子学报,2006,35(10):1597-1601
    王朝晖.竹材材性变异规律与加工利用研究.中国林业科学研究院博士论文集, 2001
    王戈.毛竹/杉木层积复合材料及其性能.中国林业科学研究院博士论文集, 2003
    王丽宇,鹿振友,赵东等.白桦材LT型裂纹的演化与增长行为的研究.北京林业大学学报,2002, 24 (2):59~61
    温太辉,周文伟.中国竹类维管束解剖形态的研究(一).竹子研究汇刊,1984,3(1):1~21
    冼杏娟,冼定国.竹材的微观结构及其与力学性能的关系.竹子研究汇刊,1990,9(3):10~23
    冼杏娟,冼定国.竹/塑复合材料力学性能评定及其应用.力学进展,1989,19(4):515~519
    冼杏娟,冼定国.竹材的断裂特性.材料科学进展,1991,5(4):336~341
    谢力生.声发射法在木材干操中的应用.林产工业,2001,28(3):38~42
    徐曼琼,金观昌,鹿振友.数字散斑面内相关法测量木材抗压弹性模量.林业科学,2003,39(2):174~176
    腰希申等.中国主要竹种微观结构.大连:大连出版社,1992
    姚武.竹材在建筑结构中的应用.上海建材,2000,1:26~27
    尹思慈.木材学.北京:中国林业出版社,2000
    于文吉,江泽慧,叶克林.竹材特性研究及其进展.世界林业研究,2002,5(2) :50-55
    余雁,江泽慧,王戈等.毛竹纤维微纤丝取向的原子力显微镜观察.北京林业大学学报,2008,30(1):124~127
    余雁,王戈,覃道春等. X射线衍射法研究毛竹微纤丝角的变异规律.东北林业大学学报,2007,35(8):28~29
    於琼花,俞友明,金永明等.雷竹人工林竹材物理力学性.浙江林学院学报,2004,21(2):130~133
    虞华强,费本华,任海青等.毛竹顺纹抗拉性质的变异及与气干密度的关系.林业科学,2006,42(3):72~76
    曾其蕴,李向红,鲍贤镕.竹节对竹材力学强度影响的研究.林业科学,1992,28(3):247~ 252
    张达光.浅谈竹材建筑.中国西部科技,2007,7:65~67
    张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展,2002b,32(3):349~364
    张晓冬,程秀才,朱一辛.毛竹不同高度径向弯曲性能的变化.南京林业大学学报,2006,30(6):44~46
    张玉炬,张新夷.同步辐射X射线三维显微成像.物理学进展,2001,21(1):12~28
    赵建生.断裂力学及断裂物理.武汉:华中科技大学出版社,2003
    周芳纯.竹材的力学性质.竹类研究竹材培育与利用,1991,1:212~219
    周芳纯.竹材构造和性质研究报告.竹类研究,1991,11(2):8~20
    周兆兵,曹平祥.浅谈声发射的小波分析与木工刀具磨损检测.木材加工机械,2002,(6):1-5
    朱红娟.基于小波神经网络木质材料无损检测方法研究.北京林业大学学位论文,2007
    竹藤中心.竹材走向国际绿色建筑领域.世界竹藤通讯,2009,2:21
    A. K. Ray, S. K. Das, S. Mondal. Microstructural characterization of bamboo. Journal of Materials Science, 2004 (39):1055~1060
    Abe. Latif et al. Effects of age and height on the machining properties of Malaysian bamboo. Journal of Tropical Forest Science, 1993,5(4):528~535
    Abe.Latif. Some selected properties of two Malaysian Bamboo species in relation to age, height, site and seasonal variation. Ph.D. thesis, Faculty forestry, 1995UPM 281pp.
