用户名: 密码: 验证码:
爬山虎吸盘多糖的分离纯化、结构表征与粘附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爬山虎属植物是一种葡萄科,多年生落叶木质藤本植物。由于其卷须顶端生有吸盘,并能分泌出一种粘性液体,因而可以攀附于岩石、墙壁或是树木等基材表面。我们已经测定了单个吸盘在1.22mm2这么小的面积内竟可以产生13.7N的粘附力。鉴于仿壁虎刚毛的各种仿生胶带的应用,我们期望利用爬山虎属植物独特的粘附性能制备出一种仿生粘附材料,即从结构仿生和成分仿生两个方向入手。在已报道的相关文献中,对于吸盘超微结构的观察已经取得了较大的进展,而对于粘性分泌物的研究却一直停滞不前。正是由于缺乏对粘液成分的充分了解,爬山虎属植物的粘附机理一直都无法得到统一的解释,进而阻碍了爬山虎仿生粘附材料的研究与开发。鉴于此,本论文从现有文献出发,以提取和分离吸盘粘液中的粘性多糖成分为主要研究对象,分别对爬山虎属植物吸盘多糖的提取工艺、分离与纯化、结构表征,以及粘附性能进行了较为系统的研究,具体内容如下:
     1.利用响应面分析法,建立吸盘多糖提取工艺的数学模型,并对提取条件之间的交互作用进行分析。根据所建立的数学模型进行提取条件的优化,进一步得出提取吸盘粗多糖的最佳工艺条件。
     2.采用乙醇沉淀法、DEAE-纤维素-32离子交换柱和葡聚糖G-100凝胶柱对粗多糖进行分级与纯化,得到五种吸盘多糖。利用凝胶渗透色谱,测定得到各种吸盘多糖的重均分子量和分子量分布宽度。
     3.利用三氟乙酸水解、糖醇乙酸酯衍生化法和气相色谱分析,得到了5种吸盘多糖的单糖组成。其中,PT1含有鼠李糖(14.3%)、阿拉伯糖(21.7%)、果糖(30.9%)和半乳糖(33%);PT2则由阿拉伯糖(19.6%)、果糖(44.2%)和半乳糖(36.1%)组成;PT3中含有5种单糖,分别为鼠李糖(16.1%)、阿拉伯糖(17%)、木糖(12.5%)、果糖(24%)和半乳糖(30.3%);PT4和PT5主要含有阿拉伯糖、甘露糖、葡萄糖和半乳糖,各单糖之间的摩尔比率分别为28.0:23.0:17.0:32.0和21.4:23.7:25.2:29.7。
     4.利用红外光谱、高碘酸氧化、Smith降解、甲基化反应和核磁共振波谱,对吸盘多糖的一级结构进行分析,并推测出可能的结构片段。五种多糖均以1,3-连接的半乳糖为主链,分支点在6号氧原子上。
     5.利用AFM对吸盘多糖的微观形貌进行观察。结果表明,PT1在高浓度下易形成无规聚集体状态,随着浓度的降低,它在云母上的聚集行为也逐渐减弱。随着浓度的降低,吸盘多糖PT2的微观形貌经历了从薄膜-网状结构-无规线团的变化过程。PT3在浓度为1mg/ml时,在云母表面形成球形颗粒,但并非是单个分子,而是多糖分子的聚集体。PT4和PT5在浓度为1μg/ml时,均可形成具有分支或线形的结构。
     6.利用DLA模型对吸盘多糖形成的树枝状分形结构进行模拟,当边界条件为600600,粘附系数为1,粒子数目达到60000时,树形结构呈现出―枝繁叶茂‖,与实际观察的树形结构极为相似。
     7.利用AFM力曲线对吸盘多糖的粘附力进行了测定和评估,结果表明,PT2所能达到的最大粘附力为295.8nN,这与一些仿生粘胶和其他攀援植物的粘附力相近,说明PT2是一种潜在的粘性材料,是爬山虎属植物粘附系统的重要组成要素
Parthenocissus tricuspidata is a tendril-climber liana, belonging to the family ofVitaceae. Following touch stimulation, the tendrils can firmly adhere to different supportingobjects by flattening against the support surface, becoming adhesive discs in the tip andsubsequently secreting a kind of adhesive compound. The unique adhesion ability of P.tricuspidata has attracted great attentions from scientists since Darwin’s time. Previousstudies mainly focus on microstructure observation, cytochemical studies, attachment strengthquantification and bionic fabrication. The adhesive compound secreted from adhesive discshas been considered to be a kind of polysaccharide. However, there are only few reports aboutthe further details of this adhesive compound. Therefore, the adhesion mechanism of P.tricuspidata has not been completely confirmed and the further studies on the polysaccharidessecreted from adhesive discs are desirable and necessary. Herein, the aim of our study is toextract, isolate, purify and characterize the polysaccharides from adhesive discs of P.tricuspidata. The main contents have been summarized as follows:
     1. Response surface methodology (RSM) and central composite design (CCD) wereemployed to investigate the effects of extraction conditions on the extraction yield of crudepolysaccharide from adhesive discs. The optimum conditions were extraction time of3h,temperature of90°C and ratio of water to raw material of12:1, respectively. Under theseconditions, the maximum yield is6.642%.
