用户名: 密码: 验证码:
3种垂直绿化植物对污染物的富集及生理响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垂直绿化植物是城市园林绿化和植物造景的重要组成部分,以爬山虎(Parthenocissus tricuspidata)、云南黄馨(Jasminum mesnyi)和野蔷薇(Rosa multiflora)3种植物作为研究对象,对爬山虎和云南黄馨在自然污染状态下的叶片硫含量、全氮含量及生理生化的月动态变化进行了研究,并对盆栽条件下,3种植物在不同地点叶片硫含量、重金属(锌、铜、铅、镉、铬)含量的季节变化以及不同浓度S02和N02胁迫下3种植物的吸收能力与生理生化响应进行了研究。主要结论如下:
     (1)自然条件下叶片硫含量的大小是:云南黄馨>爬山虎嫩叶>爬山虎成熟叶。硫含量在不同地点的月动态变化趋势是先降后升,工业区和交通枢纽区高于相对清洁区。盆栽条件下叶片硫含量大小为:云南黄馨>爬山虎>野蔷薇;硫含量的季节变化与自然条件下采样所测定的结果相一致;不同地点云南黄馨和爬山虎叶片的硫含量与大气污染指数变化基本一致。SO2胁迫下3种植物对SO2的平均净化能力大小是:野蔷薇>云南黄馨>爬山虎,3种植物对大气S02均有一定的吸收净化能力。
     (2)自然条件下各植物叶片平均全氮含量差异不显著,不同地点的平均月动态变化规律相似,均呈现先上升再下降又上升的趋势。NO2胁迫下3种植物的吸氮量随N02浓度的增加呈先升后降的趋势,3种植物的平均净化率均超过60%,属净化N02能力极强的种类。
     (3)3种植物叶片5种重金属元素含量大小依次均为Zn>Cu>Pb>Cr>Cd,3种植物对重金属的吸收净化能力依重金属的种类而异。Zn、Cr元素的季节变化规律基本一致,均呈先下降再上升又下降的趋势;爬山虎叶片的Cu含量呈下降趋势,云南黄馨和野蔷薇叶片Cu富集量呈上升再下降趋势;爬山虎的Pb和Cd含量在各月间均无显著性差异,云南黄馨和野蔷薇的Pb和Cd含量分别在6月显著上升,而后变化幅度较小。
     (4)自然条件下云南黄馨的叶绿素总量、可溶性糖、可溶性蛋白、抗坏血酸、超氧化物歧化酶、过氧化氢酶显著高于爬山虎嫩叶和爬山虎成熟叶,但游离氨基酸与此相反,丙二醛显著低于爬山虎成熟叶。2种植物的叶绿素总量、可溶性蛋白均为交通枢纽区和工业区低于相对清洁区,而可溶性糖、游离氨基酸及抗坏血酸与此相反;在工业区和交通枢纽区的爬山虎嫩叶和成熟叶的丙二醛、超氧化物岐化酶及过氧化氢酶显著高于相对清洁区,而云南黄馨差异不显著。4月至9月各生理生化指标的动态变化主要依植物种类而有所不同。
     (5)随着S02或N02胁迫浓度的增加,3种植物的叶绿素总量、可溶性糖、可溶性蛋白、过氧化物酶、脯氨酸总体上呈先升后降的趋势。但SO2胁迫下,抗坏血酸、游离氨基酸、过氧化氢酶呈先降后升趋势,超氧化物歧化酶呈下降趋势,丙二醛呈先上升—下降—上升趋势。而在N02胁迫下,超氧化物歧化酶、过氧化氢酶呈下降—上升的趋势,丙二醛、游离氨基酸呈上升趋势,可溶性蛋白呈下降—上升—下降的趋势。
     (6)采用主成分分析法对3种植物的抗性进行综合评价,大气污染下其抗性强弱依次为:云南黄馨>爬山虎成熟叶>爬山虎嫩叶。对S02和N02的抗性次序均为云南黄馨>野蔷薇>爬山虎。
Vertical greening plant is an important part of the urban landscape and plant landscape. The most widely used plants---- Parthenocissus tricuspidata, Jasminum mesnyi, Rosa multiflora were chosed as the subjects. The effect of air pollution on monthly dynamic changes of sulfur contents, total nitrogen and physio-biochemical indices of P. tricuspidata and J. mesnyi in natural state were investigated, and discussions on seasonal variation of leaf sulfur content, heavy metals (zinc, copper, lead, cadmium, chromium) were carried out with three kinds of potted plants in different locations. The absorption capacity, physio-biochemical responses of three plant species were also studied under different stress concentrations of SO2 and NO2. Here are the conclusions below:
     (1) Sulfur content in leaves under natural conditions was as follows:J. mesnyi>young leaves of P. tricuspidata>mature leaves of P. tricuspidata. The sulfur content in different locations showed a dynamic month change of decrease then increase. The measurement results of different locations showed that industrial and traffic areas were higher than relatively clean areas. The sulfur content of 3 vertical greening plant species under potted conditions was in order of J. mesnyi>P. tricuspidata>R. multiflora. Seasonal changes of sulfur content were consistent with results of natural condition. Sulfur contents of P. tricuspidata and J. mesnyi in different places were closely consistent with air pollution index. Average purification ability of three plant species to SO2 under SO2 stress was as follows:R. multiflora>J. mesnyi>P. tricuspidata. This three vertical plant species can absorb SO2 in atmosphere at a certain extent.
