用户名: 密码: 验证码:
爬山虎吸盘的粘附作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藤本植物爬山虎是一种具有多种经济价值的攀沿植物,其研究工作已经引起了越来越多人的重视。尽管如此,对其吸盘的研究却是少之又少。爬山虎能利用其卷须的自攀沿来维持直立生长,在卷须末端形成的吸盘可以长久地粘附在各种基底上,而且粘附力还很强大。根据我们的研究,成熟枯干的爬山虎的单个吸盘的平均质量约为0.0005克,与基底的粘附接触面积平均值也只有1.22平方毫米,而粘附力却达到13.7牛顿;单个吸盘在其生长发育过程中能够支撑起由茎、叶、分枝和卷须共同产生的重量高达吸盘自身重量的260倍,能够承载的最大拉力是其自身重量的280万倍。为了充分认识爬山虎吸盘的超级粘附作用,我们系统地研究了爬山虎吸盘的微观结构、化学成分和粘附机理,并在此基础上对吸盘的表面形貌进行了仿生。
     在扫描电子显微镜实验中,我们发现吸盘刚开始的时候它的表皮细胞是折叠形的,随后它的表面将会发育成密集堆积的气球状。当受到接触刺激后,吸盘会分泌出大量的粘性流体,粘液会穿过表皮细胞的细胞壁积聚在表皮下而形成疱疹,并最终从疱疹爆裂的孔洞中流出。同时,靠近接触点的吸盘表皮细胞将会戏剧性地伸长,而其他的表皮细胞则会保持背斜地分开。在随后的衰老和木质化当中,爬山虎成熟吸盘的表面形貌则呈现出蜂窝状。
     我们用高效液相色谱/质谱联用的方法初步分离了爬山虎吸盘中的21种有机成分。对这些成分的分析研究表明,这21种化合物中大多数都含有氮、硫、氧元素。含有这几种元素的化合物大都能产生极性,氢键作用可能是吸盘在攀沿过程中产生的一种弱吸附力。另外,火焰原子吸收光谱法鉴定了爬山虎吸盘中含有钾、钠、钙、镁、铁、锰等6种金属元素。其中,钙元素的含量最大,它可能参与爬山虎吸盘所分泌粘液的粘附作用。
     尽管爬山虎吸盘的优异力学性能已经被认知了很多年,但是国际上并没有系统地研究其微观结构、粘附性能和粘附机理之间的相互关系。我们在系统研究爬山虎吸盘组织结构和粘附力的基础上,提出了界面反应导致吸盘“锚合”的新假说和负压效应形成封闭空间的新模型来描述爬山虎吸盘的粘附机理,吸盘从而以这样的方式与基底之间形成一个完美的粘合。
     为了评估吸盘表面的两种微观结构在爬山虎攀沿过程中的粘附贡献,我们利用常规氧化铝模板和分级氧化铝模板分别仿生合成了类似于吸盘表面结构的聚苯乙烯阵列柱子和阵列孔洞薄膜。通过类比分析这些表面结构上的粘附力,我们认为未成熟吸盘的柱状细胞起着定位基底并在其表面固定吸附的功能;而在成熟吸盘的蜂窝状大孔结构中,这些海绵状多孔结构有利于粘液的流动和传送,并能显著增强吸盘和基底之间的粘附作用。
     自然的力量不仅能创造美,更能创造奇迹。理解生物学体系的超级粘附机理是从生物粘附系统获得灵感从而进行仿生设计的先决条件,为了充分了解爬山虎吸盘的超级粘附作用,显然还需要更多实验和理论的探索,本项工作对于进一步深入地研究爬山虎吸盘具有重要的指导意义。
Liana Parthenocissus tricuspidata is a versatile climbing plant, which has attracted greatinterest for many years. However, rare attention was paid on the adhesive disc of P.tricuspidata. The self-clinging P. tricuspidata can climb on stone mountains, roadside stonebanks and house outside walls with tendrils to obtain vertical growth. At the end of thetendrils, it develops adhesive discs that attach themselves quite firmly to the substrate.According to our study, a single mature adhesive disc of P. tricuspidata has an average massof only about0.0005g, an average attached area of about1.22mm2and an adhesive force ofabout13.7N but can, on average, support a combined weight of stem, leaf, branchlet, andtendril which is260times greater than its own weight during the growth, and can sustain amaximum pulling force which is2800000times higher than that produced by its own weight.In order to fully realize the super adhesive effect of adhesive disc, we systematically studiedits microstructure, chemical composition and adhesion mechanism, and on this basis, wemimicked the surface morphology of adhesive disc.
     In our experiment of scanning electron microscopy (SEM), we found that epidermal cellsurfaces of the adhesive disc firstly appeared very folded, but developed into a densely packedpattern of hemispheres. When stimulated, a heavy sticky fluid was secreted; the adhesive fluidpassed through the wall of epidermal cells, accumulating under the cuticle and causing it to ableb, and was finally secreted from the ruptured holes. Meanwhile, epidermal cells nearest thepoint of contact elongated extensively and divided periclinically, whereas the left epidermalcells swelled and underwent anticlinal divisions. During the subsequent senescence andlignifications, the epidermal cells would present a honeycomb-like surface appearance in fullymature adhesive disc.
     We first used high-performance liquid chromatography/mass spectrometry (HPLC/MS)to preliminarily analyze the chemical composition of adhesive disc. The data analysissuggested that there are at least21components in the adhesive disc of P. tricuspidata. Theformulas demonstrated that most of the21compounds contain nitrogen, sulfur and oxygen.These compounds are widely known for their ability to generate polarity, hydrogen bondingwould be a weak adhesion for P. tricuspidata climbing. In addition,6metal elements (K, Na,Ca, Mg, Fe and Mn) were identified in the adhesive disc of P. tricuspidata. Between them, theCa content is the most and calcium ions may be involved in the process of adhesion.
