用户名: 密码: 验证码:
垃圾焚烧飞灰重金属热分离工艺及挥发特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾焚烧飞灰因含有高浸出浓度的重金属被视为危险废物,必须经水泥固化、化学药剂稳定化、熔融固化、高温烧结等技术将重金属固化后方可填埋或资源再利用。从环境长期的安全性考虑,经这些方法处理后残留在飞灰产品中的重金属不但会对环境构成潜在的危害,而且也是一种金属资源的浪费。为此,本文充分利用飞灰中重金属在高温处理过程中易挥发这一特性,对飞灰中高含量的Pb、Cd、Cu、Zn等重金属进行高温热分离研究,重金属挥发物随烟气一起冷凝形成二次飞灰。经高温热分离技术处理后的飞灰可作为普通废物填埋或建筑原材料,而二次飞灰中的重金属含量较高,相当于一种特殊的重金属富矿,可作为冶金原料。
     通过热分离工艺参数优化,确定了温度和时间为焚烧飞灰高温热处理的主要影响因素,而气氛和进气流量对重金属的挥发影响不显著。从重金属挥发效率和节能角度考虑,其最佳挥发温度和时间分别为1000℃和120min,此时重金属Pb的挥发率高达99.7%,Cd和Cu的挥发率达89.7%和77.9%,Zn仅为53.2%;若提高温度和延长热处理时间,可使Pb的最大挥发率接近100%,Cd、Cu分别高达98%和95%以上,而Zn也能达到90%以上。实验通过添加不同种类的氯制剂(CaCl2、MgCl2、AlCl3、FeCl3和NaCl)和“飞灰水洗预处理工艺”等研究方法,对重金属热分离的氯化反应机理进行了深入地探讨,并以氯制剂“平衡分压”和“反应的吉布斯自由能函数变”两种理论对氯化反应机理进行了解释。为了进一步验证氯化反应机理的正确性和科学性,本文采用人工配灰模拟实验对氯化反应机理进行了验证,结果发现模拟实验曲线与飞灰实验曲线非常拟合,从而验证了氯化反应机理的正确性。
     在飞灰“热重分析”实验数据的基础上,利用Friedman和Ozawa法对飞灰热重测试结果进行了分析,并采用三步连串反应模型:A --(Fn)--> B --(Fn)--> C --(Fn)--> D对飞灰热力学进行模拟,得到模型v=kcn=Ae-E/RTcn;并在氯化反应机理的基础上,建立了重金属热分离动力学模型C=Cg(1-e-kt/h)。二次飞灰理化特性分析表明:在宏观上,干燥的二次飞灰为黄褐色粉末,吸潮后逐渐形成粘稠浆状体,颜色由黄色渐变为天蓝色,随着水分的增加变为蓝绿色或浅绿色;在微观上(SEM),二次飞灰颗粒形状大小不一,多以不规则块状、棒状体居多,不规则形状的大颗粒表面上附着了一些形状各异的小颗粒。与原灰相比,二次飞灰中重金属Pb、Cu、Zn和Cd的含量大幅度提高,其中Pb的质量百分含量高达10%,是原灰的5倍;Cu和Zn的质量百分含量也高达5.7%和8.7%,与矿石的工业品位相近,说明二次飞灰可作为金属矿藏。物相分析表明二次飞灰中主要由Cl、Pb、Cu、Zn、K组成,占总量的98.1%,其中Cl约占了40%左右;二次飞灰中还存在大量金属氯化物,如PbCl2,这进一步验证了飞灰中重金属在高温热处理过程中主要以氯化物形式挥发的反应机理。
     总之,飞灰中重金属的高温热分离是可行的,可解决传统的飞灰处理方法给环境造成的隐患问题。
Municipal solid waste incineration (MSWI) fly ash is classified as a special hazardous waste world-widely for the presence of leachable heavy metals, high concentrations of soluble salts. These hazardous substances in fly ash can pollute groundwater and soils, some of them are difficult to degrade and could accumulate, thus they are harmful to organisms when exposes to organisms. Thus, fly ash must be detoxified or decontaminated prior to disposal or reuse. At present, various approaches have been used to solidify/stabilize fly ash, such as cement fixation, acid extraction, stabilization with chemical agents and vitrification. From the long term view of environmental security, these heavy metals remained in fly ash will not only threaten the environment, but also cause waste of metal resources.