     (2) The average total nitrogen contents of J. mesnyi, young and mature leaves of P. tricuspidata had no significant difference under natural condition, with similar dynamic monthly change which rised firstly and then declined and rised again in different locations. Under NO2 stress, the absorption of nitrogen was first increased and then decreased with the increase of NO2 concentration. They were species with strong ability of purifying NO2, with average purification rates of more than 60%.
     (3) The order of content of five heavy mental elements in leaves of three plant species was:Zn>Cu>Pb>Cr>Cd. The absorption and purification abilities of three plants varied by the type of heavy metals. Seasonal changes of Zn and Cr content of three plant species were approximately consistent, with the trend of a decrease-increase-decrease. The Cu content of P. tricuspidata present a downward trend. The Cu accumulation of J. mesnyi and R. multiflora got a up-down trend. There was no significant difference in the Pb and Cd content of P. tricuspidata among the months, but R. multiflora and J. mesny showed a considerable increase in June and then decrease slowly.
     (4) In natural state, comparisoned to young and mature leaves of P. tricuspidata, the content of total chlorophyll, soluble sugar, soluble protein, ascorbic acid, superoxide dismutase and catalase of J. mesnyi were significantly higher, while free amino acid was on the contrary. MDA of J. mesnyi was considerablely lower than mature leaves of P. tricuspidata. Transport hub areas and industrial areas were inferior to the relatively clean areas in terms of total chlorophyll and soluble protein, but superior to the relatively clean areas in soluble sugar, free amino acid and ascorbic acid. MDA, superoxide dismutase and catalase of young and mature leaves of P. tricuspidata in transport hub areas and industrial areas were higher than that in relatively clean areas. While there were no significant difference in those three indices of J. mesnyi in different sampling locations.From April to September, the dynamic changes of physio-biochemistry indices of P. tricuspidata and J. mesnyi varied according to plant species and different indices.
     (5) With the increase of SO2 or NO2 stress, the total chlorophyll, soluble sugar, soluble protein, peroxidase, proline of three vertical plant species got up then down trend. But with the increasing concentration of SO2 stress, ascorbic acid, free amino acid, catalase decreased and then increased. Superoxide dismutase present a descending trend and MDA had a down-up-down trend. With the increasing concentration of NO2 stress, superoxide dismutase and catalase declined first and then rised. MDA and free amino acid showed an ascending trend. Soluble protein got down-up-slowly down trend.
     (6) Using principal component analysis method to analyse the resistance of three vertical plant species. The order of plant resistance under air pollution was:J. mesnyi>mature leaves of P. tricuspidata>young leaves of P. tricuspidata. The resistance to SO2 or to NO2 was all as follows:J. mesnyi>R. multiflora>P. tricuspidata.
引文
[1]骆永明,查宏光,宋静等.大气污染的植物修复[J].土壤,2002,(3):113-119.
    [2]Smith W H.大气污染与森林[M].北京:气象出版社,1986.
    [3]李嘉乐等.绿地净化空气的效能及防污绿地的设计原理.冯采芹编.绿化环境效应研究(国内篇)[M].北京:中国环境科学出版社,1992.
    [4]云南大学生物系编.植物生态学[M].北京:人民教育出版社,1980.
    [5]Sandermann H Jr. Plant metabolism of xenobiotics[J], Trends in Biochemical Sciences,1992,17(2):82-84.
    [6]李合生主编.现代植物生理学[M].北京:高等教育出版社,2002.
    [7]陈有民主编.园林树木学[M].北京:中国林业出版社,1990.
    [8]张维平、刘厚田等,北方几种农作物和树木对SO2净化作用的研究[J],中国环境科学,1988,8(4):11-15.
    [9]薛皎亮,谢映平,李景平.太原空气中硫污染物在植物体内积累的研究[J].城市环境与城市生态,2001,14(1):47-49.
    [10]管东生,刘海秋,莫大伦.广州城市建成区绿地对大气二氧化硫的净化作用[J].中山大学学报(自然科学版),1999,38(2):99-1]3.