     Although the sticking ability of P. tricuspidata has been known for hundreds of years,the component-structure-property relations of adhesive disc are sparsely studied. Based on our experimental studies on the microstructural examinations and adhesive properties of adhesivedisc, we proposed new hypotheses of interface reaction leading to adhesive disc “anchor” andnegative pressure resulting in a closed space to elucidate the mechanism of adhesion, in thisway the adhesive disc has a perfect form closure with the substrate.
     In order to appraise the adhesive contribution of two nature contact structures of P.tricuspidata, biomimetic polystyrene (PS) pillar-like and honeycomb-like microstructuresinspired by the adhesive disc were prepared via a regular alumina template and hierarchicalalumina template, respectively. Through analogy analysis of the adhesive force on thesebiomimetic surface structures, we believed that the finger-like cells of young adhesive dischave a positioning function for pre-adhesion; and the microchannels inside the matureadhesive disc took charge of the accumulation and transportation of mucilage, thesesponge-like structures of cells and cell clusters enhanced the adhesive strength between theadhesive disc and substrate.
     The beauty and miracle can be created by a natural power, so understanding thesuper-adhesion mechanism of biological systems is of great scientific significance and aprerequisite for bio-inspired design of adhesive systems. Evidently, more experimental andtheoretical works are imperative to fully understand the super adhesive effect of adhesive discof P. tricuspidata and this work is quite useful for future studies.
引文
[1] Darwin C. The movements and habits of climbing plants. New York: D. Appleton andCompany,1876.
    [2] Isnard S, Silk WK. Moving with climbing plants from Charles Darwin’s time into the21st century. Am J Bot2009,96:1205-1221.
    [3] Putz FE, Mooney HA.The biology of vines.Cambridge: Cambridge University Press,1991.
    [4]潘玉兴,林井鑫,杨承芬.垂直绿化植物——爬山虎.农业科技通讯2005,36.
    [5]张毅功,陆诗雷,孙振元,等.爬山虎属植物利用研究.资源科学2005,27:141-145.
    [6]冯大领,孟祥书,崔彬彬,等.爬山虎属植物的研究现状及展望.河北林果研究2006,21:272-275.
    [7]王忠强,吴良欢,刘婷婷,等.供氮水平对爬山虎(Parthenocissus tricuspidataPlanch)生物量及养分分配的影响.生态学报2007,27:3435-3441.
    [8]张毅功,陈欣.人工种植爬山虎绿化荒山研究简报.河北农业大学学报1999,22:107.
    [9]闫兴富,周立彪.爬山虎在银川绕城高速公路边坡植被恢复中应用的可行性.山西农业科学2008,36:62-65.
    [10]相卫国,李倩,魏永胜.我国爬山虎研究与应用现状.陕西师范大学学报(自然科学版)2005,33:98-102.
    [11]中国科学院中国植物志编辑委员会.中国植物志.北京:科学出版社,1998.
    [12]李景霞,寇凤仙.优良的垂直绿化树种——五叶爬山虎.林业科技通讯2000,39.
    [13]张金政,石雷,刘雪川.我国北方城市藤本花卉栽培及应用.中国园林2002,75-77.
    [14]黄成林,傅松玲,梁淑云,等.五种攀援植物光合作用因子关系的初步研究.应用生态学报2004,15:1131-1134.
    [15]陆明珍,徐筱昌,奉树成,等.高速路下立柱垂直绿化植物的选择.植物资源与环境1997,6:63-64.
    [16]李娟.垂直面绿化植物叶片遮阳系数的确定.重庆环境科学2001,23:10-11.
    [17]王洪涛,吴联.建筑物上爬山虎的绿色效应.建筑学报1999,25-26.
    [18]杨学军,孙振元,韩蕾,等.五叶地锦在立体绿化中的降温增湿作用.城市环境与城市生态2007,20:2-4.
    [19]孙振元,张毅功,巨关升.爬山虎繁殖技术.林业实用技术2003,8:28-29.
    [20]王新民,石于萍,曹惠琴.大坝发电厂绿化植物引种驯化的栽培管理技术.宁夏农林科技2002,25-28.
    [21]Manfred K, Friedrich B. City-climate and atmospheric-hygiene unloading effects onclimbing plants in highly stressed inner city regions. Verhandlungen der Gesellschaft fuerOekologie1987,16:157-165.
    [22]Manfred T, Willy W. Facade climbing Japanese Creeper as accumulation indicator plant.Distribution of heavy metals in urban-streets with different building structures.Gefahrstoffe–Reinhaltung der Luft1996,56:351-357.
    [23]Manfred T. Filtering of particulate matter and long-term monitoring of air pollution byfacade climbing Japanese creeper (Parthenocissus tricuspidata). Umweltwissenschaftenund Schadstoff-Forschung2006,18:5-12.
    [24]刘光立,陈其兵.四种垂直绿化植物的吸污效应研究石.西南园艺2004,32:1-2.
    [25]刘光立,陈其兵.成都市四种垂直绿化植物生态学效应研究.西北师范大学学报(自然科学版)2004,25:259-262.
    [26]徐传隆,黄泰康.中药辞海.北京:中国医药科技出版社,1993.
    [27]Hwang HK, Sung HK, Wang WK, et al. Medicinal plants of Korea. Yakhak Hoechi1995,39:289.