     2. The water-soluble polysaccharides (PT1, PT2, PT3, PT4and PT5) were obtained fromadhesive discs through pretreatment, extraction with hot water, precipitation by95%ethanol,deproteinization and purification on DEAE-cellulose column and Sephadex G-100column.The homogeneity of polysaccharide was determined by HPGPC and the weight-averagemolecular weights of five polysaccharides were24699、202455、10537、253992and10382Daaccording to the calibration curve, respectively.
     3. The composition of sugars was determined by acid hydrolysis and GC analysis. PT1was composed of rhamnose (14.3%), arabinose (21.7%), fructose (30.9%) and galactose(33.0%). PT2consisted of arabinose (19.6%), fructose (44.2%) and galactose (36.1%).Besides rhamnose (16.1%), arabinose (17.0%), fructose (24.0%) and galactose (30.3%), PT3 also contained xylose (12.5%). PT4and PT5were composed of arabinose (21.4%), mannose(23.7%), galactose (29.7%) and glucose (25.2%) with the molar ratios of28.0:23.0:32.0:17.0and21.4:23.7:29.7:25.2,respectively.
     4. The chemical compositions and structures of polysacchrides were identified by aseries of chemical and instrumental methods, e.g. acid hydrolysis, periodate oxidation, Smithdegradation, methylation, IR and NMR spectra. According to the analysis of structureelucidation, they were major composed by (1→3)-linked-Galp backbone with some branchingsites at O-6positions.
     5. The morphological structures of polysaccharides were investigated by atomic forcemicroscopy (AFM). PT1can easily form the aggregates with irregular shape under the higherconcentration. With the decrease of the concentration, PT1formed a kind of rope structure.PT2formed thin film-network-irregular rope structure along the decrease of concentration.The spherical particles with the diameter ranged from100to150nm were observed from theAFM image of PT3. As shown in the AFM image of PT-A, a long rope-like structure withsome branches is formed on the mica surface and the aggregates, caused by the entangledbranches, are also observed in some areas. The branched and linear rope-like structures areformed on mica surface by PT5.
     6. We also observed some branch-like structures and dendritic islands with irregularshapes at the edges of three samples, which were the typical fractal structure characterized byself-similarity. The classical Diffusion-Limited Aggregation (DLA) model was suggested todescribe the growth mechanism of the fractal structure. The fractal structure and dendriticislands produced by computer simulations closely approximate the structure obtained fromAFM observation.
     7. We also evaluate the adhesive property of polysaccharides and the results suggestedthat PT2was a potential bio-adhesive with the highest adhesion force value of295.8nN,compared to other bio-adhesive from animal or plant.
引文
[1]张毅功,陆诗雷,孙振元,刘颖.爬山虎属植物利用研究[J].资源科学,2005,27(5):141-145
    [2]刘德良,李明红,张琴.南岳野生爬山虎属植物资源及园林应用[J].中国野生植物资源,2001,20(6):31-32
    [3]张迎辉,姜成平,赵文飞,韩俊,王迎,王华田.城市垂直绿化植物爬山虎的生态效应[J].浙江林学院院报,2006,23(6):669-772
    [4]刘光立,陈其兵.成都市四种垂直绿化植物生态学效益研究[J].西华师范大学学报(自然科学版),2004,25(3):259-262
    [5]相卫国,李倩,魏永胜.我国爬山虎研究与应用现状[J].陕西师范大学学报(自然科学版),2005,33:98-102
    [6] Koehler, M.&Bartfelder, F. City-climate and atmospheric-hygiene unloading effects onclimbing plants in highly stressed inner city regions [J]. Verhandlungen der Gesellschaftfuer Oekologie,1987,16:157-165
    [7] Thoennessen, M.&Werner, W. Fa ade climbing Japanese Creeper as accumulationindicator plant. Distribution of heavy metal in urban-streets with different buildingstructures [J]. Gefahrstoffe-Reinhalting der Luft,1996,56(9):351-357
    [8] Thoennessen, M. Filtering of particulate matter and long-term monitoring of air pollutionby fa ade climbing Japanese creeper (Parthenocissus tricuspidata)[J].Umweltwissenschaften und Schadstoff-Forschung,2006,18(1):5-12
    [9]张毅功,陈欣.人工种植爬山虎绿化荒山研究简报[J].河北农业大学学报,1999,22(4):107
    [10]张毅功,张振元,陆诗雷.爬山虎绿化荒山作用初步研究[J].林业科技通讯,2000,(3):26-27
    [11] Hwang, H.K., Sung, H.K., Wang, W.K., et al. Flavonol glycosides from Parthenocissustricuspidata [J]. Yakhak Hoechi,1995,39(3):289-296
    [12] He, S., Lu, Y.B., Wu, B., et al. Isolation and purification of antioxidative isomericpolyphenols from the roots of Parthenocissus laetevirens by counter-currentchromatography [J]. Journal of Chromatography A,2007,1151(1-2):175-179
    [13]王燕芳,张昌桂,姚瑞茹,周维善.爬山虎化学成分的研究[J].药学学报,1982,17(6):446-448
    [14] Lins, A.P., Felicio, J.D., Braggio, M.M., et al. A resveratrol dimer from Parthenocissustricuspidata[J]. Phytochemistry,1991,30(9):3144-3146
    [15] Tanaka, T., Ohyama, M., Morimoto, K., et al. A resveratrol dimer from Parthenocissustricuspidata [J]. Phytochemistry,1998,48(7):1241-1243
    [16] Saleem, M., Kim, H.J., Jin, C., et al. Antioxidant caffeic acid derivatives from leaves ofParthenocissus tricuspidata [J]. Archives of Pharmacal Research,2004,27(3):300-304
    [17] Son, I.H., Chung, I.M., Lee, S.J., et al. Antiplasmodial activity of novel stilbenederivatives isolated from Parthenocissus tricuspidata from South Korea [J]. ParasitologyResearch,2007,101(1):237-241
    [18] Chen, J.J., He, S., Mao, H., et al. Characterization of polyphenol compounds from theroots and stems of Parthenocissus laetevirens by high-performance liquidchromatography/tandem mass spectrometry[J]. Rapid Communications in MassSpectrometry,2009,23(6):737-744.
