用户名: 密码: 验证码:
城市生活垃圾干燥与燃烧气体排放特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的发展和城镇化进程的推进,生活垃圾的产量呈逐年增大趋势,焚烧发电是处理城市生活垃圾无害化、减量化和资源化的有效手段。同发达国家和地区相比,我国生活垃圾含水量较大、热值较低,随季节和地区变化明显,国外引进设备无法适应高水分本土垃圾,导致焚烧效率降低。生活垃圾焚烧发电过程释放大量气体产物,其中氮氧化物等气体对环境和人体危害严重。实验研究广州城市生活垃圾的干燥特性和气体排放特性,为从源头上控制污染物排放、改进和设计适于本土垃圾的焚烧设备提供参考。
     本文对城市生活垃圾的干燥和燃烧过程进行了实验研究和理论分析,探讨了生活垃圾混合物及典型厨余组分的干燥特性并进行了动力学分析;讨论了炉膛温度、氮氧比、秸秆和煤的掺混比、催化剂种类及担载比、含水率等因素对垃圾燃烧气体排放特性的影响;采用数值模拟的方式研究了不同含水率和秸秆掺混比的城市生活垃圾在机械炉排炉内燃烧的热质传递过程。
     (1)模拟焚烧炉内干燥条件,以广州地区生活垃圾典型厨余组分和混合物为研究对象在干燥箱内进行实验研究,分析了温度对生活垃圾干燥特性的影响,获得了描述实验过程的最优干燥模型。结果表明:干燥温度越高,干燥时间越短,极值干燥速率越大,对应含水率越低; Modified page和Weibull Distribution模型均可较准确的描述实验过程;通过菲克扩散模型计算出实验范围内的水分有效扩散系数,由阿乌尼斯方程得出活化能。
     (2)在卧式管式炉内实验研究了生活垃圾混合物及主要单组分燃烧的气体排放特性,讨论了不同炉膛温度和燃烧气氛对垃圾混合物燃烧气体排放特性的影响,通过改变废布制品和树枝在垃圾混合物中的比例探讨组分比例对气体释放的影响。结果表明:生活垃圾混合物燃烧O2波谷与CO、CO2波峰位置一致, CO曲线呈单一释放峰,NO排放曲线出现双释放峰,其波谷与CO波峰出现时间接近;四种垃圾单组分相比,厨余对氧气消耗量最大,废布制品燃烧CO和CO2生成峰值浓度最高,厨余生成NO峰值浓度最高,是影响NO排放的主因;炉膛温度升高,残余率和CO峰值浓度随之降低,析出时间提前,CmHn峰值浓度则随之上升,NO峰值呈先降后升的趋势;实验气氛含氧量越高,NO双峰值和CO2峰值越高,CO和残余率则相反; CO峰值和NO挥发分释放峰值随垃圾中废布制品含量升高而提高,树枝含量比例越大,CO峰值浓度越高,NO峰值则无规律变化。
     (3)不同比例的秸秆和煤分别与生活垃圾混合物在卧式管式炉内混合燃烧,烟气分析仪实时收集主要气体排放浓度,对NO的生成量和N析出率进行数学模型研究,结果表明:生活垃圾与煤混燃不改变CO和NO排放曲线形状,增加煤的掺混比可缩短燃烬时间、降低CO峰值浓度、提高NO固定氮析出峰值和生成量;垃圾中掺混秸秆燃烧可改变CO曲线形状,对NO曲线形状无影响,随着秸秆掺混比的提高,焦炭氮峰值升高,燃烬时间提前,N析出率下降;NO生成量、N析出率和残余率由大到小的顺序为:与煤混燃>垃圾独燃>与秸秆混燃;建立了可描述秸秆、煤掺混比和NO生成量关系的数学模型,对实验数据非线性拟合证明Logistic数学模型拟合度较优。
     (4)将五种碱金属化合物以不同担载比与生活垃圾在管式炉内催化燃烧,分析主要气体产物释放特性,计算燃烬率,对N析出率进行数学模型研究。结果表明:生活垃圾担载催化剂燃烧促O2波谷浓度提高,CO2变化不大,CO曲线形状趋宽阔,NO曲线固定氮析出峰出现时间延迟,CO和NO峰值因催化剂的种类和担载比而异;15种实验样品相比,9%CaO、5%和7%K2CO3、7%和9%Na2CO3催化垃圾燃烧NO平均排放浓度和N析出率较低、燃烬率较高,是垃圾燃烧较理想的催化选择;Logistic数学模型模拟实验过程N析出率决定系数较高,其中描述Ba2CO3催化燃烧过程最为准确。
     (5)卧式管式炉内对不同含水率的原生生活垃圾进行燃烧实验,研究气体排放特性,建立N、C和H析出率的数学模型,计算残余率。结果表明:垃圾含水率越高,干燥段越长,气体析出越慢,O2波谷浓度和CO2波峰浓度越高;CO曲线出现双释放峰,挥发分C析出峰较高且随含水率的升高而降低;CmHn和NO曲线均呈单一释放峰,随着含水率的升高,CmHn峰值呈先升后降的现象,NO峰值则随之升高;C、N、H析出率随含水率的升高而增大。Logistic数学模型对N、C和H实时析出率的描述R2均大于0.99303,拟合度较优。
     (6)采用CFD方式对广州某实际运行炉排炉进行数值模拟研究,探讨垃圾含水率和秸秆掺混比对炉内焚烧效果的影响。结果表明:垃圾含水率降低和秸秆掺混比增大均可提高燃料热值,促进炉内温度上升,但在确保烟气在炉内停留时间和炉内温度维持高温的前提下,需相应提高过量空气系数,否则因氧气不足导致垃圾燃烧不完全,烟气中可燃气体和颗粒比重较高。
With the development of economy and urbanization, production of municipal solidwaste(MSW) was gradually increasing. Incineration power generation is an effective meansof making MSW harmness,reduction and resource-oriented. Compared with developedcountry and district, MSW in China has of high moisture content, low heat value and changeswith season and district. Employing imported equipment in local MSW combustion reducedcombustion efficiency. Large amounts of gas products would be released from incinerationprocess, including nitrogen oxides and other gases harm to environment and human healthseriously. Experiments were conducted on drying characteristics and gas emissioncharacteristics of Guangzhou MSW. It is hoped to provide reference for controlling pollutantsemission from source, designing and improving incineration equipment suitable to local MSW.The experimental research and theoretical analysis on drying and combustion process ofMSW were carried on. The drying characteristics of MSW and typical kichen disposal werediscussed and the dynamic analysis was studied. The factors on gas emissions from MSWcombustion were investigated, such as furnace temperature, combustion atmosphere, blendingratio of straw and coal, catalyst type and blending rate, moisture content and so on. The heatand mass transfer process on MSW combustion in grate furnace, was simulated by CFD onthe condition of changing moisture content and blending rate of straw.