     Some heavy metals, such as Pb, Cu, Zn, Cd will evaporate during the heat-treatment, then formed solid again during cooling process. On the basis of these,“Thermal separation process (TSP)”was presented firstly and“Second fly ash(SFA)”was defined in this paper. During thermal separation, heavy metal will evaporate and be enriched in SFA. This method not only has solved environment security problem but also recoveried metals source.
     Optimization of TSP parameters determined that temperature and time were the main influence factors with the optimum values 1000℃and 120min, respectively. The evaporation rate of Pb can reach as high as 99.7% under the optimum conditions,and the Cd, Cu, Zn were 89.7%, 77.9% and 53.2%, respectively. If temperature and time are further enhanced, the evaporation of Cd and Cu can reach 98% and 95%, and Zn also achieve above 90%.
     The addition of different types of chlorides such as CaCl2、MgCl2、AlCl3、FeCl3 and NaCl, as well as“wash-ash”method were adopted to investigate the chlorination mechanism. Two theories, equilibrium partial pressure of chlorides and Standard Gibbs Free Energy Change for reaction, were brought out to explain the chlorination mechanism. In order to test the mechanism artificially synthetic fly ash was used in the experiment , the result showed that the simulating results were in fine identity with the experimental data ,which verified the mechanism validity.
     Thermodynamic Model and Kinetic Model were established based on the results of TG-DTG analysis. Friedman and the Ozawa law were used to calculate“Energy”and the pre exponential factor“A”. By three-step reaction mechanisms, A --(Fn)-> B --(Fn)--> C --(Fn)--> D, the thermodynamic Model of fly ash was simulated asv=kcn=Ae-E/RTcn. On the basis of chlorination mechanism, Kinetic Model for heavy metal thermal separation was proposed as C=Cg(1-e-kt/h)。Physico - chemical analysis indicated that the dry SFA was a kind of filemot powder, it would change gradually from filemot to azure after moisture absorption, with the moisture further increased, the azure powder would become cyan or aqua slurry in the end. The result of SEM demonstrated that shape and size of particles in SFA varied differently, mostly in the form of irregular block and clava. Lots of different shape small particles were clinged to big granules. Compared with the original fly ash, the content of heavy metals in SFA raised greatly. The mass percentage of Pb was 10%, which was 5 times of original one, the content of Zn and Cu were 8.7% and 5.7%, respectively. The SFA was mainly composed of Cl, Pb, Cu, Zn, K, accounted for the total quantity 98.1%, and Cl accounted for about 40%. Therefore, SFA can be reused as metallurgy materials or enriched into metal ore. Analysis of X-ray diffraction(XRD) indicated the SFA was mainly composed of metal chlorides, such as PbCl2、KPb2Cl5, et al. The result further confirmed that the heavy metal were evaporized with chlorides during the heat-treatment.
     In conclusion, the result of experiment shows that the method of TSP is feasible to treat the fly ash. It can solve the environment potential hazard problem which was created by the tradition methods for fly ash treatment.
引文
1 国家环境保护总局污泥控制司.城市固体废物管理与处理处置技术.中国石化出版社,2000:237~239.
    2 李建新,王永川,张美琴等. 国内城市生活垃圾特征及其处理技术研究.热力发电,2006,(1):11~14.
    3 万晓. 焚烧飞灰中重金属浸出的主要控制过程研究. 清华大学博士学位论文.2006, 3~4.
    4 国家环保总局.GB18485-2001,生活垃圾焚烧污染控制标准.环境科学出版社,2002.