    [19] Gorb, S. Attachment devices of the insect cuticle [M].Dordrecht: Kluwer;2001
    [20] Federle, W., Riehle, M., Curtis, A.S.G., et al. An integrative study of insect adhesion:mechanics and wet adhesion of pretarsal pads in ants [J]. Integrative ComparativeBiology,2002,42(6):1100–1106
    [21] Scherge, M., Gorb, S. Biological micro-and nanotribology: nature’s solutions [M].Berlin: Springer,2001
    [22] Gorb, S.N., Niederegger, S., Hayashi, C.Y., et al. Biomaterials: silk-like secretion fromtarantula feet [J].Nature,2006,443:407
    [23] Federle, W., Barnes, W.J.P., Baumgartner, W., et al. Wet but not slippery: boundaryfriction in tree frog adhesive toe pads [J]. Journal of The Royal Socity. Interface,2006,3(10):689–697
    [24] Barnes, W.J.P., Oines, C., Smith, J.M. Whole animal measurements of shear andadhesive forces in adult tree frogs: insights into underlying mechanisms of adhesionobtained from studying the effects of size and scale [J]. Journal of ComparativePhysiology A,2006,192(11):1179–1191
    [25] Autumn, K, Liang, Y.A., Hsieh, S.T., Zesch, W., et al. Adhesive force of a single geckofoot-hair [J]. Nature,2000,405:681–685
    [26] Hansen, W.R., Autumn, K. Evidence for self-cleaning in gecko setae [J]. Proceedings ofthe National Academy of Sciences of the United States of America,2004,102(2):385–389
    [27] Dai, Z.D., Yu, M., Gorb, S. Adhesion characteristics of polyurethane for bionic hairyfoot [J]. Journal of Intelligent Material Systems and Structures,2006,17(8-9):737–741
    [28] Lee, H., Lee, B.P., Messersmith, P.B.A reversible wet/dry adhesive inspired by musselsand geckos [J]. Nature,2007,448:338–341
    [29] Barnes, W.J.P. Biomimetic solutions to sticky problems [J]. Science,2007,318:203–204
    [30] Gorb, S.N. Biological attachment devices: exploring nature’s diversity for biomimetics[J]. Philosophical Transactions of the Royal Society A,2008,366(1870):1557–1174
    [31] Arzt, E., Gorb, S., Spolanek, R. From micro to nano contacts in biological attachmentdevices[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2003,100(19):10603–10606
    [32] Gorb, S.N., Beutel, R.G., Gorb, E.V., et al. Structural design and biomechanics ofattachment devices in insects [J]. Integrative and Comparative Biology,2002,42(6):1127-1137
    [33] Coyne, K.J., Qin, X.X., Waite, J.H. Extensible collagen in mussel byssus: a natural blockcopolymer [J]. Science,1997,277(5333):1830–1832
    [34] Naldrett, M.J., Kaplan, D.L. Characterization of barnacle (Balanus eburneus andB.cenatus) adhesive proteins [J]. Marine Biology,1997,127(4):629–635
    [35] Silverman, H.G., Roberto, F.F. Understanding marine mussel adhesion [J]. MarineBiotechnology,2007,9(6):661–681
    [36] Waite, J.H. Adhesion in byssally attached bivalves [J]. Biological Reviews,1983,58(2),209–231
    [37] Santos, R., Gorb, S., Jamar, V., et al. Adhesion of echinoderm tube feet to rough surfaces[J]. Journal of Experimental Biology,2005,208:2555–2567
    [38] Flammang, P. Adhesion in echinoderms. In: Jangoux M, Lawrence JM, editors.Echinoderm studies [M]. Rotterdam: Balkema,1996,1–60
    [39] Smith, J.M.B., Bayliss-Smith, T.P. Kelp-plucking: coastal erosion facilitated by bullkelpDurvillaea anatarctica at subantarctic Macquarie Island [J]. Antarctic Science,1998,10(4):431–438
    [40] Harder, D.L., Hurd, C.L., Speck, T. Comparison of mechanical properties of four large,wave-exposed seaweeds [J]. American Journal of Botany,2006,93(10),1426–1432
    [41] Lee, H., Dellatore, S.M., Miller, W.M., et al. Mussel-inspired surface chemistry formultifunctional coatings [J]. Science,2007,318(5849):426–430
    [42] Wang, J.J., Tahir, M.N., Kappl, M., et al. Influence of binding-site density in wetbioadhesion [J]. Advanced Materials,2008,20(20):3872–3876
    [43] Yin, M., Yuan, Y., Liu, C.S., et al. Development of mussel adhesive polypeptide mimicscoating for in-situ inducing re-endothelialization of intravascular stent devices [J].Biomaterials,2009,30(14):2764–2773
    [44] Darwin C. The movements and habits of climbing plants [M]. New York: D. Appletonand Company,1876
    [45] Endress, A.G.&Thomson, W.W. Ultrastructural and cytochemical studies on thedeveloping adhesive disc of Boston ivy tendril [J]. Protoplasma,1976,88(2-4):315-331
    [46] Endress, A.G.&Thomson, W.W. Adhesion of the Boston ivy tendril [J]. CanadianJournal of Botany,1977,55(8):918-924
