用户名: 密码: 验证码:
计及靶体宏细观结构影响的低速侵彻响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
简化弹/层状靶体的侵彻问题是弹与靶相互作用的瞬态接触问题,涉及应力波的传播、弹靶的变形、损伤和破坏及其演化的相互耦合,有限元数值分析方法是侵彻分析的重要工具之一。但现有的有限元分析中缺乏较完整的混凝土宏细观数值本构模型以及宏细观失效准则,缺乏高效的计及细观结构特征的建模方法。本文提出了计及靶体细观结构特征的高效率建模方法和较完整的混凝土的宏细观数值本构模型以及宏细观失效准则;同时基于单点积分的非线性显式有限元LS-DYNA软件构建有限元数值分析平台,研究了简化弹低速侵彻层状靶体的弹靶动力学响应规律。本文获得了以下的主要研究成果。
     采用应变、加速度测试技术并结合高速摄影技术,建立了弹、混凝土靶侵彻过程中靶体动力学响应的测试系统,并应用于简化弹低速分别正侵彻单层混凝土靶和土体,以及斜侵彻层状靶体的试验中,获得了低速侵彻过程中靶体的响应规律。单层混凝土正侵彻试验的测试结果表明,简化弹碰撞单层混凝土靶后,着靶面的变形特征是径向受压和环向受拉;受出靶面自由边界的影响,在反射拉伸应力波的作用下出靶面混凝土发生飞溅、开裂和崩落;在撞击下单层混凝土靶体的动力学响应主要分三个阶段,初期主要是应力波的传播,中期是应力波和结构振动效应的耦合作用,后期主要是结构的振动。单层土体受球形弹侵彻后,土体的破坏特征为着靶面出现漏斗坑、土体内部形成直线通道,其漏斗坑直径开坑深度及侵深随球形弹侵彻速度的增加而增加。层状靶体受截锥形简化弹斜侵彻后,面层内的径向和轴向加速度脉冲经历多次振荡后迅速衰减;靶体面层表面形成类似椭圆的破坏区域、内部形成类似喇叭口的破坏模式,基层、压实层和天然地基层内形成直线通道。
     依据混凝土三轴试验的结果分析,提出了较完整的混凝土宏观本构模型和失效准则,同时基于靶体侵彻响应测试结果,确定了混凝土和土的相关参数;在此基础上建立了简化弹正侵彻土体、单层混凝土和斜侵彻层状靶体的有限元分析模型,并分别进行了相应的计算,结合试验结果分别对相应的模型进行了考评,结果表明该有限元分析模型是有效的和比较可靠的。在此基础上较系统地研究了简化弹低速侵彻层状靶体的响应,考察了简化弹着速、倾角、攻角和层状靶体的基层强度对弹体偏转角、加速度和速度等侵彻响应的影响,揭示了以下新的相关规律。弹体在侵彻层状靶体过程中发生偏转,最大偏转出现在压实层和天然地基层中;在不同着速、倾角和攻角情况下,碰撞后的弹体速度和加速度响应与每层厚度和强度密切相关,其中加速度-时间曲线均呈台阶式下降;揭示了引信位置或起爆时间与弹体倾角、着速和攻角的权重排序关系,即定深引信的排序依次为弹体入射的倾角、着速和攻角,而延时引信的排序依次为弹体的着速、倾角和攻角。
     在级配“数值混凝土”的建模过程中,首先提出了空间离散占位法,实现了高容积率大量骨料的高效率投放,利用Patran中的PCL编制了数值混凝土的离散程序,实现了大尺寸数值混凝土的网格离散,采用可失效的接触算法模拟了骨料和砂浆的过渡带,建立了包含骨料和砂浆的两相数值混凝土模型,并进行了相应的计算,结合混凝土材料试验对该模型进行了考评。在此基础上研究了随机分布的骨料对简化弹侵彻响应的影响,初步揭示了相关规律。相对于均质化混凝土模型,随机分布的骨料对弹体的侵彻姿态有明显影响;在同一着靶点,弹体着速对不同弹径下弹体偏转角的影响规律相近,出现最大偏转角的速度均在385m/s附近;在相同的着速下,随着弹径的增加,偏转角逐渐减小;同一弹从不同的着靶点侵入后,在靶中经历的侵彻路径不同,骨料对弹体的作用也不尽相同,于是对弹体偏转角的影响规律也出现差异,如:出现最大偏转角时的着速不同;即使在相同的着速下,弹体偏转角也不相同。
The projectile/target penetration is a transient contact problem, coupling with the propagation of stress waves, the deformation, damage and its evolution of the projectile and target. Finite element analysis is a useful method to solve such complex penetration problem. However, the existing macroscopic and mesoscopic constitutive models and failure criterions are difficult to completely describe the mechanical responses of concretes. Furthermore, there are no efficient methods to model the mesoscopic structure of concrete. In the present dissertation, an improved failure criterion for concrete and a new modeling method incorporating the microscopic structure of concrete are proposed. The penetration responses of simplified projectiles into layered targets are numerically investigated using the nonlinear explicit FEM software Ls-Dyna based on the single point integral. The conclusions are presented as follows.