    [11]陈自新,苏雪痕,刘少宗等.北京城市园林绿化生态效益的研究[J].中国园林,1998(2),14(56):51-54.
    [12]孔国辉,汪嘉熙,陈庆诚主编.大气污染与植物[M].中国林业出版社,1985.
    [13]蒋高明,植物硫含量法监测大气污染数量模型[J].中国环境科学,1995,15(3):208-214.
    [14]蒋高明.承德市油松针叶硫及重金属含量动态及其与大气SO2之间的关系[J].生态学报,1995,15(1):407-412.
    [15]张德强,褚国伟,余清发.园林绿化植物对大气二氧化硫和氟化物污染的净化能力及修复功能[J].热带亚热带植物学报,2003,11(4):336-340.
    [16]张有标,李小竹.树叶S含量与大气SO2污染关系初探[J].生态学杂志,1987,6(6):46-48.
    [17]潘如圭,汪嘉熙,柳福妹等.城市大气二氧化硫与植物含硫量之间关系的研究[J].中国环境科学1987,7(1):31-33.
    [18]汪静蓉.城市植物叶片含硫量与大气污染关系及其在污染状况评价中的应用[J].环境科学,1992,13(1):71-74.
    [19]卢芳.大气中氮氧化物对生态环境的影响[J].青海师范大学学报(自然科学版),2006,3:87-89.
    [20]吴鄂飞.夏季环境空气中臭氧和氮氧化物变化关系[J].环境科学与技术,2006,29(增刊):56-58.
    [21]Okano K, Machida T and Totsuka T. Differences in ability of NO2 absorption in various broad-leaved tree species[J]. Environmental Pollution,1989,58(1):1-17.
    [22]Morikawa H., Higaki A., Nohno M., et al. More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa[J]. Plant, Cell & Environment.1998,21 (2):180-190.
    [23]Takahashi, M., Higaki, A., Nohno, M., et al., Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level[J]. Chemosphere,2005.61(5):633-639.
    [24]范修远,陈玉成.重庆主城区主要行道植物硫氮水平的初步研究[J].中国城市林业,2006,4(4):3840.
    [25]Saurer M., Cherubini P., Ammann M.,et al.. First detection of nitrogen from NOx in tree rings:a 15N/14N study near a motorway[J]. Atmospheric Environment,2004,38(18):2779-2787
    [26]Dorlhac de Borne F., Vincentz M., Chupeau Y. et al.. Co-suppression of nitrate reductase host genes and transgenes in transgenic tabacco plants. Mol. Gen. Genet.,1994,243(6):613-621.
    [27]Hemon P., Robbins M.P. and Cullimore J.V.. Targeting of glutamine synthase to the mitochondria of transgenic tabacco. Plant Mol. Biol.,1990,15(6):895-904.
    [28]Takahashi M., Sasaki Y., Ida S. and Morikawa H.,2001. Nitrite reductase gene enrichment improves assimilation of nitrogen dioxide in Arabidopsis. Plant Physiology,2001,126:731-741.
    [29]张乃明.土壤一植物系统重金属污染研究现状与展望[J].环境科学进展,1998,7(4):30-33.
    [30]庄树宏,王克明.城市大气重金属(Pb, Cd, Cu, Zn)污染及其在植物中的富积[J].烟台大学学报(自然科学与工程版),2000,13(1):31-37.
    [31]任乃林,陈炜彬,黄俊生等.用植物叶片中重金属元素含量指示大气污染的研究[J].广东微量元素科学,2004,11(10):41-45.
    [32]阮宏华,姜志林.城郊公路两侧主要森林类型铅含量及分布规律[J].应用生态学报,1999,10(3):362-364.
    [33]赵承易,戚琦,季海冰,李维超.北京交通干道旁杨树叶中重金属和硫的测定及大气污染状况的研究[J].北京师范大学学报(自然科学版),2001,37(6):795-799.
    [34]陆东晖,殷云龙,徐建华,於朝广.绿化林带对公路环境中重金属和S、N元素的吸收效应研究[J].江苏林业科技,2006,33(5):12-17.
    [35]薛皎亮,刘红霞,谢映平.城市空气中铅在国槐树体内的积累[J].中国环境科学,2000,20(6):536-539.
    [36]康玲芬,李锋瑞,张爱胜等.交通污染对城市土壤和植物的影响[J].环境科学,2006,27(3):556-560.
    [37]鲁敏,王胜永,杨秀平等.园林植物对大气铅、镉污染物吸滞能力的比较[J].山东建筑工程学院学报,2003,18(2):39-41.
    [38]杨志敏,陈玉成.重庆市主要绿化植物对重金属的富集与净化研究[J].西南农业大学学报(自然科学版),2006,28(3):393-395,401.