    [28]中药大辞典编委会.中药大辞典.上海:上海人民出版社,1997.
    [29]王燕芳,张昌桂,姚瑞茹,等.爬山虎化学成分的研究.药学学报1982,17:466-468.
    [30]Lins AP, Felicio JDA, Braggio MM, et al. A resveratrol dimmer from Parthenocissustricuspidata. Phytochemistry1991,30:3144-3146.
    [31]Vervoitte V. Applicability of in vitro plant tissue cultures in discovery of new anticancerdrugs: Application to the study of alstonine. Bio-Sciences1984,3:14-16.
    [32]Chistokhodova NA, Zhiviriga I, Nguien C, et al. Beta-amirilhexadecanoate derived fromParthenocissus quinquefolia as a thrombin inhibitor. Khimiko-FarmatsevticheskiiZhurnal2002,36:23-25.
    [33]Tanaka T, Ohyama M, Morimoto K, et al. A resveratrol dimmer from Parthenocissustricuspidata. Phytochemistry1998,48:1241-1243.
    [34]Hwang HK, Sung HK, Whang WK, et al. Flavonol glycosides Ⅱ from Parthenocissustricuspidata leaves. Yakhak Hoechi1995,39:289-296.
    [35]Saleem M, Kim HJ, Jin C, et al. Antioxidant caffeic acid derivatives from leaves ofParthenocissus tricuspidata. Arch Pharm Res2004,27:300-304.
    [36]Son H, Chung M, Lee SJ, et al. Antiplasmodial activity of novel stibene derivativesisolated from Parthenocissus tricuspidata from South Korea. Parasitol Res2007,101:237-241.
    [37]Kim HJ, Saleem M, Seo SH, et al. Two new antioxidant stilbene dimers,parthenostilbenins A and B from Parthenocissus tricuspidata. Planta Med2005,71:973-976.
    [38]周国海,杨美霞,于华忠,等.不同方法对爬山虎中总黄酮含量测定的影响.中国林副特产2004,3-4.
    [39]李静,李德坤.地锦茎叶脂肪酸成分研究.人参研究2000,12:39-40.
    [40]董爱文,赵虹桥,施立毛,等.爬山虎多糖提取与含量的测定.中国野生植物资源2004,23:55-57.
    [41]董爱文,向中,林桂艳,等.爬山虎果中糖类物质含量测定方法的研究.食品科学2002,23:132-135.
    [42]赵虹桥,董爱文,朱炯波,等.爬山虎果实中微量元素的快速测定.中国林副特产2005,2-3.
    [43]王双明.爬山虎果实色素的提取及其性质的初步研究.食品科技2005,52-54.
    [44]董爱文,于华忠,冯英英.爬山虎籽中原花青素提取纯化工艺优化及含量测定.食品科学2010,31:88-92.
    [45]相卫国,李倩,魏永胜.爬山虎茎叶分泌团的形态描述研究.安徽农业科学2006,34:625.
    [46] Ewart AJ. On contact irritability. Annales du Jardin Botanique de Buitzenzorg1898,15:187-242.
    [47] Mohl H. über den Bau und das Winden der Ranken-und Schlingpflanzen. Laupp:Tübingen,1827.
    [48] Lengerken AV. Die Bildung der Haftballen an den Ranken einiger Arten der GattungAmpelopsis. Botanische Zeitung1885,43:337-346.
    [49] Moens P. Ontogenèse des vrilles et différen-ciation des ampoules adhésives chezquelques végétaux.(Ampélopsis, Bignonia, Glaziovia). La Cellule1956,57:317.
    [50] Chiang ST, Tu M. Histological Study on the Tendril of Parthenocissus tricuspidata.Taiwania1971,16:49-66.
    [51] Malpighi M. Opera Omnia. Anatomes Plantarum. Pars Altera. London: Tho. Sawbridgeand Geo. MTells,1686.
    [52]Darwin C. The movements and habits of climbing plants. London: John Murray,1875.
    [53] Endress AG, Thomson WW. Adhesion of the Boston ivy tendril. Can J Bot1977,55:918-924.
    [54] Endress AG, Thomson WW. Ultrastructural and cytochemical studies on the developingadhesive disc of boston ivy tendril. Protoplasm1976,88:315-331.
    [55] Junker S. A scanning electron microscopic study on the development of tendrils ofParthenocissus tricuspidata Sieb. and Zucc. New Phytol1976,77:741-746.
    [56] Bowling AJ, Vaughn KC. Structural and immunocytochemical characterization of theadhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch).Protoplasma2008,232:153-163.
    [57] Steinbrecher T, Beuchle G, Melzer B, et al. Structural development and morphology ofthe attachment system of Parthenocissus tricuspidata. Int J Plant Sci2011,172:1120-1129.
    [58] Steinbrecher T, Danninger E, Harber D, et al. Quantifying the attachement strength ofclimbing plants: A new approach. Acta Biomater2010,6:1497-1504.
    [59] Steinbrecher T, Speck T, Kraft O, et al. Mechanics and morphology of permanentattachment systems of climbing plants. Comp Biochem Phys A2008,150: S88.
    [60] Fernandes JC, Henriques FS. Biochemical physiological and structural effects of excesscopper in plants. Bot Rev1991,57:246-273.
    [61]江仲春.爬山虎及川鄂爬山虎吸盘壁面附着机制的形态研究.南京农业大学学报1994,17:27-31.
    [62]Okinaka T, Yamauchi K, Hujii E. Several conditions of wall adhesion of Boston ivy. JapLandscape Architecture1988,18:123-130.