     (1)A series of drying experiments on municipal solid waste(MSW) in Guangzhou wereconducted in air dry oven,simulating the drying process in incineration. Temperatureinfluence on drying characteristics of MSW was analyzed. The optimal drying models wereobtained to predict experimental drying process. The results show that drying time is shorter,maximum drying rate is higher and the corresponding moisture content is lower with thehigher drying temperature. The experimental drying process could be described accurately byModified page and Weibull distribution models. The effective diffusivity of MSW wascalculated with fick’s diffusivity model. The MSW activation energy was determined throughArrhenius equation.
     (2)Experiments on gas emissions from municipal solid waste (MSW) and typicalelements combustion were conducted in a lab-scale electrically heated tubular furnace. Thegas emission characteristics were discussed on the factors of furnace temperature andatmosphere. MSW samples with different ratio of waste cotton and branch were taken asexperimental material in order to find the gas emission characteristics. The results indicatedthat the locations on the trough of O2, peaks of CO and CO2emerged simultaneously. The CO emission curves expressed single peak and NO curves had two peaks. Compared with fourwaste elements, waste cotton combustion produced highest peak concentration of CO andCO2, kitchen disposal combustion consumed maximum oxygen and brought highest NO peakvalue. It means that kitchen disposal is the main factor on NO emission. With the temperatureincreasing, the residual rates and CO peak values decreased, time of gas emission shiftedearlier, the peak value of CmHnincreased, NO peak values decreased first and then increased.The higher the oxygen content in atmosphere, the higher the two peak values of NO and CO2peak values, the lower the CO peak values and residual rates. CO peak values and the secondNO peak values were improved with the increasing mass ratio of waste cotton. CO peakvalues elevated with growing mass ratio of branch, but not for NO curves.
     (3)Experiments on MSW co-combustion with straw and coal were conducted in alab-scale electrically heated tubular furnace at850°C. The gas concentration was measuredwith gas analyzer. The mathematic models were researched on NO production and Nconversion rate. The following conclusions could be drawn: the shapes of NO and CO curveswere not affected by co-combustion with coal. The increasing blending ratio of coal resultedin shortening burning time, reducing CO peak value, improving NO second peak value andproduction. MSW co-firing with straw could change CO curves, but not for the NO curves.With the increasing blending ratio of straw, the second peak value of NO curve was increased,burning time was shortened and the N conversion rate was decreased. The sequence of NOproduction and N conversion rate was described as: co-combustion with coal>MSWcombustion> co-combustion with straw.Model of NO production could predict the value withdifferent straw and coal blending rate. The N conversion rate of experimental combustionprocess could be described accurately by Logistic model.
     (4)Five kinds of alkaline compounds with different blending rate were chosen ascatalysts applied in MSW combustion in terms of NO emission and burnout rate.Mathematical model were constructed on N conversion rate. The results showed that catalystaddiition in MSW combustion could increase O2trough concentration, change the CO2peakvalue little, make the CO curves broad and delay the location of NO second peak. The peakvalues and peak locations of CO and NO emission curves changed with catalyst type andblending ratio. In comparison with15samples,9%CaO、5%and7%K2CO3、7%and9%Na2CO3addition in MSW combustion could reduce NO average concentration and Nconversion rate, enhance burnout rate, so they could be the better choices as catalyst for MSWcombustion. There are higher determination coefficients utilizing Logistic model to simulateN conversion rate of experimental process, especially for Ba2CO3.
     (5)Combustion experiments on MSW with different moisture content were carried on at850°C. Gas emissions and the models describing N, C and H conversion rate were the mainpoints. The residual rates were calculated. It could be concluded that with higher moisturecontent, the drying process was longer, the process of gas emission was slower, the O2troughconcentration and CO2peak concentration were higher. There were two preaks in the COcurves and the first peak value decreased with the improved moisture content. The single peakappeared in the curves of CmHnand NO curves. With the higher moisture content, the NOpeak values enhanced, the peak concentration of CmHnascent firstly and then dropped. Thehigher moisture content, the higher C, N and H conversion rate. The Logistic model simulatedthe experimental process of C, N and H conversion rate accurately with R2more than0.99303.
     (6) The operating grate furnace in Guangzhou was simulated with the method of CFD.The effect of moisture content and blending rate of straw on combustion efficiency wasdisscussed. The following results could be concluded: the decreasing moisture content andincreasing blending rate of straw could improve heat value and temperature distribution in thefurnace. On the condition of satisfying the resistance time of flue gas and temperature level,the excess air ratio should be increased in order to avoid imcomplete combustion owing tolack of oxygen.
引文
[1].中国环境保护产业协会城市生活垃圾处理委员会.我国城市生活垃圾处理行业2012年发展综述[J],中国环保产业.2013,3.20-26
    [2].范留柱.国内外生活垃圾处理技术的研究现状及发展趋势[J].中国资源综合利用,2007,25(7):26-28.
    [3].钟振洋,周启祥.垃圾卫生填埋技术[J].城市环境与城市生态,1999,12(2):45-49.
    [4].宋辉.城市生活垃圾卫生填埋处理技术[J].城市建设理论研究(电子版),2011(31).
    [5].王铁军,尹军.城市生活垃圾卫生填埋处理技术[J].电子测试,2013(11).
    [6].张帅.广州城市生活垃圾治理研究[D].广州:华南理工大学,2013.
    [7].田扬捷,黄仁华,杨虹,周海燕,李道棠.海滨垃圾填埋场渗沥液对地下水系统的污染[J].环境卫生工程.2015,13(1).1-5.
    [8].张澄博.垃圾卫生填埋结构对地质环境效应的控制研究.地质灾害与环境保护.1999.S1
    [9].王松林.超声处理垃圾渗沥液及有机污染物的研究[D].武汉:华中科技大学,2006.
    [10].赵春阳.A~2/O工艺处理渗沥液中重金属的特性研究[D].沈阳:浙江大学,2008.
    [11].曾正中,王建博,郭浩磊,潘玉,南忠仁.粉煤灰对渗沥液氨氮的吸附试验及其动力学研究.中国环境科学,2010,30(5):644-649.
    [12].郭小品,羌宁,裴冰,等.城市生活垃圾堆肥厂臭气的产生及防控技术进展[J].环境科学与技术,2007,30(6):107-111.
    [13].张红玉,李国学,杨青原.生活垃圾堆肥过程中恶臭物质分析[J].农业工程学报,2013,29(9):192-199.