    [39]陈学泽,谢耀坚,彭重华.城市植物叶片金属元素含量与大气污染的关系[J].城市环境与城市生态,1997,10(1):45-47.
    [40]单运峰.酸雨、大气污染与植物[M].北京:中国环境科学出版社,1999:1-185.
    [41]买永杉等著.农业环境学[M].中国农业出版社,1994.
    [42]余叔文、王明霞、颜理英.大气污染生物监测方法[M].中山大学出版社,1993.
    [43]潘瑞炽,董愚得编.植物生理学(第三版)[M].北京:高等教育出版社,1999.
    [44]刘世忠,薛克娜,孔国辉,等.大气污染对35种园林植物生长的影响[J].热带亚热带植物学报,2003,11(4):329-335.
    [45]Samuel B. M. et al. Effects of SO2 and O3 on allocation of 14C labeled photosynthesis in phase of Phaseolus vulgaris[J]. Plant Physiology 1983,73:630-635.
    [46]Sonja veljocic-Jovanvic, et al. Inhibition of photosynthesis, acidification and stimulation of zeaxanthix formation in leaves by sulfur dioxide and reversal of these effects[J], Planta,1993,191:365-376.
    [47]曹洪法、刘厚田、舒俭民.植物对S02污染的反应[J].环境科学,1985,6(6):59-66.
    [48]Kuppers K. and Klumpp G. Effects of ozone, sulfur dioxide, and nitrogen dioxide on gas exchange and starch economy in Norway spruce (Picea abies [L.] Karsten)[J]. GeoJournal,1988,17(2):271-275.
    [49]唐述虞.SO2污染区植物净光合强度的初步测定[J].环境污染与防治,1983,5:4.
    [50]高吉喜,潘凤云,周兴宝.二氧化硫对植物新陈代谢的影响(Ⅱ)——对光合、呼吸与物质代谢的影响[J].环境科学研究,1997,10(6):5-9.
    [51]丛者福.SO2污染空气影响下树木叶片叶绿素含量动态变化[J].新疆农业大学学1998,21(4):297-300.
    [52]苏冬梅,廖飞勇.SO2对菊花光合色素含量和叶绿素荧光特性的影响[J].中南林学院学报,2005,25(6):70-73.
    [53]高吉喜.二氧化硫对植物新陈代谢的影响(Ⅰ)——对气孔、膜透性与物质代谢的影响[J].环境科学研究,1997,10(2):36-39.
    [54]余叔文,等.植物对SO2的反应和抗性研究(Ⅳ)[J].植物生理学报,1980(4):245.
    [55]余叔文,等.植物对SO2的反应和抗性研究(Ⅱ)[J].植物生理学报,1979(5):403.
    [56]卞泳梅,陈树元.二氧化硫对植物细胞膜透性的影响[J].植物生理学通讯,1982(1):41.
    [57]刘荣坤,李世承.二氧化硫对蓖麻叶质膜透性,叶绿素含量和花粉生长的影响[J].中国环境科学,1982,3(2):39.
    [58]郝延令,贾秀峰.二氧化硫大气污染对北方常见树木叶片中可溶性糖含量的影响[J].植物物理学通讯,1986,1:22.
    [59]童贯和.污染对树木叶片中可溶性搪及叶绿素含量的影响[J].淮北煤师院学报,2002,23(2):55-57.
    [60]黄益江、陈杜满.SO2污染对马尾松生长影响的相关研究[J].浙江林学院学报,1998,15(2):125-130.
    [61]连玉武、段鹏程.几种常见植物对大气污染的生理反应[J].上海环境科学,1996,15(7):14-16.
    [62]张志杰编.环境保护生物学[M].北京:人民教育出版社,1982.
    [63]Raymund E T. Proline accumulation in water-stressed Barley leaves in relation to ranslocation and the nitrogen budget[J]. Plant Physiology,1979,63:518.
    [64]Singh T N, et al. Proline accumulation and variety adaptability to drought in barley[J]. Nature Ner Bid,1972,236:188.
    [65]陆长梅,吴国荣,顾龚平等.大气污染对悬铃木叶片几种生理生化指标的影响[J].扬州教育学院学报,2000(3):15-17
    [66]李瑞智,黄林.二氧化硫对小麦、绿豆幼苗游离脯氨的影响[J].重庆环境科学,1989,1:23.
    [67]钱永常,余叔文.SO2对作物游离氨基酸浓度的作用[J].环境科学学报,1992,12(3):325-332.
    [68]粟德永,王升曦.大气污染对植物叶片中硫、氯、氟含量的影响[J].环境科学,1982,5:50.