    [63]董爱文,赵虹桥,卜晓英,等.爬山虎属三种植物吸盘的解剖学研究.热带亚热带植物学报2009,17:38-42.
    [64]Ragni G, Conti GF, Cinti S, et al. Parthenocissus tricuspidata: a plant model ofbiological adhesion.Bull Group int Rech sc Stomat et Odont1988,31:189-205.
    [65]Deng WL. Tendril, adhesive disc and super adhesive effect of climbing plant. Availablefrom Nature Precedings (2008)
    [66]何天贤,杨文伍,邓文礼.具有超级粘附作用的藤本植物——爬山虎的最新研究结果及研究进展评论.自然科学进展2008,18:1220-1225.
    [67]Lee H, Lee BP, Messersmith PB. A reversible wet/dry adhesive inspired by mussels andgeckos. Nature2007,448:338-341.
    [68]Autumn K, Liang YA, Hsieh ST, et al. Adhesive force of a single gecko foot-hair. Nature2000,405:681-685.
    [69]Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry formultifunctional coatings. Science2007,318:426-430.
    [70]Zhang MJ, Liu MZ, Prest H, et al. Nanoparticles secreted from ivy rootlets for surfaceclimbing. Nano Lett2008,8:1277-1280.
    [71]Wu Y, Zhao XP, Zhang MJ. Adhesion mechanics of ivy nanoparticles. J Colloid InterfSci2010,344:533-540.
    [72]Xia LJ, Lenaghan SC, Zhang MJ, et al. Characterization of English ivy (Hedera helix)adhesion force and imaging using atomic force microscopy. J Nanoparticle Res2011,13:1029-1037.
    [73]Lenaghan SC, Zhang MJ. Real-time observation of the secretion of a nanocompositeadhesive from English ivy (Hedera helix). Plant Sci2012,183:206-211.
    [1] Aristotle. Historia Animalium Book Ⅸ(trans. Thompson DAW). Oxford: Clarendon,1918.
    [2] Darwin C. The movement and habits of climbing plants. London: John Murray,1875.
    [3] Malpighi M. Opera Omnia. Anatomes Plantarum. Pars Altera. London: Tho. Sawbridgeand Geo, Wells,1686.
    [4] Maderson PEA. Keratinized epidermal derivatives as an aid to climbing in gekkonidlizards. Nature1964,203:780-781.
    [5] Ruibal R, Ernst V. The structure of the digital setae of lizards. J Morphol1965,117:271-294.
    [6] Gadow H. The Cambridge Natural History Vol.8Amphibia and Reptiles. London:McMillan,1901.
    [7] Hora SL. The adhesive apparatus on the toes of certain geckos and tree frogs. J ProcAsiatic Society of Bengal1923,9:137-145.
    [8] Hiller U. Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilian.Z Morphol Tiere1969,62:307-362.
    [9] Schmidt HR. Zur Anatomie und Physiologie der Geckopfote. Jena Z Naturw1904,39:551-563.
    [10]Stork NE. Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae:Coleoptera) on a variety of surface. J Exp Biol1980,88:91-107.
    [11]Huber G, Mantz H, Spolenak R, et al. Evidence for capillarity contributions to geckoadhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci USA2005,102:16293-16296.
    [12]Autumn K, Liang YA., Hsieh ST, et al. Adhesive force of a single gecko foot-hair. Nature2000,405:681-685.
    [13]Autumn K, Sitti M, Liang YA, et al. Evidence for van der Waals adhesion in gecko setae.Proc NatlAcad Sci USA2002,99:12252-12256.
    [14]Bellairs A. The life of reptiles. New York: Universe,1970.
    [15]Gao H, Wang X, Yao H, et al. Mechanics of hierarchical adhesion structures of geckos.Mech Mater2005,37:275-285.
    [16]Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachmentdevices. Proc NatlAcad Sci USA2003,100:10603-10606.
    [17]Geim AK, Dubonos SV, Grigorieva IV, et al. Microfabricated adhesive mimicking geckofoot-hair. Nature Mater2003,2:461-463.
    [18]Zhao Y, Tong T, Delzeit L, et al. Interfacial energy and strength ofmultiwalled-carbon-nanotube-bassed dry adhesive. J Vac Sci Technol B2006,24:331-335.
    [19]Ge L, Sethi S, Ci L, et al. Carbon nanotube-based synthetic gecko tapes. Proc Natl AcadSci USA2007,104:10792-10795.
    [20]Vervoitte V. Applicability of in vitro plant tissue cultures in discovery of new anticancerdrugs. Application to the strudy of alstonine. Bio-Sciences1984,3:14-16.
    [21]Hwang HK, Sung HK, Whang WK, et al. Flavonol glycosides from Parthenocissustricuspidata leaves. Yakhak Hoechi1995,39:289-296.
    [22]Tanaka T, Ohyama M, Morimoto K, et al. A resveratrol dimmer from Parthenocissustricuspidata. Phytochemistry1998,48:1241-1243.
    [23]Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, anatural product derived from grapes. Science1997,275:218-220.
    [24]Son H, Chung M, Lee SJ, et al. Antiplasmodial activity of novel stilbene derivativesisolated from Parthenocissus tricuspidata from South Korea. Parasitol Res2007,101:237-241.
    [25]Koehler M, Bartfelder F. City-climate and atmospheric-hygiene unloading effects onclimbing plants in highly stressed inner city regions. Verhandlungen der Gesellschaft fuerOekologie1987,16:157-165.