    Agrawal C P. Full-field deformation measurements in wood using digital image processing. Ph.D. thesis, Virginia Polytechnic Institute and State University, 1989
    Shigeyasu Amada, Tamotsu Munekata, Yukito Nagase.The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials. Journal of Composite Materials, 1996, 30(7), 800~819
    Andreu, J.-P., Rinnhofer, A. Automatic detection of pith and annual rings on industrial computed tomography log images. In Proceedings of the Ninth International Conference on Scanning Technology and Process Optimization for the Wood Industry (ScanTech), 2001:37~47
    Ansell M P. Acoustic emission from softwoods in tension. Wood Sci Technol,1982,16:35~58
    Atack W. et al. The Energy of Tensile and Cleavage Fracture of Black Spruce. Tappi, 1961,44 (8):555~567.
    Barette J D, Foschi R O. Mode II Stress intensity factors for cracked wood . Engineering Fracture Mechanics, 1977, 9:371~378
    Bhandarkar S. M., Faust T. D., and Tang M .CATALOG: A system for detection and rendering of internal log defects using computer tomography. Mach. Vis. 1999,11(4):171~190
    Bhandarkar, S., Faust, T.D., Tang, M. A system for detection of internal log defects by computer analysis of axial CT images. In: Third IEEE Workshop on Applications of Computer Vision WACV’96, 1996, :258~263
    Brack D.Elementary Engineering Fracture Mechanics.The Hague Martinus Nijkoff Publishers, 1982
    Carsson L A,Gillespie J W,Pipes R P.On the analysis and design of the end notched flexure(ENF)specimen for modeIItesting.J ComposMater,1986,20
    Choi, D., J. L. Thorpe, and R. B. Hanna. Image Analysis to Measure Strain in Wood and Paper. Wood Science and Technology.1991,25(2): 251~262.
    Cook J,Gordon J E.A mechanism for the control of crack propagation in all-brittle systems.Proc Roy Soc A282,1964:508~520
    Cordon J E, Jeronimidis G..Work of fracture of natural cellulose.Nature,1974:252~116
    Danvind, J. Methods for Collecting and Analyzing Simultaneous Strain and Moisture Data During Wood Drying; Licenciate Thesis in the Division of Wood Physics, Skelleftea Campus: Skelleftea, Sweden, Lulea University of Technology,2002.
    Derek R Mitch. Splitting Capacity characterization of bamboo culms. University of Pittsburgh thesis,2009 Espiloy,Z. Effect of age on the physio-mechanical properties of some Philippine Bamboo. In Bamboo in Asia and the Pacific. Proceedings of the 4th International Bamboo Workshop., 1991,27~30
    Espinoza, G.R. Detection des d′efauts internes dans les billes d’Erable `a sucre `a l’aide d’un scanneur `a rayons X. Doctoral Thesis. Facult′e de Foresterie et G′eomatique, Universit′e Laval, Qu′ebec, 2005.