    5 X.Querol, J.L.Fernandez-Turiel, A. Lopez-Soler. Trace element in coal and their behavior during combustion in a large power station. Fuel. 1995, 74(3): 331~343.
    6 M.Y. Wey , J. L. Su, M. H. Yan, et al. The concentration distribution of heavy metal under different incineration operation conditions. The Science of the Total Environment. 1998, 21(2-3): 183~193.
    7 H. Manninen., A. Perkiu, J. Palonen, et al. Trace metal emissions from co-combustion of refuse derived and packaging derived fuels in a circulating fuidized bed boiler. Chemosphere.1996, 32(12): 2457~2469.
    8 刘峰. 焚烧飞灰的烧结工艺及重金属固定效应研究. 清华大学博士学位论文. 2006, 4~5.
    9 J. P. G. M. Schreurs, H.A. van der Sloot, Ch. Hendriks. Verifition of laboratory field leaching behavior of coal fly ash and MSWI bottom ash as a road base material.Waste Management . 2000,20 : 193~201.
    10 H.A. van der Sloot, D.S. Kosson, O. Hjelmar. Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Management. 2001, 21 : 753~765.
    11 R. Forteza, M. Far, V. Cerda. Characterization of bottom ash in municipal solid waste incinerators for its use in road base.Waste Management. 2004, 24 : 899~909.
    12 P. Appendino, M. Ferraris, I. Matekovits, M. Salvo. Production of glass–ceramic bodies from the bottom ashes of municipal solid wasteincinerators. Journal of the European Ceramic Society. 2004, 24 : 803~810.
    13 IAWG (The Inernation Ash Working Group). Municipal solid waste incineratior residues. Elsevier,1997.
    14 P. Piantone, F. Bodenan, R.Derie. Monitoring the stabilization of municipal solid waste incineration fly ash by pHospHation: mineralogical and balance approach. Waste management. 2003, 23(7):225~243.
    15 E. Kjell Haugstena, B. Gustavsonb. Environmental properties of vitrified fly ash from hazardous and municipal waste incineration.Waste Management.2000,20(10):167~176.
    16 S.Sakaia, M. Hiraokab.Municipal solid waste incinerator residue recycling by thermal processes. Waste Management. 2000,20(7):249~258.
    17 C. Y. Chris Chan, W. Donald Kirk, M. Hilary .The behaviour of Al in MSW incinerator fly ash during thermal treatment. Journal of Hazardous Materials. 2000,76:103~111.
    18 A.Jakob. Municipal solid waste incineration-flue gas and ash treatment. Proceeding of Sino-Swiss Workshop on Solid Waste Manangement and Technology, edited by Y.C.Zhao, Tongji University Press, Shanghai, China, 1998:93~102.
    19 P. Wunsch, C. Greilinger, D. Bienick, et al. Investigation of the bingding of heavy metals in thermally treated residues from waste incineration. Chemosphere. 1996,32(11): 2211~2218.
    20 P. Van Herck, B. Van der Bruggen, G. Vogels, et al. Application of computer modeling to predict the leaching behavior of heavy metals from MSWI fly ash and comparison with a sequential wxtraction method. Waste Management. 2000,20(2-3):203~210.
    21 L.Le Forestier, G.Libourel. Characterization of flue gas residues from municipal solid waste combustors. Environmental Science and Technology.1998, 32(15): 2250~2256.
    22 X.Querol, J.L.Fernandez-Turiel, A.Lopez-Soler. Trace element in coal and their behavior during combustion in a large power station. Fuel, 1995. 74(3): 331~343.
    23 U.Richer, L.Birnbaum. Detailed investigations of filter ashes from municipal solid waste incineration. Waste Management & Research.1998, 16(2):190~197.
    24 J. D. Hamemik, G. C. Frantz. Physical and chemical properties of municipal solid waste fly ash. ACI Materials Journal.1991, 88(M36): 294~301.