    [26]Thoennessen M, Werner, W. Fa ade climbing Japanese Creeper as accumulation indicatorplant. Distribution of heavy metal in urban-streets with different building structures.Gefahrstoffe-Reinhalting der Luft1996,56:351-357.
    [27]Thoennessen, M. Filtering of particulate matter and long-term monitoring of air pollutionby fa ade climbing Japanese creeper (Parthenocissus tricuspidata).Umweltwissenschaften und Schadstoff-Forschung2006,18:5-12.
    [28]Deng WL. Tendril, adhesive disc and super adhesive effect of climbing plant. Availablefrom Nature Precedings (2008)
    [29]何天贤,杨文伍,邓文礼.具有超级粘附作用的藤本植物——爬山虎的最新研究结果及研究进展评论.自然科学进展2008,18:1220-1225.
    [30]Junker S. A scanning electron microscopic study on the development of tendrils ofParthenocissus tricuspidata Sieb. and Zucc. New Phytol1976,77:741-746.
    [31]Ewart AE. On contact irritability. Ann Fard Bot Buitenzorg1898,15:187-219.
    [32]Mohl H. Uber den Bau un das Winder der Ranken und Schlingpflanzen. Tubingen:Heinrich Laupp,1827.
    [33]Lengerken AV. Die bildung der haftballen an der ranken einiger arten der gattung.Ampelopsis Bot Zeitung1885,43:337-346.
    [34]Chiang SHT, Tu M. Histological study on the tendril of Parthenocissus tricuspidata.Taiwania1971,16:49-66.
    [35]Endress AG., Thomson WW. Adhesion of the Boston ivy tendril. Can J Bot1977,55:918-924.
    [36]Reinhold L, Sachs T, Vislovska L. The role of auxin in thigmotropism. Plant GrowthSubst1970,731-737.
    [1] Darwin C. The movement and habits of climbing plants. London: Harry Murray,1875.
    [2] Jaffe MJ, Galston AW. The physiology of tendrils. Annu Rev Plant Physiol1968,19:417–434.
    [3] Meloche CG, Knox JP, Vaughn KC. Acortical band of gelatinous fibers causes the coilingof redvine tendrils: a model based upon cytochemical and immunocytochemical studies.Planta2007,225:485–498.
    [4] Endress AG, Thomson WW. Ultrastructural and cytochemical studies on the developingadhesive disc of Boston ivy tendrils. Protoplasma1976,88:315–331.
    [5] Endress AG, Thomson WW. Adhesion of the Boston ivy tendril. Can J Bot1977,55:918–924.
    [6] Vaughn KC, Hoffman JC, Hahn MG, et al. The herbicide dichlobenil disrupts cell plateformation: immunogold characterization. Protoplasma1996,194:117–132.
    [7] Sabba RP, Durso NA, Vaughn KC. Structural and immunocytochemical characterizationof dichlobenil-habituated tobacco BY-2cells. Int J Plant Sci1999,160:275–290.
    [8] Vaughn KC. Dodder hyphae invade the host: a structural and immunocytochemicalcharacterization. Protoplasma2003,220:189–200.
    [9] Bowling AJ, Vaughn KC. Structural and immunocytochemical characterization of theadhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch.).Protoplasma2008,232:153-163.
    [10]Bowling AJ, Vaughn KC. Gelatinous fibers are widespread in coiling tendrils and twiningvines. Am J Bot2009,96:719-727.
    [11]Chen JJ, He S, Mao H, Sun CR, Pan YJ. Characterization and identification ofpolyphenol compounds from the roots and stems of Parthenocissus laetevirens byHPLC-MSn. Rapid Commun Mass Spectrom2009,23:737-744.
    [12]L’vov BV. Fifty years of atomic absorption spectrometry. J Anal Chem2005,60:382-392.
    [13]Chen JJ, Lu YB, Lin L, Sun CR, Pan YJ. Rapid identification of compounds from therhizomes of Zingiber cassumunar by high-performance liguid chromatography∕tandemmass spectrometry. Rapid Commun Mass Spectrom2009,23:1654-1658.
    [14]Zhang MJ, Liu MZ, Prest H, et al. Nanoparticles secreted from ivy rootlets for surfaceclimbing. Nano Lett2008,8:1277–1280.
    [15]Zhang MJ, Liu MZ, Bewick S, et al. Nanoparticles to increase adhesive properties ofbiologically secreted materials for surface affixing. J Biomed Nanotechnol2009,5:294–299.
    [16]Wu Y, Zhao XP, Zhang MJ. Adhesion mechanics of ivy nanoparticles. J Colloid InterfaceSci2010,344:533–540.
    [17]Xia LJ, Lenaghan SC, Zhang MJ, et al. Naturally occurring nanoparticles from Englishivy: an alternative to metal-based nanoparticles for UV protection. J Nanobiotechnol2010,8:12.
    [18]Xia LJ, Lenaghan SC, Zhang MJ, et al. Characterization of English ivy (Hedera helix)adhesion force and imaging using atomic force microscopy. J Nanopart Res2011,13:1029–1037.
    [19]刘桂兰.微量元素对植物生长发育的作用.现代农村科技2009,55.
    [20]Kabata-Pendias A, Pendias H. Trace elements in soils and plants. Boca Raton: CRC Press,1992.
    [21]李佛琳,彭桂芬,萧风回,等.我国烟草钾素研究的现状与展望.中国烟草科学1999:22-25.
    [22]范钦桢,郑文钦.农业中的钾.北京:科学出版社,1995.
    [23]倪吾钟,何愈祖,林荣新.钾对大白菜的营养作用及其生理机制研究.植物营养与肥料学报1997,3:117-121.