     The testing system for dynamic response measurement is set up using the strain-gage technique, accelerometer technique and high-speed photography technique. The experiments for projectiles normal penetration into the concrete target and the earth target and the oblique penetration into the layered target are performed. The experimental results indicate that the concrete plate is destroyed by compressive load in radius direction and tensile load in circumference direction. Due to the effect of tension stress wave reflected at the back side of the target, the phenomenon of target splash, crack and fragment is observed during penetration process. The dynamic response process of the concrete plate can be divided into three stages, namely the initial wave-propagation stage, the penetration, wave-propagation and structure-vibration coupling stage and the final structure-vibration stage. The destruction pattern of soil subjected to the steel-ball penetration is like a funnel. The funnel size of soil and the penetration depth of steel ball increase with the increase of impact velocity. After the oblique penetration of the cone-shaped penetrator into the layered target, a cup tunnel with an elliptical fracture contour line is produced in the surface layer of the target and a straight tunnel in the base, compacted and natural base layers.
     Based on the triaxial test results of concretes, an improved failure criterion is proposed. The material parameters of concretes and soils are determined by the corresponding penetration tests. The finite element models are constructed to simulate the normal penetration into the earth target and concrete target and the oblique penetration into the layered target. The models are verified by test results. The effects of the impact velocity, obliquity angle, yaw angle of the simplified penetrator and the strength of the base layer on the penetration responses such as the acceleration, velocity and deflection angle of the projectile are numerically investigated. The numerical results indicate that the projectile deflects in the layered target and the maximum deflection emerges in the compacted earth layer and the natural earth base layer. The responses of projectile acceleration and velocity depend on the thickness and strength of layers. The values of acceleration decrease with penetration time as an obvious step pattern. The relation between the fuse depth and igniting time and the oblique angle, impact velocity and yaw angle of penetrator is revealed. The sequence of factors sorted by weight for depth setting fuze is obliquity, impact velocity and yaw angle. The factor sequence for delay fuse is impact velocity, obliquity and yaw angle.
     For grated numerical concrete model, a new method of random aggregate arrangements called "space meshed and taken-in" is developed to high-efficiently arrange number of aggregates with high volume fraction. A PCL program of Patran is developed to mesh the geometric model. The bonding strength of the transition band between the aggregate and the mortar is modeled using failure strength of tied-contact in LS-DYNA. Consequently, a numerical concrete model with aggregates and mortars is constructed and the validity of the model is verified by the concrete material tests. The effect of randomly distributed aggregates on the penetration responses of penetrators is numerically investigated. It can be found that the penetrator gesture is apparently affected by the randomly-distributed aggregates. The deflection angle decreases with increasing the projectile diameter; when the projectile penetrates from different points on the target, the aggregate effect on the projectile deflection is different due to the difference of the penetration trace.