    Espinoza, G.R., Hernandez, R., Condal, A., et al. Exploration of the physical properties of internal characteristics of Sugar maple logs and relationships with CT images. Wood Fiber Sci. 2005,37 (4):591~604
    F. Forsberg a, R. Mooser, M. Arnold , E. Hack , P. Wyss . 3D micro-scale deformations of wood in bending: Synchrotron radiation uCT data analyzed with digital volume correlation. Journal of Structural Biology, 2008,164:255~262
    Fonselius,M. and K.Riipola.1992.Determination of fracture toughness for wood. J. of structural engineering . ASCE.118(7):1727~1740
    Fredrik Forsberg. X-ray Microtomography and Digital Volume Correlation for Internal Deformation and Strain Analysis. Lule? University of Technology, Ph.D Thesis,2008
    Funt B. V. and Bryant E.C.Detection of internal log defects by automatic interpretation of computer tomography images. For. Prod. J.1987, 37(1):56~62
    Ghavami K. et.al. Bamboo- a functionally graded composite material using digital image processing. The role of bamboo in Disaster Avoidance International . Worshop Organized by International Network for bamboo and rattan(INBAR ). 2001,August
    Gi Young Jeong.Tensile Properties of Loblolly Pine Strands Using Digital Image Correlation and Stochastic Finite Element Method, Dissertation submitted to the faculty of Virginia; Doctor of Philosophy in Wood Scienceand Forest Products.2008
    Gordon J E.The new science of strong Mateeerials or why you don’t fall through the flor. Haromonds worth, England: Penguin Books Limited,1968
    Griffith A A. The Phenomenon of Fracture and Flow in So lids. London Ph il. Trans. Roy. Soc., 1920, A 221: 163~190
    I.M.Low et al. Mechanical and gracure properties of bamboo. Key Engineering Materials. .2006,312:15~20 Irw in G R. A nalysis of Stresses and Strains near the End of a Crack Transversing a Plate. Journal of Applied Mechanics,1957, 24 (4):361~384
    Jeronimidis G. The fracture of wood in the relations to its structure.Leiden botanical series,1976,3:253~265 Jin, H., H. A. Bruck.. Theoretical development for point wise digital image correlation.Optical Engineering, 2005,44.
    Johansson, J., Hagman, O., Fjellner, B.A. Predicting moisture content and density distribution of Scots pine by microwave scanning of sawn timber. J. Wood Sci. 2003a, 49 (4):312~316
    Johansson, J., Hagman, O., Oja, J. Predicting moisture content and density of Scots pine by microwave scanning of sawn timber. Comput. Electron. Agric. 2003b, 41 (1-3):85~90
    Josef Bodner, Michael Grong Schlag,Gerhard Grull. Fracture initiation and progress in wood specimens streesed in tension. Holzforschung,1997,51: 44~47
    Julius Joseph Antonius Janssen. Bamboo in building structures. Eindhoven University of technology, PhD. thesis. 1981
    K.Ghavami1,C. S. Rodrigues and S. Paciornik. Bamboo: Functionally Graded Composite Material. Asian Journal of Asian Journal of Civil Engineering. 2003, 4,(1):1~10
    K.Ray,. Mondal,S.K.Das. Bamboo-A functionally graded Composite-correlation between microstructure and mechanical strength. Journal of Materials Science.2005(40):5249~5253
    K.J.Martinschitz,R.Daniel, C.Mitterer,J.Keckes. Elastic constants of fiber-textured thin films determined by X-ray diffraction. J.Appl. Cryst.2009,42:416~428
    Klaus Fruhmann, Ingo Burgert, Stefanie E. et al. Detection of the fracture path under tensile loads through in situ tests in an ESEM chamber. Holzforschung,2003,57:326~332
    Konnerth, J., A.Valla,W.Gindl et al. Measurement of strain distribution in timber finger joints. Wood Sci Technol.2006b(40):631~636.
    Konnerth, J., W.Gindl,W., U. Mueller..Elastic properties of adhesive polymers. Part I: Polymer films by means of electronic speckle pattern interferometry.J.Appl. Polym.Sci. 2006a(103):3936~3939.
    Liese, W. The structure of bamboo in relation to its properties and utilization. International Symposium on Industrial use of bamboo, Beijing ,China.7-11 December,1992
    Liese, W., Characterization and utilization of bamboo: Production and utilization of bamboo and related species. Wood Biology University, Japan, 1986.
    Liese,W. Anatomy of Bamboo.Bamboo research in Asia. Proceedings of a workshop held in Singapore, 1980:161~164
    Liese,W. Bamboos-biology,silvics,Properties,utilization.Dt.Ges.Techn.Zusammenarbeit(GTZ),1985,180:132
    Liese,W. Production and utilization of bamboo and related species. In proceedings of the IUFRO All Division Conference on Forest Products. 1992, 2:743~751
    Linhua Zou, Helena Jin , Wei-Yang Lu. Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials.J Mater Sci 2006,41:6991~7004
    Ljungdahl, J. L. A. Berglund, and M. Burman. Transverse anisotropy of compressive failure in European oak-a digital speckle photography study. Holzforschung,2006(60):190~195.