    [14].李七伟,周丽娜,赵晓松.生活垃圾堆肥处理对重金属形态的影响[J].科技创新导报,2013(5):159-159.
    [15].李丹,何小松,席北斗,等.生活垃圾堆肥渗滤液污染物组成与演化规律研究[J].环境科学,2013,34(7):2918-2924.
    [16].马晓茜,张笑冰.垃圾焚烧层燃炉与CAO系统的分析比较[J].工业炉,1999,21(3):12-13.
    [17].赵绪新,马晓茜. CAO垃圾焚烧系统热力模型研究[J].工业加热,2001(1):14-16.
    [18].马晓茜,杨泽亮.几种垃圾焚烧方式的比较[J].重庆环境科学,1998,20(4):32-34.
    [19].赖志燚.城市生活垃圾在O_2/N_2及O_2/CO_2气氛下的燃烧特性及焚烧炉水冷壁腐蚀研究[D].华南理工大学,2013.
    [20].赖志燚,马晓茜,马赟,等.基于SEM/CFD的垃圾焚烧炉水冷壁受热面腐蚀研究[J].华东电力,2013,41(005):1120-1123.
    [21].金余其.水分对城市垃圾焚烧的影响[J].电站系统工程,2004,20(4):37-37.
    [22].梁立刚,孙锐,吴少华,等.水分变化对固定床内模拟城市固体垃圾燃烧的影响[J].太阳能学报,2008,29(10):1313-1318.
    [23].梁立刚.城市生活垃圾层状燃烧过程试验研究及数值模拟[D].哈尔滨工业大学,2008.
    [24]. Liang L, Sun R, Fei J, et al. Experimental study on effects of moisture contenton combustion characteristics of simulated municipal solid wastes in a fixedbed[J]. Bioresource technology,2008,99(15):7238-7246.
    [25].李志伟.城市废弃物的CFB焚烧和气化特性试验[D].中国科学院研究生院(工程热物理研究所),2004.
    [26]. Li Z, Lu Q, Na Y. N2/O and NO emissions from co-firing MSW with coals inpilot scale CFBC[J]. Fuel processing technology,2004,85(14):1539-1549.
    [27]. Liu G H, Ma X Q, Yu Z. Experimental and kinetic modeling ofoxygen-enriched air combustion of municipal solid waste[J]. Wastemanagement,2009,29(2):792-796.
    [28].刘国辉,马晓茜,余昭胜.利用CFD技术对城市生活垃圾富氧燃烧特性分析[J].热能动力工程,2009,24(2):247-251.
    [29].李培生.固体废物的焚烧和热解[M].中国环境科学出版社,2006.
    [30].徐嘉,严建华,肖刚,等.城市生活垃圾气化处理技术[J].科技通报,2004,20(6):560-564.
    [31].柳晓斌.国外垃圾处理技术现状及对北京的启示[J].节能与环保,2013(12):54-56.
    [32].张衍国,李清海,蒙爱红.中国垃圾的资源化利用[J].物理,2010,5:308-310.
    [33].薛祖源.国外若干城市垃圾的处理现状和动向[J].现代化工,2003,23(5):57-59.
    [34].张瑞久,逄辰生.美国城市生活垃圾处理现状与趋势[J].节能与环保,2008(11):11-13.
    [35].李晶,华珞,王学江.国内外城市生活垃圾处理的分析与比较[J].首都师范大学学报(自然科学版),2004,25(3):73-80.
    [36].《“十二五”全国城镇生活垃圾无害化处理设施建设规划》.
    [37]. Yang Y B, Yamauchi H, Nasserzadeh V, et al. Effects of fuel devolatilisationon the combustion of wood chips and incineration of simulated municipal solidwastes in a packed bed [J]. Fuel,2003,82(18):2205-2221.
    [38].马晓茜,卢苇.垃圾焚烧炉热力模型研究[J].化学工程,2000,28(4):36-40.
    [39].马晓茜,卢苇.焚烧炉气相燃烧工况条件优化的分析与计算[J].上海环境科学,1999,18(3):135-138.
    [40].马晓茜.城市垃圾焚烧过程分析[J].动力工程,1999,19(4):323-328.
    [41].王毅,马晓茜,廖艳芬.垃圾焚烧炉的分层模糊控制系统[J].工业炉,2005,26(6):29-34.
    [42]. Yang Y B, Sharifi V N, Swithenbank J. Converting moving-grate incinerationfrom combustion to gasification–numerical simulation of the burningcharacteristics[J]. Waste Management,2007,27(5):645-655.
    [43]. Peters B, Bruch C. Drying and pyrolysis of wood particles: experiments andsimulation[J]. Journal of analytical and applied pyrolysis,2003,70(2):233-250.
    [44]. G ü F, Maskan M. Air drying characteristics of solid waste (pomace) ofolive oil processing[J]. Journal of Food Engineering,2006,72(4):378-382.
    [45]. Vega-Gálvez A, Miranda M, Díaz L P, et al. Effective moisture diffusivitydetermination and mathematical modelling of the drying curves of theolive-waste cake[J]. Bioresource technology,2010,101(19):7265-7270.
    [46]. Akgun N A, Doymaz I. Modelling of olive cake thin-layer drying process[J].Journal of Food Engineering,2005,68(4):455-461.
    [47].孙振刚,马晓茜.农产品加工剩余物焚烧过程的干燥热解特性研究[J].农业机械学报,2001,32(2):49-51.
    [48].卢苇,马晓茜.热带城市垃圾典型组分的热解特性研究[J].太阳能学报,2002,23(3):357-360.
    [49].马晓茜,孙振刚,卢苇,等.焚烧炉中多孔介质状垃圾团块传热分析[J].工程热物理学报,2009(S1).
    [50].梁增英.城市生活垃圾焚烧炉SNCR脱硝技术研究[D].华南理工大学,2011.
    [51].陈姝,马晓茜.广州地区生活垃圾干燥特性与动力学分析[J].农业机械学报,2014.45(4):228-233.
    [52]. Chen Shu,Ma XiaoQian,Liang ZengYing. Moisture transfer models and dryingcharacteristics of MSW containing high moisture[J].Telkomnika,2014,3:1741~1750.
    [53].张衍国,陈梅倩,蒙爱红,等.焚烧炉条件下典型城市生活垃圾干燥过程的实验研究[J].中国科学: E辑,2009,38(5):729-735.
    [54].李清海,张衍国,陈梅倩,等.炉排-循环床复合垃圾焚烧炉内干燥和燃烧过程[J].中国科学: E辑,2009(5):980-986.
    [55].李清海,甘超,蒙爱红,等.干燥对乏垃圾热值影响的实验研究[J].清华大学学报:自然科学版,2012,51(12):1865-1869.