    [47] Junker, S.A scanning electron microscopic study on the development of tendrils ofparthenocissus tricuspidata Sieb. and Zucc.[J] New Phytologist,1976,77(3):741-746
    [48] Bowling, A.J., Vaughn, K.C. Structural and immunocytochemical characterization of theadhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch)[J].Protoplasma,2008,232(3-4):153-163
    [49] Steinbrecher, T., Danninger, E., Harber, D., et al. Quantifying the attachement strengthof climbing plants: A new approach [J]. Acta Biomaterialia,2010,6(4):1497-1504
    [50] Steinbrecher, T., Kraft, O., Speck, T., et al. Ontogenetic variations in morphology andattachment strength of permanent attachment pads of species of Parthenocissus.6th PlantBiomechanics Conference, Cayenne,2009,11:16-21
    [51] Fernandes, J.C.&Henriques, F.S. Biochemical physiological and structural effects ofexcess copper in plants [J]. The Botanical Review,1991,57(3):246-273
    [52]江仲春.爬山虎及川鄂爬山虎吸盘壁面附着机制的形态研究[J].南京农业大学学报,1994,17(4):27-31
    [53] Okinaka, T., Yamauchi, K., Hujii, E. Several conditions of wall adhesion of Boston ivy[J]. Jap Landscape Architecture,1988,18:123-130
    [54] Deng, W.L. Tendril, adhesive disc and super adhesive effect of climbing plant. NaturePrecedings (http://precedings.nature.com/documents/1513/version/1.txt),2008,1,15
    [55]何天贤,杨文伍,邓文礼.具有超级粘附作用的藤本植物——爬山虎的最新研究结果及研究进展评论[J].自然科学进展,2008,18(11):1220-1225
    [56] Autumn, K., Sitti, M., Liang, Y.A., et al. Evidence for van der Waals adhesionin geckosetae [J]. Proceeding of the National Academy of Sciences of the United States ofAmerica,2002,99(19):12252-12256
    [57] Geim, A.K., Dubonos, S.V., Grigorieva, I.V., et al. Microfabricated adhesive mimickinggecko foot-hair [J]. Nature Materials,2003,2:461-463
    [58] Zhao, Y., Tong, T., Delzeit, L., et al. Interfacial energy and strength ofmultiwalled-carbon-nanotube-based dry adhesive [J]. Journal of Vacuum Science&Technology B,2006,24(1):331-335
    [59] Reinhold, L., Sachs, T.&Vislovska, L.; Editor: Carr, D. J. The role of auxin inthigmotropism [M]. Plant Growth Subst,1970,731-737
    [60] He, T.X., Zhang, L.,&Deng, W.L. Biological adhesion of Parthenocissus tricuspidata[J]. Archives of Biological Sciences,2011,63(2):393-398
    [61] He, T.X., Zhang, L.,&Deng, W.L. Designing polystyrene honeycomb-likemicrostructure with high water adhesion [J]. Materials Chemistry and Physics,2011,131(1-2):23-26
    [62]金征宇,顾正彪,童群义,杨瑞金.碳水化合物化学——原理与应用[M].北京:化学工业出版社,2008:186-204
    [63]高巍,胡人杰.生物多糖非免疫活性的抗癌作用机制[J].天津药学,2005,17(5):42-45
    [64]朱劲华,张威,王敏,张成武,李朝军.极大螺旋藻多糖对5种人肿瘤细胞株生长的影响[J].中国海洋药物,2003,22(6):26-29
    [65]何学斌,曾伶,薛存宽,沈凯,蒋鹏,李颖.壳多糖抗肿瘤作用及对荷瘤小鼠免疫功能影响的研究[J].营养学报,2003,25(4):432-434
    [66]郑子瑞,戴玲,钟辉.多糖抗病毒活性的研究进展[J].生物技术通讯,2008,19(5):763-780
    [67]王长云,管华诗.多糖抗病毒作用研究进展II.硫酸多糖抗病毒作用[J].生物工程进展,2000,20(2):3-8
    [68] Karmakar, P., Pujol, C.A., Damonte, E.B., et al. Polysaccharides from Padinatetrastromatica: Structural features, chemical modification and antiviral activity [J].Carbohydrate Polymers,2010,80(2):513-520
    [69] Elena, G.K., Irina, I.K., Mladenka, I., et al. Antioxidant activity of extracts fromLavandula vera MM cell cultures [J]. Food Chemistry,2001,72(3):1069-1077
    [70] Giuseppe, R., Maria, T.B., Daniela M.B., et al. Antioxidant activity of extracts of themarine algal genus Cystoseira in a micellar model system [J]. Journal of AppliedPhycology,2001,13(5):403-407
    [71] Reddy, V.P., Garrett, M.R., Perry, G., et al. Carnosine: a versatile antioxidant andantiglycating agent [J]. Science of Aging Knowledge Environment,2005,18:12
    [72] Tehila, T.S., Margalit, B., Dorit, V.M., et al. Antioxidant activity of the polysaccharideof the red microalga Porphyridium sp.[J]. Journal of Applied Phycology,2005,17(3):215-222
    [73] Li, S.P., Zhang, G.H., Zeng, Q., et al. Hypoglycemic activity of polysaccharide, withantioxidation isolated form cultured Cordyceps mycelia [J]. Phytomedicine,2006,13(6):428-433
    [74] Chen, X.H., Liu, Y.H., Bai, X., et al. Hypoglycemic polysaccharide from the TuberousRoot of Liriope spicata [J]. Journal of Natural Products,2009,72(11):1988-1992
    [75] Tong, H.B., Liang, Z.Y., Wang, G.Y. Structural characterization and hypoglycemicactivity of a polysaccharide isolated from the fruit of Physalis alkekengi L.[J].Carbohydrate Polymers,2008,71(2):316-323
    [76]陈业高.植物化学成分[M].北京:化学工业出版社,2004,130-133
    [77] Ying, Z., Han, X.X., Li, J.R. Ultrasound-assisted extraction of polysaccharides frommulberry leaves [J]. Food Chemistry,2011,127(3):1273-1279