    25 A. Kida, Y. Noma, T. Imada. Chemical speciation and leaching properties of elements in municipal incinerator ashes. Waste Management. 1996, 16(6-6): 527~536.
    26 Y. C. Zhao, L. J. Song, G.. J. Li. Chemical stabilization of MSW incinerator fly ashes. Journal of Hazardous Materials. 2002, 95(1): 47~63.
    27 T. Mangialarid, A. E. Paolini, P. A. olettini, P. Sirini. Optimization of the solidification/stabilization process of MSW fly ash in the cementitious matrices. Journal of Hazardous Materials. 1999, 70(1): 53~70.
    28 P. P. Bosshard, R. Bachofen, H. Brandl. Metal leaching of fly ash from municipal waste incineration by aspergillus niger. Environmental Science and Technology.1996, 30(10): 3066~3070.
    29 Z. Abbas, B. M. Steenari, O. Lindqvist. A study of Cr6+ in ashes from fluidized bed combustion of municipal solid waste: leaching, secondary reactions and the applicability of some speciation methods. Waste Management. 2001, 21: 726~739.
    30 C. C. Wiles. Municipal solid waste combustion ash: state-of-the-knowledge. Journal of Hazardous Materials. 1996, 47(1-3): 326~344.
    31 Y. J. Park, J. Heo. Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling. Ceramics International. 2002. 28(6): 689~694.
    32 X. Querol, J. L. Fernandez-Turiel, A. Lopez-Soler. Trace element in coal and their behavior during combustion in a large power station. Fuel.1995, 74(3) : 331~343.
    33 M.Y.Wey, J.L.Su,M.H. Yan, M.C.Wei. The concentration distribution of heavy metal under different incineration operation conditions The Science of the Total Environment. 1998, 21:183~193 .
    34 H. Manninen, A.Perkiu, J. Palonen, et al. Trace metal emissions from Co-combustion of refuse derived and packaging derived fuels in a circulationg fluidized bed boiler. Chemosphere. 1996, 32 (12): 2457~2469.
    35 U. Richer, L.Birnbaum. Detailed investigations of filter ashes frommunicipal solid waste incineration. Waste Management & Research.1998, 16(2): 190~197.
    36 S.Sakai, S.Mizutani, T.Uchida,et al. Substance flow analysis of peristent toxic substances in the recycling process of municipal solid waste incineration residues. WASCON2000, edited by Woolley G.R., J.J.J.M.Goumans, P.J.Wainwright. 2000, 893~903.
    37 P.Ubbriaco. Fly ash reactivity: formation of hydrate phases. Journal of Thermal Analysis and Calorimetry. 2001, 66: 293~305.
    38 罗春晖.生活垃圾焚烧飞灰水洗-稳定化试验研究. 东华大学硕士学位论文. 2003: 44~47
    39 王伟,万晓. 垃圾焚烧飞灰中重金属的存在方式及形成机理. 城市环境与城市生态. 2003,16:7~9.
    40 T. T. Eighmy,J. D. Eusden, J. E. Krzanowski, et al. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash. Environmental Science and Technology. 1995, 29(3): 629~646.
    41 冯军会, 何品晶, 曹群科等. 垃圾焚烧飞灰中重金属浸出的影响因素.环境化学.2005,24(4):438~442.
    42 席北斗,王 琪,张晓萱等.不同浸出毒性鉴别方法对焚烧飞灰浸出毒性鉴别的适宜性.环境科学研究.2005, (18):17~22
    43 严建华, 彭雯, 李晓东等.城市生活焚烧飞灰重金属的浸出特性.燃料化学学报.2004, 32(1):65~68
    44 F. Hasselriis, A. Licata. Analysis of heavy metals emission data from municipal waste combustion. Journal of Hazardous Materials.1996, 47(1-3): 77~102.
    45 R.G. Barton, W. D. Clark, W. R. Seeker. Fate of metals in waste combustion systems. Combustion Science and Technology. 1990,74: 327~342.