    [69]Tanaka k. Role of superoxide dismutase in the defense against SO2 toxicity and induction of superoxide dismutase with SO2 fumigation. In Research report from the national institute for environmental studies. Tokyo:The National Institute for Environmental Studies.1980,11:165.
    [70]刘天兵,冯宗炜.植物SOD活性变化与其抗污能力的关系[J].环境污染与防治,1997,19(1):12-13.
    [71]I. STULEN, M. PEREZ-SOBA, L. J. DE KOK, et al. Impact of gaseous nitrogen deposition on plant functioning[J]. New Phytologist,1998,139(1),61-70.
    [72]Shimazaki KI, Yu SW, Sakaki T, et al. Differences between Spinach and Kidney Bean Plants in Terms of Sensitivity to Fumigation with NO2[J]. Plant and Cell Physiology,1992,33(3):267-273.
    [73]马纯艳,徐听,郝林,曹军.小白菜幼苗对二氧化氮胁迫的应答及过氧化氢的调节[J].中国农业科学,2007,40(11):2556-2562.
    [74]Marie BA, Ormrod DP. Tomato plant growth with continuous exposure to sulphur dioxide and nitrogen dioxide[J]. Environm ental Pollution,1984,33:257-265.
    [75]余叔文,岛崎研一郎,李犁.菠菜和菜豆对二氧化氮的反应和抗性[J].植物生理学报.1988,14(2):175-181.
    [76]Ashenden T W, Bell S A, Rafarel CR. Effects of nitrogen dioxide pollution on the growth of three fern species[J]. Environm ental Pollution,1990,66:301-318.
    [77]Maggs R, Ashmore MR. Growth and yield responses of Pakistan rice (Oryza sativa L.) cultivars to O3 and NO2[J]. Environm ental Pollution,1998,103:159-170.
    [78]陈卓梅,陈英旭,杜国坚.二氧化氮对樟树幼苗生长及光合作用的影响[J].应用生态学报,2009,20(7):1650-1656.
    [79]Nussbaum S., Ballmoos P. von, Gfeller H., et al. Incorporation of atmospheric 15NO2-nirrogen into free amino acids by Norway spruce Picea abies (L.) Karst[J]. Oecologia,1993,94(3):408-414.
    [80]Wingsle G and Hallgren J E. Influence of SO2 and NO2 Exposure on Glutathione, Superoxide Dismutase and Glutathione Reductase Activities in Scots Pine Needles. Journal of Experimental Botany,1993,44(2):463-470.
    [81]Ammann M., Ballmoos P. von, Stalder M., et al.. Uptake and assimilation of atmospheric NO2-N by spruce needles (Picea abies):A field study[J]. Water, Air, & Soil Pollution,1995,85(3):1497-1502.
    [82]Marsh S., Miller A. J., Zhang X.-H., et al.. Tree leaf biomarkers for atmospheric nitrogen deposition[J]. Water, Air,& Soil Pollution:Focus.2004,4(6):241-250.
    [83]Zhang Y.X(张义贤).Toxicity of heavy metals to hordeum vulgare. Acta Scientiae Circumstantiae(中国环境科学),1992,12(4):281-284.
    [84]Chen G.X(陈国祥),Shi G.X(施国新).Effect of mercury and cadmium on photochemical activeity and polylpeptide composition of photosynthetic membranes from winter bud of Brasenia schreberi. Acta Scientiae Circumstantiael环境科学),1999,4(3):521-525.
    [85]Luna C.M, Troppi B.S. Oxi dative damage caused by an excess of copper in oat leave. Plant Cell Phsiol.,1994,35:11-15.
    [86]Patra M, Bhowmik N, Bandopadhyay B, et al. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance[J]. Environmental and Experimental Botany,2004,52(3):199-223.
    [87]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学,2000,20(3):514-522.
    [88]Lombardi L, Sebastiani L. Copper toxicity in Prunus cerasifera:growth and antioxidant enzymes responses of in vitro grown plants[J]. Plant Science,2005,168(3):797-802.
    [89]Singh S, Sinha S, Saxena R, et al. Translocation of metals and its effects in the tomato plants grown on various amendments of tannery waste:evidence for involvement of antioxidants[J]. Chemosphere,2004,57(2):91-99.
    [90]Rosso P H., Pushnik J C., Lay M, Ustin S L.. Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination[J]. Environmental Pollution,2005,137(2):241-252.
    [91]Gallego S M., Benavides M P., Tomaro M L. Effect of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress[J]. Plant Science,1996,121 (2):151-159.
    [92]Kohut R. The long-term effects of carbon dioxide on natural systems:issues and research needs[J]. Environment International, 2003,29(2-3):171-180
    [93]Demirevska-Kepova K., Simova-Stoilova L., Stoyanova Z., et al. Biochemical changes in barley plants after excessive supply of copper and manganese [J]. Environmental and Experimental Botany,2004,52(3):253-266.