    [78]郭振楚.糖类化学[M].北京:化学工业出版社,2005,59-158
    [79]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,2003,30-148
    [80] Sevag, M.G., Lackman, D.B., Smolens, J. The isolation of the components ofstreptococcal nucleoproteins in serologically active form [J]. The Journal of BiologicalChemistry,1938,124:425-436
    [81] Dubois, M., Gilles, K.A., Hamilton, J.K., et al. Colorimetric method for determination ofsugars and related substances [J]. Analytical Chemistry,1956,28:350–356
    [82] Morris, D.L. Quantitative determination of carbohydrates with Dreywood’s anthronereagent [J]. Science,1948,107(2775):254-255
    [83] Omar I., Adel K., Faraj Z., et al. Structural aspects of water-soluble galactomannansisolated from the seeds of Retama raetam [J]. Carbohydrate Polymers,2004,58(1):41-44
    [84] Hakomori, S. A rapid permethylation of glycolipid, and polysaccharide catalyzed bymethylsulfinyl carbanion in dimethyl sulfoxide [J]. Journal of Biochemistry,1964,55(2):205–208
    [85] Duenas-Chasco, M.T., Rudriguez-Carvajal, M.A., Tejero-Mateo, P. Sturctural analysis ofthe exopolysaccharides produced by lactobacillus [J]. Carbohydrate Research,1998,307(1-2):125-133
    [86] Harris, P., Henry, R., Blakeney, A., et al. An improved procedure for the methylationanalysis of oligosaccharides and polysaccharides [J]. Carbohydrate Research,1984,127(1):59-73
    [87] Ciucanu, I.,&Kerek, F. A simple and rapid method for permethylation of carbohydrates[J]. Carbohydate Research,1984,131(2):209-217
    [88] Fleury, P., Lange, J. Determination of the periodate consumption of polysaccharide [J].Pharmaceutical Chemistry Journal,1933,307:125-133
    [89] Aspinall, G.O., Ferrier, R.J. A spectrophotometric method for the determination ofperiodate consumed during exidation of carbohydrates [J]. Chemistry&Industry,1957,36:1216
    [90] Saski, T., Takuma, M., Jakasuka, J., et al. Further study of the structure of lentinan, anantitumor polysaccharide from lentinus edodes [J]. Carbohydrate Research,1976,47(1):99-104
    [91] Bjornal, H., Lindberg, B., Svenndon, S. Mass spectrometry of partially methylated alditolacetates [J]. Carbohydrate Research,1967,5(4):433–441
    [92] Perret, J., Bruneteau, M., Michel, G., et al. Effect of growth conditions on the structure ofβ-D-glucans from Phytophthora parasitica dastur, a phytopathogenic fungus [J].Carbohydrate Polymers,1992,17(3):231–236
    [93] Stokkea, B.T., Elgsaetera, A., Skjrak-Brjekb, G., et al. The molecular size and shape ofxanthan, xylinan, bronchial mucin, alginate, and amylose as revealed by electronmicroscopy [J]. Carbohydrate Research,1987,160:13-28
    [94] Stokke, B.T., Elgsaeter, A. Conformation, order-disorder conformational transitions andgelation of non-crystalline polysaccharides studied using electron microscopy [J].Micron,1994,25(5):469-491
    [95] Yang, X.R., Miller, M.A., Yang, R., et al. Scanning tunneling microscopic images show alaminated structure for glycogen molecules [J]. The Journal of the Federation ofAmerican Societies for Experimental Biology,1990,4(13):3140-3143
    [96] Shigekawa, H., Morozumi, T., Komiyama, M., et al. Scanning tunneling microscopy oncyclodextrin inclusion complexes [J]. Journal of Vacuum Science and Technology B,1991,9(2):1189-1192
    [97] Gunning, A.P., Kirby, A.R., Morris, V.J., et al. Imaging bacterial polysaccharides by AFM[J]. Polymer Bulletin,1995,34(5-6):615-619
    [98] Cunning, A.P., Kirby, A.R., Ridout, M.J., et al. Investigation of gellan networks and gelsby atomic force microscopy [J]. Macromolecules,1996,29(21):6791-6796
    [99] Gunning, A.P., Kirby, A.R., Morris, V.J. Imaging xanthan gum in air by ac "tapping"mode atomic force microscopy [J]. Ultramicroscopy,1996,63(1):1-3
    [100] Ikeda, S., Morris, V.J., Nishinari, K. Microstructure of aggregated and nonaggregatedk-carrageenan helices visualized by atomic force microscopy [J]. Biomacromolecules,2001,2(4):1331-1337
    [101] Rief, M., Oesterhelt, F., Heymann, B., et al. Single molecule force spectroscopy onpolysaccharides by atomic force microscopy [J]. Science,1997,275(5304):1900–1905
    [102] Marszalek, P.E., Oberhauser, A.F., Pang, Y.-P., et al. Polysaccharide elasticity governedby chair-boat transitions of the glucopyranose ring [J]. Nature,1998,396:661–666
    [103] Marszalek, P.E., Li, H.&Fernandez, J.M. Fingerprinting polysaccharides withsingle-molecule atomic force microscopy [J]. Nature Biotechnology,2001,19:258–262