    46 M.Lemann, R.Walder, A.Schwyn. Heavy metals in municipal solid waste incineration residues. Journal of Power Sources, 1995. 57(1): 56~59.
    47 K.S.Wang, C.J.Sun, .Y.Liu C. Effects of the type of sintering atmosphere on the chromium leachability of thermal-treated municipal solid waste incinerator fly ash. Waste management. 2001, 21(1): 86~91.
    48 V. Albino, R. Cioffi, S.L.antoro,et al. Stabilization of residue containingheavy metals by means of matrices generating calcium trisulphoaluminate and silicate hydrates. Waste Management & Research. 1996, 14(1): 29~41.
    49 R. Derie. A new way to stabilize fly ash from municipal incinerators. Waste Management. 1996, 16(8): 711~716.
    50 N. B. Chang, H. P. Wang,W. L. Huang, et al. The assessment of reuse potential for municipal solid waste and refuse-derived fuel incineration ashes. Resources, Conservation and Recycling. 1999, 25: 226~270.
    51 C. Collivignarelli, S. Sabrina. Reuse of municipal solid waste incinerator fly ashes in concrete mixtures. Waste Management. 2002, 22: 909~912.
    52 N. Alba, S. Gasso, T. Lacorte, et al. Characterization of municipal solid waste incineration residues from facilities with different air pollution control systems. Journal of the Air & Waste Management Association.1997, 47: 1170~1179.
    53 G. C. C.Yang, C. M. Tsai. A study on heavy metal extractability and subsequent recovery by electrolysis for a municipal incineratior fly ash. Journal of Hazardous Materials. 1998, 58(1-3):103~120
    54 K. M Johannessen. The regulation of municipal waste incineration ash-A legal review and update. Journal of Hazardous Materials. 1996, 47(1-3):383~393
    55 何品晶, 章骅, 王正达等.生活焚烧飞灰的污染特性.同济大学学报.2003,31(8):972~976
    56 J. D. Hamernik, G. C. Frantz. Strength of concrete containing municipal solid waste fly ash.ACI Materials Journal. 1991, 88(5): 508~517.
    57 P. Ubbriaco, D. Calabrese. Solidification and stabilization of cement paste containing fly ash frommunicipal solide waste. Thermochimica Acta. 1998, 321(1-2):143~150.
    58 T. W. Cheng, Y. S. Chen. On formation of CaO-Al2O3-SiO2 glass–ceramics by vitrification of incinerator fly ash. Chemosphere.2003, 51(9): 817~824
    59 Y. Kuo, T. Lin, P. Tsai. Metal behavior during vitrification of incinerator ash in a coke bed furnace. Journal of Hazardous Materials. 2004, 109(1-3): 79~84
    60 S. Re’mond, P.Pimienta, D.P.Bentz. Effects of the incorporation of Municipal Solid Waste Incineration fly ash in cement pastes and mortars: I.Experimental study. Cement and Concrete Research. 2002, 32(2): 303~311.
    61 S. Iretskaya. Metal leaching from MSW fly ash before and after chemical and thermal treatments. Environmental Progress. 1999,18(2) :144~148.
    62 A .Polettini, R. Pomi, P. Sirini, et al. Properties of Portland cement-stabilized MSWI fly ashes. Journal of Hazardous Materials. 2001, 88(1): 123~138
    63 张瑞娜, 赵由才, 许实. 生活焚烧飞灰的处理处置方法. 苏州科技学院学报.2003,16(1):22~29
    64 M. Ishida. The demonstration test of burner type ash melting system. The Hitachi Zosen Technical Review.1995, 56(2): 57~62
    65 R. Weber, T. Sakurai, H. Hagenmaier. Formation and destruction of PCDD/PCDF during heat treatment of fly ash samples from fluidized bed incinerators. Chemosphere.1999, 38(11): 2633~2642.