引文
[1]赵育善,吴斌.导弹引论[M].北工业大学出版社.2000
    [2]钱伟长,穿甲力学[M].国防工业出版社,1984
    [3]Goldsmith W.Review.Non-ideal projectile impact on targets [J].Int J Impact Engng 1999,22:95-395.
    [4]Vladimir M.Gold. A study of penetration of concrete by high velocity projectiles [D]. Michigan:Polytechnic University,1995
    [5]J.V. Poncelet, Cours de Mecanique Industrielle[M], Paris,1829/1835
    [6]H.P. Robertson. Terminal Ballistics[M], National Research Council, Washington,1941
    [7]R.F. Bishop, R.Hill, N.F. Mott. The theory of indentation and hardness[C]. Proceedings of physical Society,1945,57:147-149
    [8]R.Hill.The mathematical theory of Plasticity[M], Oxford Unversity Press, London,1950
    [9]D.K. Butler. An analytical study of Projectile Penetration in rock[R], US Army Waterways Experiment Station, Vicksburg, Misc. Paper S-75-25 AD-A 016909,1975
    [10]Forrestal, M.J., et al., Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering,2003.28(5):479-497.
    [11]Gao, S., L. Jin, and H. Liu, Dynamic response of a projectile perforating multi-plate concrete targets [J]. International Journal of Solids and Structures,2004.41(18-19): 4927-4938.
    [12]蒋建伟,门建兵,万丽珍,卢永刚.2001.动能弹侵彻土壤混凝土复合介质的试验研究[J].北京理工大学学报.4:420-423
    [13]Richard W. Macek, Thomas A. Duffey. Finite cavity expansion method for near-surface effects and layering during Earth penetration [J]. International Journal of Impact Engineering.2000; 24:239-258
    [14]C. Doolittle, D. Malechuk. Mid-Scale Testing and Simulation of Fuze Terminal Ballistic Environments [C].51st Annual Fuze conference, Nashville, TN, May 22-24,2007
    [15]W. Lawrence, Measurements of Penetration using Instrumented Targets [C], in Shock Waves in Condensed Matter-1987, S. C. Schmidt and N. C. Holmes (eds.), pp.745-748, Elsevier Science Publisher B. V.,1988
    [16]J. Peters, W. F. Anderson, and A. J. Watson. Development of Instrumentation Techniques to Investigate High Velocity Projectile Penetration into Construction Materials [C]. Proceedings of the Sixth International Symposium on Interaction of Nonnuclear Munitions with Structures, pp.23-28, Panama City Beach, Florida,1993
    [17]Gold, V.M., GC. Vradis, and J.C. Pearson, Concrete penetration by eroding projectiles: Experiments and analysis [J]. Journal of Engineering Mechanics-Asce,1996.122(2):p. 145-152.
    [18]Eichelberger, R. I. Experimental test of the theory of penetration by metallic jets [J]. J. Appl. Phys.1956.27,
    [19]Allen, W. A., Mayfield, E. B., and Morrison, H. L. Dynamics of a projectile sand [J]. J. Appl. Phys.1957.28:370-376.
    [20]J.K. Gran, D.J. Frew. In-Target Radial Stress Measurements from Penetration Experiments into Concrete by Ogive-Nose Steel Projectiles [J]. Int. J. Impact Engng.,1997. 19(8):715-726.
    [21]陈小伟,金建明.动能深侵彻弹的力学设计(Ⅱ):弹靶的相关力学分析与实例[J].爆炸与冲击,2006,1:71-78
    [22]罗尧东,陈星明,肖正学等.弹体斜侵彻高强度混凝土及其损伤的试验[J].四川兵工学报.2010,31(11):130-133
    [23]S.A. Silling, M.J. Forrestal. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets [J]. Int J Impact Engng,2007,34:1814-1820.
    [24]Q.M. Li, S.R. Reid, H.M Wen, et al. Local impact effects of hard missiles on concrete targets [J]. Int J Impact Engng,2005,32:224-284.