    Longuetaud F, Mothe F, Mothe, Leban JM. Automatic detection of the heartwood/sapwood boundary within Norway spruce (Picea abies (L.) Karst.) logs by means of CT images. Computers and Electronics in Agriculture,2007(58):100~111
    Lopez-Anido, R., L. Muszy?ski, H. J. Dagher. Composite Material Testing Using a 3-D Digital Image Correlation System COMPOSITES 2004 Convention and Trade Show American Composites Manufacturers Association October 6-8, 2004 Tampa, Florida USA.
    M.Ahmad, F. A. Kamke.Analysis of Calcutta bamboo for structural composite materials: physical and mechanical properties. Wood Sci Technol, 2005(39):448~459
    Merja Sippola, Klaus Fruhmann. In situ longitudinal tensile tests of pine wood in an environmental scanning electron microscope. Holzforschung,2002,56:669~675
    Michaela Eder, Stefanie Stanzl-Tschegg, Ingo Burgert. The fracture behaviour of single wood fibres is governed by geometrical constraints: in situ ESEM studies on three fibre types. Wood Sci Technol, 2008,42:679~689
    Mott, L., L. Groom, and S. Shaler. Mechanical properties of individual southern pine fibers. Part II. Comparison of early wood and latewood fibers with respect to tree height and juvenility.Wood and Fiber Sci. 2002,34(2):221~237
    Mott, L., S. M. Shaler, L. H. Groom. A Novel Technique to Measure Strain Distributions in Single Wood Fibers.Wood and Fiber Sci. 1996,28(4):429~437.
    Murata, K. and Masuda M. Observation of microscopic swelling behavior of the cell wall.J. Wood Sci.2001(47):507~509.
    Muszynski, L., R. Lopez-Anido and S. M. Shaler. Image Correlation Analysis Applied to Measurement of Shear Strains in Laminated Composites. in: Proceedings of SEM IX International Congress on Experimental Mechanics, Orando FL, June, 5-7, 2000. 163~166.
    Orowan E. Fracture and Strength of Solids. Physical Soc. Lond.,1949(12):185~232.
    Oscar Antonio Arce-Villalobos. Fundamentals of the design of bamboo structures. PhD thesis, Eindhoven University of Technology ,1993
    P.Trtik,J.Dual, D.Keunecke,D.Mannes. 3D imaging of microstructure of spruce wood. Journal of Structural Biology, 2007(159):46~55
    Penneru, A. P., K. Jayaramanand, D. Bhattacharyya. Strain analysis in bulk forming of wood. Holzforschung, 2005(59):456~458.
    Peter Fratzl, Richard Weinkamer. Nature’s hierarchical materials. Progress in Materials Science, 2007,52: 1263~1334
    Russell A J, Street K N. Moisture and temperature effects on the mixed-mode delamination fracture of materials. ASTM STP876.1982,349
    Samarasinghe, S. and D. Kulasiri. Stress intensity factor of wood from crack-tip displacement fields obtained from digital image processing.Silva Fennica,2004,38(3):267~278.
    Samarasinghe, S. and G. D. Kulasiri, Displacement fields of wood in tension based on image processing: Part 1. Tension parallel-and perpendicular-to-grain and comparisons with isotropic behavior. Silva Fennica, 2000, 34(3):251~259.
    Sandhya Samarasinghe, Don Kulasiri, Kelvin Nicolle. Study of Mode-I and Mixed-Mode Fracture in Wood using Digital Image Correlation Method, Proceedings of International Wood Engineering Conference, 1997
    Serrano, E., B. Enquist. Contact-free measurement and non-linear finite element analyses of strain distribution along wood adhesive bonds. Holzforschung ,2005(59):641~646.