    [56].蒙爱红,李清海,张衍国,等.垃圾焚烧炉干燥床垃圾干燥过程研究和分析[J].燃烧科学与技术,2008,14(6):518-525.
    [57].陈梅倩.典型城市生活垃圾基元中温湿分迁移过程动力学特性研究[D].北京交通大学,2009.
    [58]. Chen M Q, Chen Y X, Jia L, et al. Kinetic analysis on the drying of highmoisture MSW[J]. Heat Transfer—Asian Research,2009,38(4):216-222.
    [59].陈梅倩,陈允轩,贾力,等.高水分城市生活垃圾干燥过程的动力学分析[J].华北电力大学学报,2008,35(3):75-78.
    [60].陈梅倩,别舒,张衍国,等.典型垃圾基元高温干燥过程的数值模拟[J].工程热物理学报,2009(3):491-494.
    [61].陈梅倩,张衍国,蒙爱红,等.典型垃圾基元高温干燥过程的动力学特性[J].工程热物理学报,2010(1):133-135.
    [62].陈允轩.焚烧炉条件下典型城市生活垃圾干燥过程的试验研究[D].北京:北京交通大学,2006.
    [63].陈梅倩,蒙爱红,阮仔龙,等.高水分垃圾基元中温干燥特性的实验研究[J].清华大学学报:自然科学版,2011(11):1838-1842.
    [64].陈梅倩,陈允轩,贾力,等.焚烧炉中单元垃圾干燥过程的试验研究[J].应用基础与工程科学学报,2008,15(4):524-530.
    [65].白焰,秦宇飞,冯峰,等.垃圾焚烧炉内水分干燥过程分析及其仿真研究[J].中国电机工程学报,2011,31(20):19-26.
    [66].吴亚娟.城市生活垃圾典型组分水分分布特性及干燥过程试验研究[D].浙江大学,2012.
    [67].徐昕,黄立维,闫晶晶,等.城市生活垃圾热风干燥模拟实验研究[J].浙江工业大学学报,2011,39(4):420-423.
    [68].李永青,范晓平,易其臻,等.餐厨垃圾干燥特性理论模型及实验研究[J].环境卫生工程,2011,19(5):15-17.
    [69]. Jokela J P Y, Kettunen R H, Rintala J A. Methane and leachate pollutantemission potential from various fractions of municipal solid waste (MSW):Effects of source separation and aerobic treatment[J]. Waste management&research,2002,20(5):424-433.
    [70]. Komilis D P, Ham R K, Park J K. Emission of volatile organic compoundsduring composting of municipal solid wastes[J]. Water Research,2004,38(7):1707-1714.
    [71]. Chang M B, Jen C H, Wu H T, et al. Investigation on the emission factors andremoval efficiencies of heavy metals from MSW incinerators in Taiwan[J].Waste management&research,2003,21(3):218-224.
    [72]. Kawakami I, Matsuzawa Y, Tanaka M, et al. Emission levels of Co-PCBsfrom MSW incinerators[J]. Organohalogen Compounds,1993,11:375-380.
    [73]. Yasuda K, Takahashi M. The emission of polycyclic aromatic hydrocarbonsfrom municipal solid waste incinerators during the combustion cycle[J]. Journalof the Air&Waste Management Association,1998,48(5):441-447.
    [74]. Weber R, Sakurai T, Ueno S, et al. Correlation of PCDD/PCDF and CO valuesin a MSW incinerator––indication of memory effects in the hightemperature/cooling section[J]. Chemosphere,2002,49(2):127-134.
    [75]. Xiao G, Ni M, Chi Y, et al. Gasification characteristics of MSW and an ANNprediction model[J]. Waste management,2009,29(1):240-244.
    [76]. Kanters M J, Van Nispen R, Louw R, et al. Chlorine input and chlorophenolemission in the lab-scale combustion of municipal solid waste[J].Environmental science&technology,1996,30(7):2121-2126.
    [77]. Tejima H, Shibakawa S, Osumi K, et al. Dioxin emission behavior in MSWincinerator designed after Japanese guidelines for controlling dioxin[J].Chemosphere,1998,37(9):2309-2314.
    [78]. Kim S C, Jeon S H, Jung I R, et al. Formation and emission status ofPCDDs/PCDFs in municipal solid waste incinerators in Korea[J]. Chemosphere,2001,43(4):701-707.
    [79]. Giugliano M, Cernuschi S, Ghezzi U. The emission of dioxins and relatedcompounds from the incineration of municipal solid wastes with high contentsof organic chlorine (PVC)[J]. Chemosphere,1989,19(1):407-411.
    [80]. McKay G. Dioxin characterisation, formation and minimisation duringmunicipal solid waste (MSW) incineration: review[J]. Chemical EngineeringJournal,2002,86(3):343-368.
    [81]. Tejima H, Nishigaki M, Fujita Y, et al. Characteristics of dioxin emissions atstartup and shutdown of MSW incinerators[J]. Chemosphere,2007,66(6):1123-1130.
    [82]. Svoboda K, Baxter D, Martinec J. Nitrous oxide emissions from wasteincineration[J]. Chemical papers,2006,60(1):78-90.
    [83]. Ko J H, Park S H, Jeon J K, et al. Low temperature selective catalyticreduction of NO with NH3over Mn supported on Ce0.65Zr0.35O2preparedby supercritical method: Effect of Mn precursors on NO reduction[J]. CatalysisToday,2012,185(1):290-295.
    [84]. Jeong Huy Ko,Yeon-Ho Kwak,Kyung-Seun Yoo,et al. Selective catalyticreduction of NOx using RDF char and municipal solid waste char based catalyst.Journal of Material Cycles and Waste Management.2011,13(3):173–179.
    [85]. McKay G. Dioxin characterisation, formation and minimisation duringmunicipal solid waste (MSW) incineration: review[J]. Chemical EngineeringJournal,2002,86(3):343-368.
    [86]. Ryu C, Phan A N, Sharifi V N, et al. Co-combustion of textile residues withcardboard and waste wood in a packed bed[J]. Experimental Thermal and FluidScience,2007,32(2):450-458.
    [87]. Suksankraisorn K, Patumsawad S, Fungtammasan B. Co-firing of Thai ligniteand municipal solid waste (MSW) in a fluidised bed: Effect of MSW moisturecontent[J]. Applied Thermal Engineering,2010,30(17):2693-2697.
    [88]. Desroches-Ducarne E, Marty E, Martin G, et al. Co-combustion of coal andmunicipal solid waste in a circulating fluidized bed[J]. Fuel,1998,77(12):1311-1315.