    [24]刘咏梅.低钾对番红花长合作用的影响.西南师范大学学报1997,426-429.
    [25]李娟.植物钾、钙、镁素营养的研究进展.福建稻麦科技2007,25:39-42.
    [26]李孟收.植物体内的钠及其营养功能.植物杂志1999,37-38.
    [27]吴天山.微量元素在植物生长中的作用.新疆化工2003,46-47.
    [28]袁玉信.微量元素在植物生活中的作用.生物学通报1996,31:4-8.
    [29]周世恭.镁在植物体中的作用.植物杂志1987,22-23.
    [30]李明晶,孙华云,刘亦凡.镁在植物生长中的作用及镁肥.硫磷设计与粉体工程2009,36-39.
    [31]Simkiss K. Calcium translocation by cells. Endeavor1974,33:119-123.
    [32]Geesey GG, Wigglesworth-Cooksey B, Cooksey KE. Influence of calcium and othercations on surface adhesion of bacteria and diatoms: a review. Biofouling2000,15:195-205.
    [33]Gubler F, Hardham AR, Duniec J. Characterising adhesiveness of Phytophthoracinnamomi zoospores during encystment. Protoplasma1989,149:24–30.
    [34]Scanlan EM, Mackeen MM, Wormald MR, et al. Synthesis and solution-phaseconformation of the RG-I fragment of the plant polysaccharide pectin reveals amodification-modulated assembly mechanism. J Am Chem Soc2010,132:7238-7239.
    [35]Bitton R, Bianco-Peled H. Novel biomimetic adhesives based on algae glue. MacromolBiosci2008,8:393-400.
    [1] Huber G, Mantz H, Spolenak R, et al. Evidence for capillarity contributions to geckoadhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci USA2005,102:16293-16296.
    [2] Gorb S. Attachment devices of insect cuticle. Dordrecht. The Netherlands: KluwerAcademic Publishers,2001.
    [3] Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachmentdevices. Proc NatlAcad Sci USA2003,100:10603–10606.
    [4] Federle W, Barnes WJP, Baumgartner W, et al. Wet but not slippery: boundary friction intree frog adhesive toe pads. J R Soc Interface2006,3:689–697.
    [5] Gorb S, Niederegger S, Hayashi CY, et al. Silk-like secretion from tarantula feet. Nature2006,443:407.
    [6] Corne KJ, Qin X, Waite JH. Extensible collagen in mussel byssus: a natural blockpolymer. Science1997,277:1830–1832.
    [7] Silverman HG., Roberto FF. Understanding marine mussel adhesion. Mar Biotechnol2007,9:661–681.
    [8] Waite JH. Mussle power. Nat Mater2008,7:8–9.
    [9] Wang J, Tahir M, Kappl M, et al. Influence of binding-site density in wet bioadhesion.Adv Mater2008,20:3872–3876.
    [10]Sangeetha R, Kumar R, Venkatesan R, et al. Understanding the structure of the adhesiveplaque ofAmphibalanus reticulatus. Mater Sci Eng C2010,30:112–119.
    [11]Groot EP, Sweeney EJ, Rost TL. Development of the adhesive pad on climbing fig (Ficuspumila) stems from clusters of adventitious roots. Plant Soil2003,248:85–96.
    [12]Meloche CG, Knox JP, Vaughn KC. Acortical band of gelatinous fibers causes the coilingof redvine tendrils: a model based upon structural and immunocyto-chemical studies.Planta2007,225:485–498.
    [13]Zhang MJ, Liu MZ, Prest H, et al. Nanoparticles secreted from ivy rootlets for surfaceclimbing. Nano Lett2008,8:1277–1280.
    [14]Steinbrecher T, Danninger E, Harder D, et al. Quantifying the attach-ment strength ofclimbing plants: a new approach. Acta Biomater2010,6:1497–1504.
    [15]Melzer B, Steinbrecher T, Seidel R, et al. The attachment strategy of English ivy: acomplex mechanism acting on several hierarchical levels. J R Soc Interface2010,7:1383–1389.
    [16]Darwin C. The movement and habits of climbing plants. London: John Murray,1875.
    [17]Ewart AE. On contact irritability. Ann Fard Bot Buitenzorg1898,15:187.
    [18]Mohl H. Uber den Bau un das Winder der Ranken und Schlingpflanzen. Tubingen:Heinrich Laupp,1827.
    [19]Lengerken AV. Die bildung der haftballen an der ranken einiger arten der gattung.Ampelopsis Bot Zeitung1885,43:337-346.
    [20]Moens P. Ontogenese des vrilles et differenciation des ampoules adhesives chez quelquesvegetaux (Ampelopsis, Bignonia, Glaziovia). La Cellule1956,57:371.
    [21]Chiang SHT, Tu M. Histological study on the tendril of Parthenocissus tricuspidata.Taiwania1971,16:49.
    [22]Junker S. A scanning electron microscopic study on the development of tendrils ofParthenocissus tricuspidata Sieb.&Zucc. New Phytol1976,77:741-746.
    [23]Endress AG, Thomson WW. Adhesion of the Boston ivy tendril. Can J Bot1977,55:918-924.
    [24]Endress AG., Thomson WW. Ultrastructural and cytochemical studies on the developingadhesive disc of boston ivy tendrils. Protoplasma1976,88:315–331.
    [25]Bowling AJ, Vaughn KC. Structural and immunocytochemical characterization of theadhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch.).Protoplasma2008,232:153–163.
    [26]Autumn K, Liang YA, Hsieh ST, et al. Adhesive force of a single gecko foot-hair. Nature2000,405:681-685.