    [104] Razatos, A., Ong, Y.L., Sharma, M.M., et al. Evaluating the interaction of bacteria withbiomaterials using atomic force microscopy [J]. Journal of Biomaterials SciencePolymer Edition,1998,9(12):1361–1373
    [105] Box, G.E.P.,&Wilson, K.B. On the experimental attainment of optimum conditions [J].Journal of the Royal Statistical Society. Series B (Methodological),1951,13(1):1-45
    [106] Wu, Y., Cui, S.W., Tanga, H., et al. Optimization boat-fruited of extraction process ofcrude polysaccharides from sterculia seeds by response surface methodology [J]. FoodChemistry,2007,105(4):1599-1605
    [107] Pierozan, M.K., da Costa, R.J., Antunes, O.A.C., et al. Optimization of extraction oflipase from wheat seeds (Triticum aestivum) by response surface methodology [J].Journal of Agricultural and Food Chemistry,2009,57(20):9716-9721
    [108] Ballard, T.S., Mallikarjunan, P., Zhou, K., et al. Optimizing the extraction of phenolicantioxidants from peanut skins using response surface methodology [J]. Journal ofAgricultural and Food Chemistry,2009,57(8):3064-3072
    [109] Qiao, D.L., Hu, B., Gan, D., et al. Extraction optimized by using response surfacemethodology, purification and preliminary characterization of polysaccharides fromHyriopsis cumingii [J]. Carbohydrate Polymers,2009,76(3):422-429
    [110] Zhu, T., Heo, H.J.,&Row, K.H. Optimization of crude polysaccharides extraction fromHizikia fusiformis using response surface methodology [J]. Carbohydrate Polymers,2010,82(1):106-110
    [111] Giovanni, M. Response surface methodology and product optimization [J]. FoodTechnology,1983,3741:45.
    [112] Liu, J.C., Miao, S., Wen, X.C., et al. Optimization of polysaccharides (ABP) extractionfrom the fruiting bodies of Agaricus blazei Murill using response surface methodology(RSM)[J]. Carbohydrate Polymers,2009,78(4):704-709
    [113] Sun, Y.X., Liu, J.C.,&Kennedy, J.F. Application of response surface methodology foroptimization of polysaccharides production parameters from the roots of Codonopsispilosula by a central composite design [J]. Carbohydrate Polymers,2010,80(3):949-953
    [114] Gan, C.Y., Manaf, N.H.A.,&Latiff, A.A. Optimization of alcohol insolublepolysaccharides (AIPS) extraction from the Parkia speciosa pod using responsesurface methodology (RSM)[J]. Carbohydrate Polymers,2010,79(4):825-831
    [115] Ye, C.L.,&Jiang, C.J. Optimization of extraction process of crude polysaccharidesfrom Plantago asiatica L. by response surface methodology [J] Carbohydrate Polymers,2011,84(1):495-502
    [116] Li, J.W., Ding, S.D.,&Ding, X.L. Optimization of the ultrasonically assisted extractionof polysaccharides from Zizyphus jujuba cv. Jinsixiaozao [J]. Journal of FoodEngineering,2007,80(1):176-183
    [117] Hou, X.J.,&Wei, C. Optimization of extraction process of crude polysaccharides fromwild edible BaChu mushroom by response surface methodology [J]. CarbohydratePolymers,2008,72(1):67-74
    [118] Li, J.E., Nie, S.P., Yang, C., et al. Extraction optimization, characterization andbioactivity of crude polysaccharides from Herba Moslae [J]. Carbohydrate Polymers,2011,83(3):1201-1206
    [119] Sun, Y.X., Li, T.B., Yan, J.W., et al. Technology optimization for polysaccharides(POP) extraction from the fruiting bodies of Pleurotus ostreatus by Box-Behnkenstatistical design [J]. Carbohydrate Polymers,2010,80(1):242-247
    [120] Yin, G.H.,&Dang, Y.L. Optimization of extraction technology of the Lyciumbarbarum polysaccharides by Box-Behnken statistical design [J]. CarbohydratePolymers,2008,74(3):603-610
    [121] Ray, B. Polysaccharides from Enteromorpha compressa: Isolation, purification andstructural features [J]. Carbohydrate Polymers,2006,66(3):408-416
    [122] Guo, X., Zou, X.,&Sun, M. Optimization of extraction process by response surfacemethodology and preliminary characterization of polysaccharides from Phellinusigniarius [J]. Carbohydrate Polymers,2010,80(2):344-349
    [123] Zhu, M.Y., Wang, C.J., Wang, X., et al. Extraction of polysaccharides from Morindaofficinalis by response surface methodology and effect of the polysaccharides onbone-related genes [J]. Carbohydrate Polymers,2011,85(1):23-28
    [124] Gan, C.Y.,&Latiff, A.A. Extraction of antioxidant pectic-polysaccharide frommangosteen (Garcinia mangostana) rind optimization using response surfacemethodology [J]. Carbohydrate Polymers,2011,83(2):600-607
    [125] Sze, S.C.W., Tong, Y., Ng, T.B., et al. Herba epimedii: Anti-oxidative properties andits medical implications [J]. Molecules,2010,15:7861-7870