    66 E. Kjell, Haugsten, G.Bengt. Environmental properties of vitrified fly ash from hazardous and municipal waste incineration. Waste Management. 2000, 20: 167~176
    67 K. S. Wang, K. Y. Chiang, K. L. Lin, et al. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash. Hydrometallurgy. 2001, (62): 73~81
    68 王韶林.日本焚烧灰处理现状. 环境科学动态. 1995,1: 26~27.
    69 H. Katsuura, T.Ionue, M. Hiraoka, et al. Full-scale plant study on fly ash treatment by theacid extraction process. Waste management. 1999, 16(6-6): 491~499
    70 B.V. Bruggen, G. Vogels, P .Van Herck, et al. Simulation of acid washing of municipal solid waste incineration fly ashes in order to remove heavy metals. Journal of Hazardous Materials. 1998, 57(1-3): 127~144
    71 W. Krebs, R. Bachofen, H. Brandl.Growth stimulation of sulfur oxidizing bacteria for optimization of metal leaching efficiency of fly ash from municipal solid waste incinerator.Hydrometallurgy.2001,59(2):283~290
    72 Y. C.Zhao, R. Stanforth.Integrated hydrometallurgical process for production of zinc from electronic arc furnace dust in alkaline medium. Journal of Hazardous Material.2000,80:223~240
    73 K. Y. Chen, P. Bishop, J. Lsenburg. Leaching boundary in cement-based waste forms.Journal of Hazardous Materials.1990,30(3):298~306
    74 D. Verhulst, A.Buekens, P. J.Spencer, et al. Thermodynamic behavior of metal chlorides and sulfates under the condition of incineration furnaces. Environmental Science& Technology.1996,30(1):50~56
    75 罗宇,石英.垃圾焚烧发电厂飞灰稳定处理技术研究进展与展望.热力发电.2004,2:69~72.
    76 A .Jakob, S. Stucki, P. Kuhn. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environmental Science and Technology. 1995, 29(9): 2429~2436.
    77 C. C. Y. Chan, C. Q Jia, J. W. Graydon, et al. The behaviour of selected heavy metals in MSW incineration electrostatic precipitator ash during roasting with chlorination agents. Journal of Hazardous Materials. 1996, 50(1): 1~13.
    78 A. Jakob, S. Stucki, R. P. W. J. Struis. Complete heavy metal removal from fly ash by heat treatment: Influence of chlorides on evaporation rates. Environmental Science and Technology. 1996, 30(11): 3276~3283.
    79 H. A-F Marsh. Investigation of the behaviour of thermally treated municipal solid waste fly ash. Master Thesis. University of Toronto, 1997.
    80 C. C. Y. Chan, D. W. Kirk. Behaviour of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents. Journal of Hazardous Materials.1999, 64(1): 76~89.
    81 S. V. Vassilev, C. Braekman-Danheux, P. Laurent, et al.. Behaviour, capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste. Fuel.1999, 78(26): 1131~1138.
    82 K. F. Tan , X. C. Pu. Strengthening effects of finely ground fly ash, granulated blast furnace slag, and their combination.Cement and Concrete Research,1998,28(12):1819~1825.
    83 M. Hiraoka, S. Sakai. The properties of fly ash from municipal waste incineration and its future trestment technologies. Journal of the Japan Society of Waste Manangement Experts.1994, 5(1):3~17
    84 C. J. Poran, A.A.Faouzi. Properties of solid waste incineration fly ash.Journal of Geotejn Engineering. 1989,115(8):1118~1132.
    85 J. D. Hamernik, G. C. Frantz. A study on cement made by partially replacing cement raw materials with MSEA and calcium carbode waste. Journal of ACIMatterials. 1991,88:294~301.
    86 ASTMC618-94a. Standard specification for coal fly ash and raw or calcinated natural pozzolan for use as a mineral admixture in Portland. Cement Concrete. 1994: 304~306.
    87 T. Mangialardi. Sintering of MSW fly ash for reuse as a concrete aggregate. Journal of Hazardous Materials. 1998,87:225~239.