    [27]Autumn K, Sitti M, Liang YA, et al. Evidence for van der Waals adhesion in gecko setae.Proc NatlAcad Sci USA2002,99:12252-12256.
    [28]Geim AK, Dubonos SV, Grigorieva IV, et al. Microfabricated adhesive mimicking geckofoot-hair. Nature Mater2003,2:461-463.
    [29]Zhao Y, Tong T, Delzeit L, et al. Interfacial energy and strength ofmultiwalled-carbon-nanotube-bassed dry adhesive. J Vac Sci Technol B2006,24:331-335.
    [30]Ge L, Sethi S, Ci L, et al. Carbon nanotube-based synthetic gecko tapes. Proc Natl AcadSci USA2007,104:10792-10795.
    [31]Reinhold L, Sachs T, Vislovska L. The role of auxin in thigmotropism. Plant GrowthSubst1970,731-737.
    [32]Ragni G., Conti G.F, Cinti S, et al. Parthenocissus tricuspidata: a plant model ofbiological adhesion. Bull Group int Rech sc Stomat et Odont1988,31:189-205.
    [33]Rubery PH, Sheldrake AR. Effect of pH and surface charge on cell uptake of auxin.Nature1973,244:285-288.
    [34]Bunning E. Die thigmonastischen und thigmotropischen reaktionen. Encyclopedia PlantPhysiology1959,17:254.
    [35]Jacobs WP. The role of auxin in the differentiation of xylem round a wound. Am J Bot1952,39:301-309.
    [36]Coutand C, Jernimidis G, Chanson B, et al. Comparison of mechanical properties oftension and opposite wood in Populus. Wood Sci Technol2004,38:11-24.
    [37]French V, Bryant PJ, Bryant S. Pattern regulation in epimorphic fields. Science1976,193:969-981.
    [38]Christie AO, Evans LV, Shaw M. Studies on the ship-fouling alga Entoromorpha. II. Theeffect of certain enzymes on the adhesion of zoospores. Ann Bot1970,34:467-482.
    [39]Callow ME, Evans LV. Studies on the ship-fouling alga Enteromorpha. III. Cytochemistryand autoradiography of adhesive production. Protoplasma1974,80:15-27.
    [40]Edelman GM. Cell adhesion molecules. Science1983,219:450-457.
    [41]江仲春.爬山虎及川鄂爬山虎吸盘壁面附着机制的形态研究.南京农业大学学报1994,17:27-31.
    [42]Deng WL. Tendril, adhesive disc and super adhesive effect of climbing plant. Availablefrom Nature Precedings (2008)
    [43]何天贤,杨文伍,邓文礼.具有超级粘附作用的藤本植物——爬山虎的最新研究结果及研究进展评论.自然科学进展2008,18:1220-1225.
    [1]杜家纬.二十一世纪仿生学研究对我国高新技术产业的影响.世界科学2004,12-16.
    [2] Aksay IA, Trau M, Manne S, et al. Biomimetic pathways for assembling inorganic thinfilms. Science1996,273:892-898.
    [3] Cahn RW. Imitating nature’s designs. Nature1996,382:684.
    [4] Cha JN, Stucky GD, Morse DE, et al. Biomimetic synthesis of ordered silica structuresmediated by block copolypeptides. Nature2000,403:289-292.
    [5] Sanchez C, Arribart H, Guille MMG. Biomimetism and bioinspiration as tools for thedesign of innovative materials and systems. Nature Mater2005,4:277-288.
    [6] Moutos FT, Freed LE, Guilak F. A biomimetic three-dimensional woven compositescaffold for functional tissue engineering of car-tilage. Nature Mater2007,6:162-167.
    [7] Bellamkonda RV. Biomimetic materials——Marine inspiration. Nature Mater2008,7:347-348.
    [8] Behrens P, B uerlein E. Handbook of Biomineralization: Biomimetic and BioinspiredChemistry. Weinheim: WILEY-VCH Verlag GmbH&Co. KgaA,2007.
    [9]路甬祥.仿生学的意义与发展.科学中国人2004,22-24.
    [10]刘克松,江雷.仿生结构及其功能材料研究进展.科学通报2009,54:2667-2681.
    [11]Autumn K, Liang YA, Hsieh ST, et al. Adhesive force of a single gecko foot-hair. Nature2000,405:681-685.
    [12]Autumn K, Sitti M, Liang YCA, et al. Evidence for van der Waals adhesion in geckosetae. Proc NatlAcad Sci USA2002,99:12252-12256.
    [13]Huber G, Mantz H, Spolenak R, et al. Evidence for capillarity contributions to geckoadhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci USA2005,102:16293-16296.
    [14]Tian Y, Pesika N, Zeng HB, et al. Adhesion and friction in gecko toe attachment anddetachment. Proc NatlAcad Sci USA2006,103:19320-19325.
    [15]Peattie AM, Full RJ. Phylogenetic analysis of the scaling of wet and dry biologicalfibrillar adhesives. Proc NatlAcad Sci USA2007,104:18595-18600.
    [16]Hansen WR, Autumn K. Evidence for self-cleaning in gecko setae. Proc Natl Acad SciUSA2005,102:385-389.
    [17]Qu L, Dai L. Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesiveswith unique electrical and thermal properties. Adv Mater2007,19:3844-3849.
    [18]Yurdumakan B, Raravikar NR, Ajayan PM, et al. Synthetic gecko foot-hairs frommultiwalled carbon nanotubes. Chem Commun2005,3799-3801.