    [126] Zhang, M., Cui, S.W., Cheung, P.C.K., et al. Antitumor polysaccharides frommushrooms: a review on their isolation process, structural characteristics and antitumoractivity [J]. Trends in Food Science&Technology,2007,18(1):4-19
    [127] Grunewald, N.,&Alban, S. Optimized and standardized isolation and structuralDelesseria sanguinea (Hudson) Lamouroux (Ceramiales, Delesseriaceae)[J].Biomacromolecules,2009,10:2998-3008
    [128] Bradford, M.M. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye binding [J]. AnalyticalBiochemistry,1976,72:248-254
    [129] Hu, C.F., Li, J.H., Yang, D.Y., et al. A neuroprotective polysaccharide from Hyriopsiscumingii [J]. Journal of Natural Products,2010,73(9):1489-1493
    [130] Milo, B., Risco, E., Vila, R., et al. Characterization of a fucoarabinogalactan, the mainpolysaccharide from the gum exudate of Croton urucurana [J]. Journal of NaturalProducts,2002,65(8):1143-1146
    [131] Xu, H., Zhang, Y.Y., Zhang, J.W., et al. Isolation and characterization of ananti-complementary polysaccharide D3-S1from the roots of Bupleurum smithii [J].International Immunopharmacology,2007,7(2):175-18
    [132] Wu, M.B., Wu, Y.L., Zhou, J., et al. Structural characterisation of a water-solublepolysaccharide with high branches from the leaves of Taxus chinensis var. mairei [J].Food Chemistry,2009,113(4):1020-1024
    [133] Kacurakova, M., Capek, P., Sasinkova, V., et al. FT-IR study of plant cell wall modelcompounds: pectic polysaccharides and hemicelluloses [J]. Carbohydrate Polymers,2000,43(2):195-203
    [134] Pawlaczyk, I., Czerchawski, L., Pilecki, W., et al. Polyphenolic-polysaccharidecompounds from selected medicinal plants of Asteraceae and Rosaceae families:Chemical characterization and blood anticoagulant activity [J]. CarbohydratePolymers,2009,77(3):568-575
    [135] Barker, S.A., Bourne, E.J., Stacey, M., et al. Infrared spectra of carbohydrates. I. Somederivatives of D-glucopyranose [J]. Journal of the Chemical Society,1954,171-176
    [136] Purdie, T., Irvine, J.C. The alkylation of sugars [J]. Journal of the Chemical Society,1903,83:1021-1037
    [137] Haworth, W.N. A new method for preparing alkylated sugars [J] Journal of theChemical Society,1915,107:8-16
    [138] Wu, X.M., Dai, H., Huang, L.X., et al. A fructan, from radix ophiopogonis, stimulatesthe proliferation of cultured lymphocytes: Structural and functional analyses [J] Journalof Natural Products,2006,69(9):1257-1260
    [139] Chen, X.H., Liu, Y.H., Bai, X., et al. Hypoglycemic polysaccharides from the tuberousroot of Liriope spicata [J]. Journal of Natural Products,2009,72(11):1988-1992
    [140] Sassaki, G.L., Gorin, P.A.J., Souza, L.M., et al. Rapid synthesis of partiallyO-methylated alditol acetate standards for GC–MS: some relative activities of hydroxylgroups of methyl glycopyranosides on Purdie methylation [J]. Carbohydrate Research,2005,340(4):731-739
    [141] Habib, Y., Mahrouz, M., Maraisa, M.F., et al. An arabinogalactan from the skin ofOpuntia ficus-indica prickly pear fruits [J]. Carbohydrate Research,2004,339(6):1201-1205
    [142] Wu, Y.L., Wang, D.N. Structural characterization and DPPH radical scavenging activityof an arabinoglucogalactan from Panax notoginseng root [J]. Journal of NaturalProducts,2008,71(2):241-245
    [143] Yang, Z.M., Hu, J., Zhao, M.Y. Isolation and quantitative determination of inulin-typeoligosaccharides in roots of Morinda officinalis [J]. Carbohydrate Polymer,2011,83(4):1997-2004
    [144] Mellinger, C.G., Carbonero, E.R., Noleto, G.R., et al. Chemical and biologicalproperties of an arabinogalactan from Phyllanthus niruri [J]. Journal of NaturalProducts,2005,68(10):1479-1483
    [145] Miles, M.J., Lee, I., Atkins, E.D.T. Molecular resolution of polysaccharides by scanningtunneling microscopy [J]. Journal of Vacuum Science and Technology B,1991,9(2):1206-1209
    [146] Oka, Y., Takahashi, A. Scanning tunnelling microscopy of amylase [J]. Kobunshironbunshu,1992,49:389-391
    [147] Lee, I., Atkins, E.D.T., Miles, M.J. Visualization of the algal polysaccharidecarrageenan by scanning tunnelling microscopy [J]. Ultramicroscopy,1992,42-44(2):1107-1112
    [148] Gunning, A.P., McMaster, T.J., Morris, V.J. Scanning tunnelling microscopy of xanthangum [J]. Carbohydrate Polymer,1993,21(1):41-57