    [94]Mascher 12, Lippmann B, Holzinger S, et al. Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants [J]. Plant Science,2002,163:961-969.
    [95]黄晓华,周青,程宏英等.五种常绿树木对铅污染胁迫的反应[J].城市环境与城市生态,2000,13(6):48-50.
    [96]黄芳,王建明,徐玉梅.二氧化硫污染对几种作物的伤害研究[J].山西农业科学,2007,35(11):56-58.
    [97]中国标准出版社第二编辑室编.环境监测方法标准汇编(土壤环境与固体废物)[M].中国标准出版社,2007,290.
    [98]Piero Guilizzoni. The role of heavy metals and toxic amterials in the physiological ecology of submersed macrophytes[J]. Aquatic Botany,1991,41(3):87-109.
    [99]Arun K. Shankera, Carlos Cervantes, Herminia Loza-Tavera. Chromium toxicity in plants[J]. Environment International, 2005(31):739-753
    [100]Waldemar Maksymiec, Zbigniew Krupa. Jasmonic acid and heavy metals in Arabidopsis plants-a similar physiological response to both stressors[J]. Plant Physiology,2002 (159):509-515.
    [101]吕开云,高爱林,高永光.重金属污染土壤对植物伤害研究[J].西部探矿工程,2006(8):271-273.
    [102]Lilit G. Vardanyan a, Baban S. Ingole. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems[J].Environment International,2006(32):208-218.
    [103]Kasia Polec-Pawlak, Rafal Ruzik. Cadmium speciation in Arabidopsis thaliana as a strategy to study metal accumulation system in plants[J]. Analytica Chimica Acta,2005(540):61-70.
    [104]J. Pang, G.S.Y. Chan, J. Zhang, J. Liang, M.H. Wong. Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes[J]. Chemosphere,2003(52):1559-1570.
    [105]崔爽,周启星.某冶炼厂周围8种植物对重金属的吸收与富集作用[J].应用生态学报,2006,17(3):512-515.
    [106]刘友良,沈振国.重金属超积累植物研究进展[J].植物生理学通讯,1998,34(2):133-139
    [107]Salt D E, Kramaer U.Mechanisms of metal hyperaccumulation in plants[A]. Raskin H, Ensley B D. Phytore Mediation of Toxic Metals:Using Plants to Clear up the Environment[C]. New York:John Wiley&Sons,2000.231-246.
    [108]蒋高明.承德木本植物不同部位s及重金属含量特征的PCA分析[J].应用生态学报,1996,7(3):310-314.
    [109]Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris[J]. Plant Physiology,1949,24: 1-15.
    [110]Fairbairn NJ. A modified anthrone reagent[J]. Chem. Ind.1953,31:86.
    [111]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding[J].Anal Biochem.,1976,72:248-254.
    [112]赵世杰,许长成,邹琦等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.
    [113]Giannopplitics CN, Ries SK. Superoxidase dismutase I Occurrence in higher plants[J]. Plant Physiol,1977,59:309-314.
    [114]张志良主编.植物生理学实验指导(第二版)[M].高等教育出版社,1990,154-155.
    [115]Aebi H. (1984) Catalase in vitro[J]. Methods Enzymol.105:121-126.
    [116]高俊凤主编.植物生理学实验技术[M].世界图书出版西安公司出版发行,2000,162-163.
    [117]X.H.波钦诺克著,荆家海译.茚满三酮法测定氨态氮.《植物生物化学分析方法》,科学出版社.1981:95-101.
    [118]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [119]张德强,孔国辉,温达志,等.园林绿化植物的抗性及其对SO2和Pb净化能力分析[J].广州环境科学,2003,18(1): 22-25.
    [120]周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社,2004.
    [121]Shanker A K, Cervantes C, Loza-Tavera H et al. Chromium toxicity in plants[J]. Environment International,2005,31(5): 739-753
    [122]Alfani A., Baldantoni D., Maisto G. Temporal and spatial variation in C, N, S and trace element contents in the leaves of Quercus ilex within the urban area of Naples[J]. Environmental Pollution,2000,109(1):119-129.
    [123]陶久阳,袁忠利,张凤歧等.植物对大气SO2积累特点与净化能力的研究[J].辽宁林业科技,1998,3(3):29-33.
    [124]鲁敏,李英杰.部分园林植物对大气污染物吸收净化能力的研究[J].山东建筑工程学院学报,2002,17(2):45-49.
    [125]梁淑英.南京地区常见绿化树种的生理生态特性及净化大气能力的研究[D].南京:南京林业大学硕士学位论文,2005.