    [19]Ge L, Sethi S, Ci L, et al. Carbon nanotube-based synthetic gecko tapes. Proc Natl AcadSci USA2007,104:10792-10795.
    [20]Qu LT, Dai LM, Stone M, et al. Carbon nanotube arrays with strong shear binding-on andeasy normal lifting-off. Science2008,322:238-242.
    [21]Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication ofhoneycomb structure of anodic alumina. Science1995,268:1466-1468.
    [22]Varghese OK, Gong DW, Paulose M, et al. Crystallization and high-temperaturestructural stability of titanium oxide nanotube arrays. J Mater Res2003,18:156-165.
    [23]Yue GH, Yan PX, Liu JZ, et al. Fabrication, structure magnetic properties of highlyordered cobalt disulfide nanowire arrays. Appl Phys Lett2005,87:2505-2507.
    [24]巩运兰,王为,董向红,等.铝基材组织结构对氧化铝薄膜纳米孔阵列结构的影响.化工学报2001,52:1120-1122.
    [25]Noguchi H, Sano A. Bath temperature and voltage influence on anodized films onaluminum in organic alkaline baths. Hyomen Gijutsu1998,49:649-654.
    [26]Li AP, Müller F, Birner A, et al. Hexagonal pore arrays with a50-420nm interporedistance formed by self-organization in anodic alumina. J Appl Phys1998,84:6023-6026.
    [27]Chu SZ, Wada K, Inoue S, et al. Fabrication of ideally ordered nanoporous alumina filmsand integrated alumina nanotubule arrays by high-field anodization. Adv Mater2005,17:2115-2119.
    [28]Lee W, Ji R, G sele U, et al. Fast fabrication of long-range ordered porous aluminamembranes by hard anodization. Nat Mater2006,5:741-746.
    [29]Li YB, Zheng MJ, Ma L, et al. Fabrication of highly ordered nanoporous alumina filmsby stable high-field anodization. Nanotechnology2006,17:5101-5105.
    [30]李屹,凌志远,王金池,等.草酸-乙醇-水溶液中制备孔间距大范围内可调多孔氧化铝模板.科学通报2007,52:2235-2238.
    [31]Steinhart M, Wendorff JH, Greiner A, et al. Polymer nanotubes by wetting of orderedporous templates. Science2002,296:1997.
    [32]Song GJ, She XL, Fu ZF, et al. Preparation of good mechanical property polystyrenenanotubes with array structure in anodic aluminum oxide template using simple physicaltechniques. J Mater Res2004,19:3324-3328.
    [33]Jin MH, Feng XJ, Feng L. Superhydrophobic aligned polystyrene nanotube films withhigh adhesive force. Adv Mater2005,17:1977-1981.
    [34]Marsal LF, Formentín P, Palacios R, et al. Polymer microfibers obtained using poroussilicon templates. Phys Stat Sol (a)2008,205:2437-2440.
    [35]Li XR, Wang YQ, Song GJ, et al. Fabrication of patterned polystyrene nanotube arrays inan anodic aluminum oxide template by photolithography and the multiwetting mechanism.J Phys Chem B2009,113:12227-12230.
    [36]Masuda H, Yamada H, Satoh M, et al. Highly ordered nanochannel-array architecture inanodic alumina. Appl Phys Lett1997,71:2770-2772.
    [37]Masuda H, Asoh H, Watanabe M, et al. Square and triangular nanohole arrayarchitectures in anodic alumina. Adv Mater2001,13:189-192.
    [38]Lee W, Ji R, G sele U, et al. Fast fabrication of long-range ordered porous aluminamembranes by hard anodization. Nat Mater2006,5:741-747.
    [39]Jessensky O, Müller F, G sele U. Self-organized formation of hexagonal pore arrays inanodic alumina. Appl Phys Lett1998,72:1173-1175.
    [40]Yu WH, Fei GT, Chen XM, et al. Influence of defects on the ordering degree ofnanopores made from anodic aluminum oxide. Phys Lett A2006,350:392-395.
    [41]Park SH, Xia Y. Macroporous memberanes with highly ordered and three-dimensionallyinterconnected spherical pores. Adv Mater1998,10:1045-1046.
    [42]Xia YN, Gates B, Yin Y, et al. Monodispersed colloidal spheres: old materials with newapplications. Adv Mater2000,12:693-713.
    [43]Cho SO, Jun HY, Ahn SK. A novel route to three-dimensionally ordered macroporouspolymers by electron irradiation of polymer colloids. Adv Mater2005,17:120-125.
    [44]Ellison AH, Zisman WA. Wettability studies on nylon, polyethylene terephthalate andpolystyrene. J Phys Chem1954,58:503-506.
    [45]Bargeman D. Contact angles on nonpolar solids. J Colloid Interface Sci1972,40:344-348.
    [46]Tretinnikov ON. Hydrophilic (hydrogen-bonding) polystyrene surface bysubstrate-induced surface segregation of benzene groups. Langmuir2000,16:2751-2755.
    [47]Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem1936,28:988-994.
    [48]Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc1944,40:546-551.
    [49]Sun W, Shen LY, Wang JM, et al. Netlike knitting of polyelectrolyte multilayers onhoneycomb-patterned substrate. Langmuir2010,26:14236-14240.
    [50]Wu D, Chen QD, Xia H, et al. A facile approach for artificial biomimetic surfaces withboth superhydrophobicity and iridescence. Soft Matter2010,6:263-267.
    [51]Lai YK, Gao XF, Zhuang HF, et al. Designing superhydrophobic porous nanostructureswith tunable water adhesion. Adv Mater2009,21:3799-3803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700