    88 E.Mulder. Pre-Treatment of MSWI fly ash for useful application. Waste Management. 1996,16:181~184.
    89 J. P.Young, H. Jong. Corrosion behavior of glass and glass-ceramics made of municipal solid waste incinerator fly ash.Waste Management. 2004, 24: 825~830.
    90 A. Karamanov, M. Pelino, M. Salvo, et al. Sintered glass-ceramics from incinerator fly ashes. Part II. The influence of the particle size and heat-treatment on the properties. Journal of the European Ceramic Society. 2003,23:1609~1615
    91 T.W. Cheng, Y.S. Chen. On formation of CaO–Al2O3–SiO2 glass–ceramics by vitrification of incinerator fly ash.Chemosphere. 2003,51:817~824.
    92 K. Jae-Myung, K. Hyung-Sun. Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content.Journal of the European Ceramic Society. 2004,24 : 2373~2382
    93 P. M. Bierman, C. J. Rosen. Phosphate and trace metal availability from sewage-sludge incinerator ash. Journal of Environmental Quality. 1994, 23(4):822~830.
    94 G. C. C.Yang, T.Y.Yang. Synthesis of zeolites from municipal incinerator fly ash. Journal of Hazardous Materials. 1998, 62(1):75~89.
    95 T. J. Hwa, S. Jeyaseelan. Conditiong of oily sludges with MSWIA. Water Sci and Tech.1997,35:231~238.
    96 黄本生,刘清才,王里奥. 垃圾焚烧飞灰综合利用研究进展. 环境污染治理技术与设备.2003,4(9):12~15.
    97 章骅, 何品晶. 城市生活垃圾焚烧灰渣的资源化利用.环境卫生工程.2002, 10(1): 6~10.
    98 K. Nishida, Y. Nagayoshi, H. Ota, et al. Melting and stone production using MSW incinerated ash. Waste Manangement. 2001,21:443~449 - 119 -
    99 吴显积. 废电池处理装置. 中华人民共和国发明专利. 申请号:01248064.
    100 朱建新,李金惠,聂永丰. 废旧电池回收用的真空蒸馏装置. 中华人民共和国发明专利.申请号: 01144191
    101 狄原映久. 处理含金属废料的方法. 日本发明专利. 申请号: 95115307
    102 刘纯鹏,王志英,朱祖泽. 锌铅锑硫化矿直接获取金属新工艺. 中华人民共和国发明专利. 申请号:89109363
    103 戴永年,李淑兰,邓琴芳,等. 锌镉合金真空蒸馏分离方法. 中华人民共和国发明专利. 申请号:89108164.
    104 国家环保总局. 固体废物浸出毒性方法-硫酸硝酸法,HJ/T299-2007.
    105 陈彤,李晓东,严建华,等. 垃圾焚烧炉飞灰中二噁英的分布特性. 燃料化学学报, 2004, 32(1): 59~64.
    106 A. porteous. Why energy from waste incineration is an essential component of environmentally responsible waste manangement. Waste Management. 2005,25(4): 451~459.
    107 Z. Sarbak, M. Kramer-Wachowiak. Porous structure of waste fly ashes and their chemical modifications. Powder Technology.2002, 123(1):53~58.
    108 郭玉文. 垃圾焚烧飞灰的微观结构及其重金属分布特征. 清华大学博士后出站报告. 2006,17~18.
    109 T. Mangialarid, A. E. Paplini, A. Polettini, etal. Optimization of the solidification/stabilization process of MSW fly ash in the cementitious matrices. Journal o f Hazardous Materials. 1999,70(1) :53~70.
    110 中华人民共和国. 粉煤灰熔融性测试方法-GB/T219-1996.
    111 刘新, 孟长功, 刘长厚. 升温速率对金属铅的熔化和过热行为的影响. 物理学报. 2003, 19(8): 681~685.