    [89]. You X. Polycyclic aromatic hydrocarbon (PAH) emission from co-firingmunicipal solid waste (MSW) and coal in a fluidized bed incinerator[J]. Wastemanagement,2008,28(9):1543-1551.
    [90]. JM Ekmann, GF Morrison.Cofiring of coal and waste[M]. IEA Coal Research,1996.
    [91]. Chyang C S, Han Y L, Wu L W, et al. An investigation on pollutant emissionsfrom co-firing of RDF and coal[J]. Waste Management,2010,30(7):1334-1340.
    [92]. Muthuraman M, Namioka T, Yoshikawa K. A comparative study onco-combustion performance of municipal solid waste and Indonesian coal withhigh ash Indian coal: A thermogravimetric analysis[J]. Fuel ProcessingTechnology,2010,91(5):550-558.
    [93]. Easterly J L, Burnham M. Overview of biomass and waste fuel resources forpower production[J]. Biomass and Bioenergy,1996,10(2):79-92.
    [94]. Chynoweth D P, Turick C E, Owens J M, et al. Biochemical methane potentialof biomass and waste feedstocks[J]. Biomass and bioenergy,1993,5(1):95-111.
    [95]. Ren Q, Zhao C, Wu X, et al. TG–FTIR study on co-pyrolysis of municipalsolid waste with biomass[J]. Bioresource technology,2009,100(17):4054-4057.
    [96]. Xie H W, Zhang Y. Experimental study on the co-firing power generation ofmunicipal solid waste and biomass[J]. Applied Mechanics and Materials,2013,291:280-283.
    [97]. Laryea-Goldsmith R, Oakey J, Simms N J. Gaseous emissions duringconcurrent combustion of biomass and non-recyclable municipal solid waste[J].Chemistry Central Journal,2011,5(4):1-10.
    [98]. Yang Y B, Goh Y R, Zakaria R, et al. Mathematical modelling of MSWincineration on a travelling bed[J]. Waste Management,2002,22(4):369-380.
    [99]. Yang Y B, Ryu C, Goodfellow J, et al. Modelling waste combustion in gratefurnaces[J]. Process Safety and Environmental Protection,2004,82(3):208-222.
    [100]. Yang Y B, Phan A N, Ryu C, et al. Mathematical modelling of slowpyrolysis of segregated solid wastes in a packed-bed pyrolyser[J]. Fuel,2007,86(1):169-180.
    [101]. Frey H H, Peters B, Hunsinger H, et al. Characterization of municipal solidwaste combustion in a grate furnace[J]. Waste Management,2003,23(8):689-701.
    [102]. Nasserzadeh V, Swithenbank J, Jones B. Three-dimensional modelling of amunicipal solid-waste incinerator[J]. Journal of the Institute of Energy,1991,64(460):166-175.
    [103]. Han J H, Jeong K, Choi J H, et al. A hot‐flow model analysis of the MSWincinerator[J]. International journal of energy research,1997,21(10):899-910.
    [104]. Ryu C K, Choi S.3-dimensional simulation of air mixing in the MSWincinerators[J]. Combustion science and technology,1996,119(1-6):155-170.
    [105]. Shin D, Ryu C K, Choi S. Computational fluid dynamics evaluation of goodcombustion performance in waste incinerators[J]. Journal of the Air&WasteManagement Association,1998,48(4):345-351.
    [106]. Nasserzadeh V, Swithenbank J, Schofield C, et al. Effects of high speed jetsand internal baffles on the gas residence times in large municipal incinerators[J].Environmental progress,1994,13(2):124-133.
    [107]. Nasserzadeh V, Swithenbank J, Jones B. Effect of high speed secondary airjets on the overall performance of a large MSW incinerator with a verticalshaft[J]. Combustion science and technology,1993,92(4-6):389-422.
    [108]. Nasserzadeh V, Swithenbank J, Jones B. Three-dimensional modelling of amunicipal solid-waste incinerator[J]. Journal of the Institute of Energy,1991,64(460):166-175.
    [109]. Klasen T, Goerner K. Numerical calculation and optimisation of a largemunicipal solid waste incinerator plant[C]//2nd International Symposium onIncineration and Flue Gas Treatment Technologies. University of Sheffield.1999,4(6).
    [110]. Liamsanguan C, Gheewala S H. LCA: A decision support tool forenvironmental assessment of MSW management systems[J]. Journal ofEnvironmental Management,2008,87(1):132-138.
    [111]. Liamsanguan C, Gheewala S H. LCA: A decision support tool forenvironmental assessment of MSW management systems[J]. Journal ofEnvironmental Management,2008,87(1):132-138.
    [112]. Chaya W, Gheewala S H. Life cycle assessment of MSW-to-energy schemesin Thailand[J]. Journal of Cleaner Production,2007,15(15):1463-1468.
    [113].马晓茜.硫和氯及其化合物对垃圾焚烧炉的高温腐蚀与对策[J].电站系统工程,1997,13(5):38-42.
    [114].马晓茜.垃圾焚烧炉的设计及稳燃技术[J].新能源,1997,19(7):9-12.
    [115].马晓茜.城市垃圾燃料特性与燃烧特性的分析[J].新能源,1998,20(6):19-24.
    [116].阳晶,马晓茜.广州市城市生活垃圾焚烧发电CDM案例分析[J].可再生能源,2006(1):62-65.
    [117].马晓茜.焚烧城市垃圾发电技术分析[J].重庆环境科学,1998,20(1):31-34.
    [118].马晓茜.两种利用垃圾发电模式的比较[J].电站系统工程,1997,13(3):40-43.
    [119].姜娟,马晓茜,余昭胜.基于遗传算法优化BP神经网络的垃圾焚烧炉结渣预测模型[J].可再生能源,2010(4):80-84.
    [120].马晓茜,汤勇.层燃式焚烧炉中垃圾团块内部温度场分析[J].燃烧科学与技术,2000,6(1):54-56.
    [121].林海,马晓茜.大型城市生活垃圾焚烧炉燃尽风的优化布置[J].华东电力,2012,39(11):1911-1915.
    [122].胡志锋,马晓茜,梁增英.广州市生活垃圾处理工艺的生命周期评价[J].可再生能源,2012,1:029.
    [123].李娜,马晓茜,赵增立,等.生物质气化与废弃物焚烧联合发电技术环境效益分析[J].农业机械学报,2007,38(6):121-124.
    [124].赖志燚,马晓茜,马赟,等.基于SEM/CFD的垃圾焚烧炉水冷壁受热面腐蚀研究[J].华东电力,2013,41(005):1120-1123.
    [125].李龙君,马晓茜,余昭胜,等.配风对垃圾焚烧炉温度场影响的模拟研究[J].环境科学与技术,2013,36(010):39-42.