    [126]Hove LWA., Bossen ME., Bok FAM., et al. The uptake of O3 by poplar leaves:The impact of a long-term exposure to low O3 concentrations[J]. Atmospheric Environment,1999,33(6):907-917.
    [127]Reimann C, Koller F, Frengstad B, et al. Total sulphur in leaves of several plant species from nine catchments within a 1500000 km2 area in northern Europe:local vs. regional variability[J]. Geochemistry:Exploration, Environment, Analysis, 2003,3(2):205-215.
    [128]薛咬亮,谢映平,李景平,等.太原市空气的SO2污染及树木的吸收净化[J].应用与环境生物学报,2003,9(2):150-153.
    [129]WELLBURN A.R. Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? Tansley Review 24[J]. New phytologist,1990,115:395-429.
    [130]Zeevaart, A. J. Some effects of fumigating plants for short periods with NO2[J]. Environmental Pollution 1976,11(2): 97-108.
    [131]Morikawa H., Takahashi M., Irifune K... Molecular mechanism of the metabolism of nitrogen dioxide as an alternative fertilizer in plants. In:Satoh K, Murata N(eds) Stress responses of photosynthetic organisms. Amsterdam:Elsevier,1998, 227-237
    [132]Carlson R W. Interaction between SO2 and NO2 and their effects on photosynthetic properties of soybean{Glycine max) [J]. Environmental Pollution,1983,32,11-38.
    [133]Uzu G, Sobanska S., Sarret G, et al. Foliar lead uptake by lettuce exposed to atmospheric fallouts[J]. Environmental science & technology,2010,44 (3):1036-1042.
    [134]Sawidis T., Chettri M. K., Papaioannou A., et al. A Study of Metal Distribution from Lignite Fuels Using Trees as Biological Monitors[J]. Ecotoxicology and Environmental Safety,2001,48(1):27-35.
    [135]Berthelsen B. O., Steinnes E., Solberg W., Jingsen L. Heavy Metal Concentrations in Plants in Relation to Atmospheric Heavy Metal Deposition[J].JournaI of environmental quality,1995,24:1018-1026.
    [136]Sawidis T., Marnasidis A., Zachariadis G et al. A study of air pollution with heavy metals in Thessaloniki city (Greece) using trees as biological indicators[J]. Archives of Environmental Contamination and Toxicology,1995,28(1):118-124.
    [137]Hardiman R. T, Jacoby B., Banin A. Factors affecting the distribution of cadmium, copper and lead and their effect upon yield and zinc content in bush beans (Phaseolus vulgaris L.) [J]. Plant and Soil,1984,81(1):17-27.
    [138]Garty Y, Cohen N, Kloog N. Airborne elements, cell membranes and chlorophyll in transplanted lichens[J]. Journal of environmental Quality,1998,27(4):973-979.
    [139]Rabe R, Kreeb K H. Bioindication of air pollution by chlorophyll destruction in plant leaves[J]. Oikos,1980,34:163-167.
    [140]彭长连,温达志,孙梓健等.城市绿化植物对大气污染的响应[J].热带亚热带植物学报,2002,10(4):321-327
    [141]陆长梅,吴国荣,周长芳,魏锦城.大气污染对悬铃木叶绿素及抗氧化酶系的影响[J].城市环境与城市生态,1999,12(3):25-26,28.
    [142]梁淑英.部分城市绿化树种的生理特性及其对大气污染的响应[D].南京:南京林业大学博士学位论文,2008.
    [143]Sakaki, T., Kondon N., and Sugahara K. Breakdown of Photosynthetic Pigments and Lipids in Spinach Leaves with Ozone Fumigation:Role of Active Oxygens[J]. Physiologia Plantarum,1983,59:28-34.
    [144]高厚强,张晓玲.合肥市大气污染对植物叶绿素(a、b)含量比例的影响[J].安徽农业科学,2003,31(3):367-368.
    [145]Alscher RG, Hess JL. Antioxidants in higher plants. Boca Raton:CRC Press.1993.
    [146]Foyer CH, Mullineaux P. (eds). Causes of photooxidative stress and amelioration of defense systems in plants. Boca Raton: CRC Press.1994
    [147]Castillo, F.J., Miller P.R., and Greppin H. Extracellular biochemical markers of photochemical oxidant air pollution damage to Norway spruce[J]. Experimentia,1987,43:111-115.
    [148]Mehlhorn, H., Seaufart G, Schmidt A., and Kurnert K.J. Effect of SO2 and O3 on production of antioxidants in conifers[J]. Plant Physiology 1986,82:336-338.
    [149]李海亮,赵庆芳,王秀春,李巧峡.兰州市大气污染对绿化植物生理特性的影响[J].西北师范大学学报(自然科学版),2005,41(1):55-57,60.