    112 李润东, 聂永丰, 王雷,等. 成分对垃圾焚烧飞灰熔融过程重金属迁移的影响. 清华大学学报(自然科学版). 2004,44(9):1180~1183.
    113 D.verhulst, A.Buekens, P.J.Spencer. Eriksson. Environ.Sci. Technol., 1996, 30:50~56.
    114 D. R. Lide, Editor-in-Chief. Handbook of Chemistry and physics,77th Edition,1996-1997,CRC Press,Inc.Boca Raton,Florida,USA.
    115 M. Takaoka, N. Takeda, S. Miura. The Behaviour of heavy metals and phosphorus in an ash melting process. Water Sci and Tech.1997, 36 (11) : 275~ 282.
    116 A .Polettini , R. Pomi, L. Trinci , et al . Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives. Chemosphere , 2004 ,56 :901 - 910.
    117 J. P. Young, H. Jong. Vitrification of fly ash from municipal solid waste incinerator. Journal of Hazardous Materials. 2002, 91(1 3) : 83 ~93.
    118 B. Jung, H. H. Schober. Viscous sintering of coal ashes.1.Relationships of sinter point and sinter strength to particle size and composition. Energy & Fuels. 1991,5(4):555~561.
    119 B. Jung, H. H. Schober. Viscous sintering of coal ashes.2.Sintering behaviour at short residence times in a drop tube furnace. Energy & Fuels. 1992,6(1):59~68.
    120 B. J. Skrifvars, M. Hupa, R. Backaman, et al. Sintering mechanisms of FBC ashes. Fuel.1994, 73(2):171~176.
    121 K. L. Lin, K. S. Wang, B.Y. Tzeng, et al. Effects of Al2O3 on the hydration activity of municipal solid waste incinerator fly ash slag . Cement and Concrete Research. 2004,34: 587~592.
    122 D. L. Deadmore, J. S. Machin. J. Am. Ceram. Soc. 1960,43(11):593
    123 C. W. Bale, A. D. Pelton, W. T. Thompson. FACT(Facility for the Analysis of Chemical Thermodynamics), Version2.1-User Manual, Ecole Polytechnique de Montreal/Royal Military College, Canada, 1996.
    124 A. Holmstrom, J.Scandinavian.Metallurgy . 1988, 17: 272~280.
    125 G.. Morizot, J. M. Winter, G. Barbery. Complex Sulphide Ores, PaP. Conf., Edited by M.J.Jones. Inst.Min. Metall.: London, 1980:151~158.
    126 W. T. Thompson, A.D. Pelton, C.W. Bale. Guide to Operations FACT(Facility for the Analysis of Chemical Thermodynamics), May, 1985, Thermfact Ltd., Mount-Royal, Quebec, Canada.
    127 J. H. Flynn. Thermochim. Acta, 1997, 300: 83-92.
    128 S. Vyazovkin. Thermochim. Acta, 1992, 211(1): 181-187.
    129 J. Sestak, G. Berggren. Themochim. Acta, 1971, 3: 1.
    130 H. E. Brown. Introduction to Thermal Analysis: Techniques and Applicat -ions. 1988, London: Chapman & Hall Ltd. 127.
    131 M. E. Brown. Reaction in the solid state. 1 Amsterdam: Elsevier.980.
    132 J. Sestak.Thermophysical Properties of Solid. Amsterdam: Elsevier.1984,
    133 T. Ozawa. Bull. Chem. Soc. Jpn., 1965. 38(11): 1881~1886.
    134 A. W. Coats, J.P. Refern. Nature.1964. 201: 68~69.
    135 H. L. Friedman, J. Macromolecular Sci.(Chem.), 1967. 41: 57.
    136 E .S. Freeman, B. Carroll, J. Phys.Chem. 1958. 62: 394.
    137 J.Sestak. Thermophysical Properties of Solids. Amsterdam: Elsevier.1994.
    138 M. M. Markowitz,, Anal.Chem. 1961. 33: 949.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700