    [126].马晓茜.城市垃圾焚烧过程分析[J].动力工程,1999,19(4):323-328.
    [127].马晓茜,刘国辉,余昭胜.基于CFD的城市生活垃圾焚烧炉燃烧优化术[J].华南理工大学学报(自然科学版),2008,36(2).
    [128].赖志燚,马晓茜,余昭胜.前,后拱和二次风对垃圾焚烧炉燃烧影响研究[J].锅炉技术,2011,42(4):70-74.
    [129].李龙君,马晓茜,黄阔,等.一,二次风配比对75t/h循环流化床的影响[J].能源环境保护,2013,27(5):30-33.
    [130].林海,马晓茜,余昭胜.大型城市生活垃圾焚烧炉的数值模拟[J].动力工程,2010(2):128-132.
    [131]. Liang Z, Ma X, Lin H, et al. The energy consumption and environmentalimpacts of SCR technology in China[J]. Applied Energy,2011,88(4):1120-1129.
    [132]. Liang Z, Ma X. Mathematical modeling of MSW combustion and SNCR in afull-scale municipal incinerator and effects of grate speed and oxygen-enrichedatmospheres on operating conditions[J]. Waste management,2010,30(12):2520-2529.
    [133]. Lai Z Y, Ma X Q, Tang Y T, et al. A study on municipal solid waste (MSW)combustion in N2/O2and CO2/O2atmosphere from the perspective of TGA[J].Energy,2011,36(2):819-824.
    [134]. Lai Z Y, Ma X Q, Tang Y T, et al. Thermogravimetric analyses ofcombustion of lignocellulosic materials in N2/O2and CO2/O2atmospheres[J].Bioresource technology,2012,107:444-450.
    [135]. Lai Z Y, Ma X Q, Tang Y T, et al. Deposit Analysis of water-wall tubes in amunicipal solid waste grate incinerator[J]. Applied Thermal Engineering,2014.
    [136]. Lai Z Y, Ma X Q, Tang Y T, et al. Thermogravimetric analysis of thethermal decomposition of MSW in N2/O2and CO2/N2atmospheres[J]. FuelProcessing Technology,2012,102:18-23.
    [137]. Tang Y T, Ma X Q, Lai Z Y. Thermogravimetric analysis of the combustionof microalgae and microalgae blended with waste in N2/O2and CO2/O2atmospheres[J]. Bioresource technology,2011,102(2):1879-1885.
    [138]. Tang Y, Ma X, Lai Z, et al. NOx and SO2emissions from municipal solidwaste (MSW) combustion in CO2/O2atmosphere[J]. Energy,2012,40(1):300-306.
    [139]. Tang Y T, Ma X Q, Lai Z Y, et al. Thermogravimetric characteristics andcombustion emissions of rubbers and polyvinyl chloride in N2/O2and CO2/O2atmospheres[J]. Fuel,2013,104:508-514.
    [140]. Tang Y T, Ma X Q, Lai Z Y, et al. Energy analysis and environmentalimpacts of a MSW oxy-fuel incineration power plant in China[J]. Energy Policy,2013,60:132-141.
    [141]. Tang Y T, Ma X Q, Lai Z Y, et al. Char characteristics of municipal solidwaste prepared under N2and CO2atmospheres[J]. Journal of Analytical andApplied Pyrolysis,2013,101:193-198.
    [142]. Shen B. Study on MSW catalytic combustion by TGA[J]. Energy conversionand management,2006,47(11):1429-1437.
    [143].闫涛,左禹.生活垃圾燃烧特性实验研究[J].燃烧科学与技术,2002,8(6):543-547.
    [144].李清海.层燃-流化复合垃圾焚烧炉燃烧与排放研究[D].清华大学,2008.
    [145].李清海,周晓彬,陈庚,等.卧式循环流化床锅炉燃烧的数值模拟[J].清华大学学报:自然科学版,2013(3):353-357.
    [146]. Zhao J, Wang S Z, Wu Z Q, et al. Theoretical Calculation and Analysis onthe Gasification and Melting Process of MSW with Oxygen-Enriched Air[J].Advanced Materials Research,2013,610:2179-2182.
    [147]. Zhao J, Wang S Z, Wu Z Q, et al. Thermogravimetric Analysis of Plastic andBiomass under Different Oxygen Concentration[J]. Advanced MaterialsResearch,2014,864:1985-1988.
    [148]. Yu-qi JIN, Jian-hua Y, Ke-fa C. Study on the comprehensive combustionkinetics of MSW[J]. Journal of Zhejiang University Science,2004,5(3):283-289.
    [149].江爱朋.城市生活垃圾典型组分的燃烧特性和排放特性研究[D].杭州:浙江大学,2002.
    [150].吴海龙,肖惠平,王武忠,等.典型生活垃圾流化床焚烧炉PCDD/Fs的生成与排放控制[J].动力工程学报,2012,32(8):654-660.
    [151].张东平.城市生活垃圾流化床焚烧过程酸性气体排放及其人工神经网络预测[D].杭州:浙江大学,2003.
    [152]. Jiang F, Pan Z, Liu S, et al. Experimental studies on combustioncharacteristics of mixed municipal solid waste[J]. Journal of Thermal Science,2003,12(4):367-370.
    [153].解海卫,张于峰,张艳.城市生活垃圾与生物质混烧发电技术的实验研究[J].环境工程学报,2007,1(10):100-103.
    [154]. Zhaosheng Y, Xiaoqian M, Ao L. Kinetic studies on catalytic combustion ofrice and wheat straw under air-and oxygen-enriched atmospheres, by usingthermogravimetric analysis[J]. Biomass and bioenergy,2008,32(11):1046-1055.
    [155].易仁金.城市生活垃圾催化热解的实验研究[D].华中科技大学,2007.
    [156].陈秀峰,马晓茜,陈春香.微藻微波催化裂解研究及动力学分析[J].燃料化学学报,2012,40(3):315-320.
    [157].沈伯雄,秦磊.垃圾催化燃烧的热重分析研究[J].燃料化学学报,2005,33(2):189-193.
    [158].曹新新,沈伯雄.棉秆催化热解的热重分析[J].南开大学学报:自然科学版,2009(5):25-31.
    [159]. Saito M, Amagai K, Ogiwara G, et al. Combustion characteristics of wastematerial containing high moisture[J]. Fuel,2001,80(9):1201-1209.
    [160].魏小林,田文栋,盛宏至.高水分煤在流化床中燃烧时NOx的排放特性[J].热能动力工程,1999(3):206-209.
    [161].金余其.水分对城市垃圾焚烧的影响[J].电站系统工程,2004,20(4):37-37.