    [150]梁淑英,胡海波,夏尚光.大气污染对3种行道树光合与生理生化的影响[J].林业科技开发,2008,22(3):29-32.
    [151]Agrawal M., Agrawal S.B. Phytomonitoring of air pollution around a thermal power plant[J]. Atmospheric Environment 1989,23(4):763-796.
    [152]Lima J. S., Fernandes E. B. and Fawcett W. N. Mangifera indica and Phaseolus vulgaris in the Bioindication of Air Pollution in Bahia, Brazil [J]. Ecotoxicology and Environmental Safety,2000,46(3):275-278.
    [153]HARE P. D., CRESS W. A., VAN STADEN J. Dissecting the roles of osmolyte accumulation during stress[J]. Plant, Cell and Environment,1998,21:535-553.
    [154]Lutz C., Steiger A., Godde D. Influence of air pollutants and nutrient deficiency on D-1 protein content and photosynthesis in young spruce trees[J]. Physiologia Plantarum,2006,85(4):611-617.
    [155]Couee I, Sulmon C, Gouesbet G, El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. Journal of Experimental Botany,2006,57(3):449-459.
    [156]杜忠,陶玲,任珺,侯培强.不同污染区对绿化树种可溶性糖含量的影响[J].环境科学与技术,2007,30(9):21-24.
    [157]Tripathi AK, Gautam M. Biochemical parameters of plants as indicators of air pollution[J]. Journal of Environmental Biology,2007,28(1):127-132.
    [158]McLaughlin J W, Reed D D, Bagley S T, et al. Foliar amino acid accumulation as an indicator of ecosystem stress for first-year sugar maple seedlings[J], Journal of Environmental Quality,1994,23:154-161.
    [159]Rao D.N. Leblanc F. Effects of SO2 on the lichen algae with special reference to chlorophyll[J].. Biologist,1966,69:69-95.
    [160]李彦慧,孟庆瑞,,李向应,等..紫叶李叶片色素含量及叶绿素荧光动力学参数对SO2胁迫的响应[J].环境科学学报,2008,28(11):2236-2242.
    [161]胡丁猛,王太明,于金星,等.SO2胁迫下11个园林绿化树种光合色素含量的变化[J].山东林业科技,2007,1:19-22.
    [162]李向应,王文凤,李彦慧,等.SO2对4种李属彩叶树木膜脂过氧化和保护酶活性的影响[J].河北农业大学学报,2007,30(6):25-28.
    [163]胡丁猛,孙明高,王太明,等.SO2对三种园林绿化苗木叶片膜脂过氧化和保护酶的影响[J].山东农业大学学报(自然科学版),2005,36(2):175-180.
    [164]郑立文,胡丁猛,刘伟峰,杨文瑾,孙明高.11个园林绿化树种对SO2胁迫的适应性反应[J].山东农业大学学报(自然科学版),2006,37(3):363-368.
    [165]Malhotra S. S, Sarkar S. K. Effects of Sulphur Dioxide on Sugar and Free Amino Acid Content of Pine Seedlings[J]. Physiologia Plantarum.2006,47(4):223-228
    [166]Lavola A. Soluble carbohydrates and secondary phytochemicals in Betula as affected by SO2-pollution[J]. Water, air and soil pollution,1998,107(1-4):25-34.
    [167]Karolewski P. The role of free proline in the sensitivity of poplar (Populus'Robusta') plants to the action of SO2[J]. European Journal of Forest Pathology,2007,15(4):199-206.
    [168]Srivastava H S., Ormrod D P. Effects of Nitrogen Dioxide and Nitrate Nutrition on Growth and Nitrate Assimilation in Bean Leaves[J]. Plant Physiology,1984,76:418-423.
    [169]Sabaratnam S, Gupta G, Mulchi C. Effects of nitrogen dioxide on leaf chlorophyll and nitrogen content of soybean[J]. Environmental Pollution,1988,51(2):113-120.
    [170]Sabaratnam S, Gupta G. Effects of nitrogen dioxide on biochemical and physiological characteristics of soybean[J]. Environmental Pollution,1988,55(2):149-158.
    [171]马树华,王庆成,李亚藏.汽车尾气污染对四种北方阔叶树苗木膜脂过氧化和保护酶活性的影响[J].应用生态学报,2004,15(12):2330-2336.
    [172]Yoneyama T, Kim H Y, Morikawa H, Srivastava H S. Metabolism and detoxification of nitrogen dioxide and ammonia in plants. In:Omasa K, Saji H, Youssefian S, Kondo N. Air Pollution and Plant biotechnology. Tokyo:Springer-Verlag,2002: 221-234.
    []73]关丽杰,陶飞,刘宁.北方地区常见草坪品种对二氧化氮的抗性研究[J].辽宁化工,2005,34(5):206-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700