    Shigeyasu Amada, Yoshinobu Ichikawa et al..Fiber texture and mechanical graded structure of bamboo. Composites Part B,1997,28B:13~20
    Shigeyasu Amada,Sun Untao.Fracture prpperties of bamboo; Composites, 2001,part B,32:451~459
    Sih G C,Pmis P C.,Irwin G R.On cracks in rectilinearly anisotmpic bodies using singular isoparametric elements. Int.J of Fracture Mech,1965(1):189~196
    Som,S., Davis J., Wells P.et al. Morphology Methods for Processing Tomographic Images of Wood.Digital Image Computing. Techniques and Applications (DICTA).1993(2): 564~571.
    Som,S., Svalbe,I., Davis, J., et al. Internal Scanning of Logs for Grade Evaluation and Defect Location. Digital Image Computing: Techniques and Applications (DICTA), Brisbane, Australia. 1995:408~413
    Stazl-Tschegg,S.E.,D.M. Tan and E.K.Tschegg. New splitting method for fracture characterization.Wood Sci. Technol. 1995,29:31~50
    Stazl-Tschegg,S.E.,D.M. Tan and E.K.Tschegg. Model II fracture tests on spruce wood .Mokuzai Gakkaishi. 1996,47(7):642~650
    Stelmokas J.W, A.G. Zink,J. L. Loferski, and J.D. Dolan. Measurement of load distribution among multiple-bolted wood connections. Journal of Testing and Evaluation, 1997,25(5):510~515.
    Sun, Y., J. H. L. Pang, C. K. Wong, and F. Su. Finite element formulation for a digital image correlation method. 2005,44: 7357~7363.
    Thuvander F, Berglund I.A.. In situ observations of fracture mechanisms for radial cracks in wood.Mater Sci., 2000,35:6277~6283
    W. Liese .Research on Bamboo. Wood Sci. Technol. 1987,21:189~209
    Walter Liese.Advances in bamboo research. Journal of forestry university (natural sciences edition ).2001, 25(4):1~6
    Walter Liese. Protechtion of bamboo in service.世界竹藤通讯,2003,1(1):29~33
    Walter Liese.The anatomy of bamboo culms. Technical report , International Network for bamboo and Rattan. 1998,Beijing
    Walter Liese. The structure of bamboo in relation to its properties and utilization. Bamboo and its use international symposium on industrial use of bamboo. 1992
    Wu E M.Application of fracture Mechanics to anisotropic plates. Journal of Applied Mechanics.1967,34:967~974
    Xiaodong Li .Nanoscale structural and mechanical characterization of the cell wall of bamboo fibers.Materials Science and Engineering C,2009,29:1375~1379
    Yan Yu.Cell-Wall Mechanical Properties of Bamboo Investigated.Wood and Fiber Science. 2007,39(4):527~535
    Zhu D. A feasibility study on using CT image analysis for hardwood log Inspection. PH.D dissertation, Virginia Tech, 1993
    Zhuo-ping Shao, Chang-hua Fang, Gen-lin Tian. Mode I interlaminar fracture property of moso bamboo ( Phyllostachys pube). Wood Sci Technol,2009,43:527~536
    Zink A. G. and C. Price. Compression strength parallel to the grain within growth rings of low density hardwoods. Maderas:Cienciay Tecnologia, 2006,8(2):117~126
    Zink A.G, Pellicane P.J.,Shuler C.E. Ultrastructural analysis of softwood fracture surfaces. Wood Sci Technol,1994,28:329~338
    Zink,A.G, R.W. Davidson, aR. B. Hanna. Strain measurement in wood using a digital image correlation technique. Wood and Fiber Sci.,1995,27(4):346~359
    Zink, A. G., R. B. Hanna, and J. W. Stelmokas. Measurement of Poisson’s ratios for yellow-poplar. Forest Prod. J. 1997,47(3):78~80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700