    [162].梁立刚,孙锐,吴少华,等.水分变化对固定床内模拟城市固体垃圾燃烧的影响[J].太阳能学报,2008,29(10):1313-1318.
    [163]. Zhang Y G, Chen M Q, Meng A H, et al. Experimental study on drying oftypical MSW under incinerator-like conditions[J]. Science in China Series E:Technological Sciences,2007,50(5):636-643.
    [164].田文栋,魏小林,黎军,等.流化床中垃圾与煤混烧的技术经济分析[J].2002,23(增刊):225-228.
    [165]. Jin Y, Lu L, Ma X, et al. Effects of blending hydrothermally treatedmunicipal solid waste with coal on co-combustion characteristics in a lab-scalefluidized bed reactor[J]. Applied Energy,2013,102:563-570.
    [166]. Zhong Z, Jin B, Huang Y, et al. Experimental research on emission andremoval of dioxins in flue gas from a co-combustion of MSW and coalincinerator[J]. Waste Management,2006,26(6):580-586.
    [167].董长青,金保升.城市生活垃圾与煤流化床混烧过程中氮氧化物排放研究[J].环境科学学报,2002,22(2):183-187.
    [168].董长青,金保升,仲兆平,兰计香.城市生活垃圾(MSW)与煤混烧过程中气体污染物的排放[J].热能动力工程,2001,16(96):586-590.
    [169]. Muthuraman M, Namioka T, Yoshikawa K. A comparison of co-combustioncharacteristics of coal with wood and hydrothermally treated municipal solidwaste[J]. Bioresource technology,2010,101(7):2477-2482.
    [170]. Meziane S, Mesbahi N. Determination of moisture diffusivity and activationenergy in thin layer drying of olive pomace [J]. International Journal of FoodEngineering,2012,8(3):1556~3758.
    [171]. Nishiyama Y, Cao W, Li B.M. Grain intermittent drying characteristicsanalyzed by a simplified model[J]. Journal of Food Engineering,2006,76(3):272~279.
    [172]. Baini R, Langrish T A G. Choosing an appropriate drying model forintermittent and continuous drying of bananas[J]. Journal of Food Engineering,2007,79(1):330~343.
    [173]. Roberts J S,Kidd D R, Padilla-Zakour O. Drying kinetics of grape seeds [J].Journal of Food Engineering,2008,89(4):460~465.
    [174].何新益,程莉莉,刘金福,等.苹果片变温压差膨化干燥特性与动力学研究[J].农业机械学报,2012,43(5):130~135.
    [175].关志强,王秀芝,李敏,等.荔枝果肉热风干燥薄层模型[J].农业机械学报,2012,43(2):152~191.
    [176]. Chen M Q, Jia L, Zhang T T. Evaluation of heat transfer coefficientduring drying of typical municipal solid waste matrices with significantshrinkage at medium temperature[J]. Experimental HeatTransfer,2012,25(3):238~253.
    [177]. Chen M Q,Xu X X,Jia L, et al. Analysis of Moisture Migration of TypicalMSW Matrices at Medium Temperature [J].Chemical EngineeringCommunications,2013,200(5):628~637.
    [178].王宝和.干燥动力学研究综述[J].干燥技术与设备,2009,7(1):51~56.
    [179]. Sharaf-Eldeen Y I, Blaisdell J L, Hamdy M Y. A model for ear corn drying[J]. Transactions of the ASAE,1980,23(5):1261~1265.
    [180]. Lewis W.K. The rate of drying of solid materials [J]. Industrial EngineeringChemistry,1921,13(5):427~432.
    [181]. Babalis S J,Papanicolaou E,Kyriakis N,et al.Evaluation of thin-layer dryingmodels for describing drying kinetics of figs(Ficuscarica)[J].Journal of FoodEngineering,2006,75(2):205~214.
    [182].陈梅倩,陈允轩,贾力,等.马弗炉中高水分城市生活垃圾干燥过程的试验[J].环境科学学报,2008,28(5):951~955.
    [183]. Pathak P K,Agrawal Y C, Singh B P N.Thin-layer drying model for rapeseed[J]. Transactions of the ASAE,1991,34(6):2505~2508.
    [184]. Chen C, Wu P C. PH—Postharvest Technology: Thin-layer Drying Modelfor Rough Rice with High Moisture Content[J]. Journal of agriculturalengineering research,2001,80(1):45-52.
    [185]. D a z G R, Mart nez-Monzo J, Fito P, et al. Modelling ofdehydration-rehydration of orange slices in combined microwave/air drying[J].Innovative Food Science&Emerging Technologies,2003,4(2):203-209.
    [186]. Akpinar E K. Determination of suitable thin layer drying curve model forsome vegetables and fruits[J]. Journal of food engineering,2006,73(1):75-84.
    [187]. Madamba P S, Driscoll R H, Buckle K A. The thin-layer dryingcharacteristics of garlic slices [J]. Journal of Food Engineering,1996,29(1):75~97.
    [188].李清海,张衍国,党文达,等.炉排-循环床复合垃圾焚烧炉中垃圾模拟干燥实验[J].清华大学学报:自然科学版,2008,48(5):824~827.
    [189].聂永丰主编.三废处理工程技术手册·固体废物卷.北京:化学工业出版社,2000.
    [190].王春波,王金星,雷鸣.恒温下煤粉/生物质混燃特性及NO释放规律[J].煤炭学报,2013,38(7):1254~1259.
    [191].王萌,吴昊,刘浩,et al.O2/CO2气氛下煤粉燃烧NO的排放特性[J].煤炭学报,2013,38(6):1072-1077.
    [192]. Y. Hu,S. Naito,N. Kobayashi,et al. CO2, NOx and SO2emissions from thecombustion of coal with high oxygen concentration gases[J]. Fuel,2000,79(15):1925-1932.
    [193]. Yong-Le Pan,Joshua D. T. Houck,Pamela A. Clark,Ronald G. Pinnick.Single particle size and fluorescence spectra from emissions of burningmaterials in a tube furnace to simulate burn pits. Applied Physics B,2013()112:89–98.
    [194]. S rum L., Skreiberg., Glarborg P., et al. Formation of NOfrom combustion of volatiles from municipal solid wastes [J]. Combustionand Flame,2001,124:195-212.
    [195].韩昭沧.燃料与燃烧[M].北京:冶金工业出版社,2007.
    [196]. Winter F., Wartha C., Hofbauer H. NO and N2O formation during thecombustion of wood, straw, malt waste and peat [J]. Bioresource Technology,1999,70(1):39-49.
    [197].林海.基于CFD的城市生活垃圾焚烧炉优化运行及烟气排放特性实验研究[D].华南理工大学,2012.