    [149] Wilkins, M.J., Davies, M.C., Jackson, D.E., et al. Comparison of scanning tunnellingmicroscopy and transmission electron microscopy image data of a microbialpolysaccharide [J]. Ultramicroscopy,1993,48(1-2):197-201
    [150] Tang, S.L., McGhie, A.J., Suna, A. Molecular-resolution imaging of insulatingmacromolecules with the scanning tunneling microscope via a nontunneling,electric-field-induced mechanism [J]. Physical Review B,1993,47(7):3850-3856
    [151] Smith, S.B., Finzi, L., Bustamante, C. Direct mechanical measurements of the elasticityof single DNA molecules by using magnetic beads [J]. Science,1992,258(5085):1122-1126
    [152] Yokota, H. Sunwoo, J., Sarikaya, M., et al. Spin-stretching of DNA and proteinmolecules for detection by fluorescence and atomic force microscopy [J]. AnalyticalChemistry,1999,71(19):4418-4422
    [153] Hanley, S.J., Giasson, J., Revol, J.F., et al. Atomic force microscopy of cellulosemicrofibrils: comparison with transmission electron microscopy [J]. Polymer,1992,33(21):4639-4642
    [154] Li, H., Rief, M., Oesterhelt, F., et al. Single-molecule force spectroscopy on xanthan byAFM [J]. Advanced Materials,1998,10(4):316-319
    [155]朱华,姬翠翠.分形理论及其应用[M].北京:科学出版社,2011,168-180
    [156] Wang, Y.F., Peng, Y.H. Wei, X.L., et al. Sulfation of tea polysaccharides: Synthesis,characterization and hypoglycemic activity [J]. International Journal of BiologicalMacromolecules,2010,46(2):270-274
    [157] Kirby, A.R., Gunning, A.P., Morris, V.J. Imaging polysaccharides by atomic forcemicroscopy [J]. Biopolymers,1996,38(3):355-366
    [158] Morris, V.J., Gunning, A.P., Kirby, A.R., et al. Atomic force microscopy of plant cellwalls, plant cell wall polysaccharides and gels [J]. International Journal of BiologicalMacromolecules,1997,21(1-2):61-66
    [159] Morris, V.J., Kirby, A.R., Gunning, A.P. A fibrous model for gellan gels from atomicforce microscopy studies [J] Progress in Colloid and Polymer Science,1999,114:102-108
    [160] Zhang, J., Wu, J., Liang, J.Y., et al. Chemical characterization of Artemisia seedpolysaccharide [J]. Carbohydrate Polymer,2007,67(2):213-218
    [161] Kirby, A.R., Gunning, A.P., Morris, V.J., et al. Observation of the helical structure ofthe bacterial polysaccharide acetan by atomic force microscopy [J]. BiophysicalJournal,1995,68(1):360-363
    [162] Kirby, A.R., Gunning, A.P., Morris, V.J. Imaging xanthan gum by atomic forcemicroscopy [J]. Carbohydrate Research,1995,267(1):161-166
    [163] Murray, M.N., Hansma, H.G., Bezanilla, M., et al. Atomic force microscopy ofbiochemically tagged DNA [J]. Proceedings of the National Academy of Sciences ofUnited States of America,1993,90(9):3811-3814
    [164] Coviello, T., Kajiwara, K., Burchard, W. Solution properties of xanthan.1. Dynamicand static light scattering from native and modified xanthans in dilute solutions [J].Macromolecules,1986,19(11):2826-2831
    [165] Capron, I., Alexandre, S., Muller, G. An atomic force microscopy study of the molecularorganisation of xanthan [J]. Polymer,1998,39(23):5725-5730
    [166] Camesano, T.A., Wilkinson, K.J. Single molecule study of xanthan conformation usingatomic force microscopy [J]. Biomacromolecules,2001,2(4):1184-1191
    [167] Holzwarth, G., Prestridge, E.B. Multistranded helix in xanthan polysaccharide [J].Science,1977,197(4305):757-759
    [168] Morris, V.J., Brownsey, G.J., Cairns, P., et al. Molecular origins of acetan solutionproperties [J] International Journal of Biological Macromolecules,1989,11(6):326-328
    [169]张济忠.分形[M].北京:清华大学出版社,1995,7-14
    [170] Witten, T.A., Sander, L.M. Diffusion-limited aggregation, a kinetic critical phenomenon[J]. Physical Review Letters,1981,47(19):1400-1403
    [171] Fang, H.H.P., Chan, K.Y., Xu, L.C. Quantification of bacterial adhesion forces usingatomic force microscopy (AFM)[J]. Journal of Microbiological Methods,2000,40(1):89-97
    [172] Binggeli, M., Mate, C.M. Influence of capillary condensation of water on nanotribologystudied by force microscopy [J]. Applied Physics Letters,1994,65(4):415-417
    [173] Abu-Lail, N.I., Camesano, T.A. Polysaccharide properties probed with atomic forcemicroscopy [J]. Journal of Microscopy,2003,212(3):217-238
    [174] Xia, L.J., Lenaghan, S.C., Zhang, M.J., Wu, Y., Zhao, X.P., Burris, J.N., Jr, C.N.S.Characterization of English ivy (Hedera helix) adhesion force and imaging usingatomic force microscopy[J]. Journal of Nanoparticle Research,2011,13(3):1029-1037

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700