    [198]. Courtemanche B,Levendis Y A.A laboratory study on theNO,NO2,SO2,CO and CO2emissions from the combustion of pulverized coal,municipal waste plastics and tires[J]. Fuel,1998,77(3):183-196.
    [199].臧仁德,张力.垃圾与煤混烧烟气脱酸的模拟及实验[J].煤炭学报,2011,36(8):1385-1390.
    [200]. Estelle D, Eric M, Gérard M, et al. Co-combustion of coal and municipal solidwaste in a circulating fluidized bed [J]. Fuel,1998,77(12):1311-1315.
    [201].李大中,王晨颖,娄云.垃圾与煤、秸秆混燃锅炉污染物排放优化[J].农业机械学报,2012,43(7):117~123.
    [202]. Laryea-Goldsmith R, Oakey J, Simms N J. Gaseous emissions duringconcurrent combustion of biomass and non-recyclable municipal solid waste[J].Chemistry Central Journal,2011,5(4):1-10.
    [203]. Hu Y Q, Kobayashi N, Hasatani M. Effects of coal properties onrecycled-NOx reduction in coal combustion with O2recycled flue gas[J].Energy conversion and management,2003,44(14):2331-2340.
    [204].宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化,2003,26(3):91-97.
    [205]. Zwinkels M F M, J r s S G, Menon P G, et al. Catalytic materials forhigh-temperature combustion[J]. Catalysis Reviews—Science and Engineering,1993,35(3):319-358.
    [206].王新运,万新军,吴凤义.生物质催化热解特性和动力学研究[J].应用化工,2010,39(3):377-379.
    [207].廖艳芬,王树荣,骆仲泱,等.氯化钙催化纤维素热裂解动力学研究[J].燃料化学学报,2005,33(6):692-697.
    [208]. Wang J, Zhang M, Chen M, et al. Catalytic effects of six inorganiccompounds on pyrolysis of three kinds of biomass[J]. Thermochimica acta,2006,444(1):110-114.
    [209]. Zhaosheng Y, Xiaoqian M, Ao L. Kinetic studies on catalytic combustion ofrice and wheat straw under air-and oxygen-enriched atmospheres, by usingthermogravimetric analysis[J]. Biomass and bioenergy,2008,32(11):1046-1055.
    [210]. Demirba A. Gaseous products from biomass by pyrolysis and gasification:effects of catalyst on hydrogen yield[J]. Energy Conversion and Management,2002,43(7):897-909.
    [211]. Boxiong S, Chunfei W, Lei Q. MSW catalytic combustion by alkali andalkali–earth salts[J]. Energy,2006,31(14):2900-2914.
    [212]. Shen B. Study on MSW catalytic combustion by TGA[J]. Energy conversionand management,2006,47(11):1429-1437.
    [213]. Arias B, Cordero J M, Alonso M, et al. Investigation of SO2capture in acirculating fluidized bed carbonator of a Ca looping cycle[J]. Industrial&Engineering Chemistry Research,2013,52(7):2700-2706.
    [214]. Daniell P, Soltani-Ahmadi A, Kono H O. Reaction kinetics of the SO2CaOsystem—pore closure model[J]. Powder technology,1988,55(2):75-85.
    [215]. Simons G A, Garman A R, Boni A A. The kinetic rate of SO2sorption byCaO[J]. AIChE journal,1987,33(2):211-217.
    [216]. de las Obras-Loscertales M, de Diego L F, García-Labiano F, et al. Modelingof Limestone Sulfation for Typical Oxy-Fuel Fluidized Bed CombustionConditions[J]. Energy&Fuels,2013,27(4):2266-2274.
    [217].黄戒介,赵建涛,陈富艳,等.氧化钙脱硫可逆反应过程的研究[J].燃料化学学报,2005,33(2):146-149.
    [218].尚建宇,王松岭,宋春常. SO2气体在微孔CaO脱硫剂颗粒内的Knudsen扩散[J].热能动力工程,2009,24(3):382-385.
    [219].王世昌,姚强,徐旭常. CaO脱硫化学反应速率与气体扩散速率对比[J].工程热物理学报,2008(z2):219-222.
    [220].李清海,张衍国,陈昌和,等.水分对垃圾焚烧影响的实验研究[J].中国电机工程学报,2008,28(8):58-64.
    [221]. Yang Y B, Sharifi V N, Swithenbank J. Effect of air flow rate and fuelmoisture on the burning behaviours of biomass and simulated municipal solidwastes in packed beds[J]. Fuel,2004,83(11):1553-1562.
    [222]. Y B, Yamauchi H, Sharifi V N, et al. Effect of moisture content of fuel onthe combustion behaviour of biomass and municipal solid waste in a packedbed[J]. Journal of the Institute of Energy,2003,76(509):105-115.
    [223]. Suksankraisorn K, Patumsawad S, Fungtammasan B. Co-firing of Thailignite and municipal solid waste (MSW) in a fluidised bed: Effect of MSWmoisture content[J]. Applied Thermal Engineering,2010,30(17):2693-2697.
    [224].张东平,李晓东,严建华,等.垃圾在流化床中焚烧NO排放特性研究[J].燃料化学学报,2003,31(4):322-327.
    [225]. Yang Y B, Sharifi V N, Swithenbank J. Converting moving-grateincineration from combustion to gasification–numerical simulation of theburning characteristics[J]. Waste Management,2007,27(5):645-655.
    [226]. Simsek E, Brosch B, Wirtz S, et al. Numerical simulation of grate firingsystems using a coupled CFD/discrete element method (DEM)[J]. PowderTechnology,2009,193(3):266-273.
    [227]. Lim C N, Goh Y R, Nasserzadeh V, et al. The modelling of solid mixing inmunicipal waste incinerators[J]. Powder technology,2001,114(1):89-95.
    [228].陈昌和,李清海,张衍国,等.炉排一循环床复合垃圾焚烧炉燃烧过程模型[J]. J Tsinghua Univ (Sci&Tech),2008,1(48):5.
    [229].费俊.层燃炉排上城市固体垃圾燃烧过程的数值模拟[D].哈尔滨工业大学,2006.
    [230]. Simsek E, Brosch B, Wirtz S, et al. Numerical simulation of grate firingsystems using a coupled CFD/discrete element method (DEM)[J]. PowderTechnology,2009,193(3):266-273.
    [231].胡玉梅,王传宾,朱新才,等.垃圾焚烧炉二次配风优化数值模拟[J].环境工程学报,2009(5):951-955.
    [232]. Yang Y B, Nasserzadeh V, Goodfellow J, et al. Simulation of channelgrowth in a burning bed of solids[J]. Chemical Engineering Research andDesign,2003,81(2):221-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700