    [25]M.H. Zhang, V.P.W. Shim, G. Lu, et al. Resistance of high-strength concrete to projectile impact [J]. Int J Impact Engng,2005,31:825-841.
    [26]宋顺成,才鸿年,王富耻.关于弹体冲击和贯穿混凝土的三维数值模拟[J].爆炸与冲击2006.26(1):1-6.
    [27]Huang, X., et al., A Numerical Method for Penetration into Concrete Target Using SPH-Lagrange Coupling Method [C], in Advances in Structures, Pts 1-5, L.J. Li, Editor. 2011:1217-1221
    [28]Munjiza, A., The combined finite-discrete element method for structural failure and collapse [J]. Engineering Fracture Mechanics,2004.71(4-6):p.469-483.
    [29]赵成刚,白冰,王运霞.土力学原理[M].清华大学出版社,北京交通大学出版社,2004
    [30]姚仰平,张丙印,朱俊高.土的基本特性、本构关系及数值模拟研究综述[J].土木工程学报.2012,45(3):127-150
    [31]Casagrande. A., Shannon, W. L. Strength of soils under dynamic loads[C]. Proc. Am. Soc. Civ. Eng.,1948,74(4),591-608
    [32]Whitman, R. V. The response for soils to dynamic loading:Report 26, Final Report [R]. Contract Rep. No.3-26, U.S. Army Waterways Experiment Station, Corps of Engineers, Vicksburg, Miss.1970
    [33]Jackson, J. G., Rohani, B., Ehrgott, J. Q.. Loading rate effects on compressibility of sand[J]. J. Geotech. Engrg. Div.,1980,106(8):839-852.
    [34]Chen, W. F., Baladi, G. Y. Soil plasticity:Theory and implementation [M], Elsevier, Amsterdam, The Netherlands.1985.
    [35]李亮,赵成刚.饱和土体动力本构模型研究进展[J].世界地震工程.2004,20(1):138-148
    [36]LS-DYNA THEORY MANUAL[M],2006
    [37]T.J. Holmquist and G.R. Johnson. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures [C],14th International Symposium on Ballistics Quebec, Canada,1993:591-600
    [38]W. Riedel, Beton unter dynamischen Lasten Meso-und makromechanische Modelle und ihre Parameter [D], Dissertation Universitat der Bundeswehr,2000,143-166
    [39]Heider N, Hiermaier S. Numerical simulation of tandem warheads [C].19th Int Symp Ballistics,2001:1493-1499
    [40]Taylor L M, Chen E P, Kuszmaul J S. Micro-crack induced damage accumulation in brittle rock under dynamic loading [J]. J of Computer Methods in Applied Mechanics and Engineering,1986,55(3):301-320
    [41]Chen E P. Simulation of concrete perforation based on a continuum damage model [C]. Proceedings of the IUTAM Symposium on Size-Scale Effects in the Failure Mechanism of Materials and Structures, Edited by A. Carpinteri, Torino, Italy,1994:574-587
    [42]王礼立,杨黎明.固体高分子材料非线性粘弹性本构关系[M].冲击动力学进展中国科技大学出版社,1992
    [43]Forrestal M J, Luk V K, Watts H A. Penetration of reinforced concrete with ogive-nose penetrators [J]. Int J Solids Structures,1988,24(1):77-87
    [44]Pelessone, D. A Modified Formulation of the Cap Model [R], Prepared for DNA under Contract DNA-0010086-C-0277, General Atomics, GA-C19579, January,1989.
    [45]Schwer, L.E. and Y.D. Murray, A Three-Invariant Smooth Cap Model with Mixed Hardening [J]. International Journal for Numerical and Analytical Methods in Geomechanics, Vol 18, pgs 657-688,1994.
    [46]Murray, Y.D. and B.A. Lewis, Numerical Simulation of Damage in Concrete[R] APTEK technical report to the Defense Nuclear Agency, Contract No. DNA001-91-C-0075, Report No. DNA-TR-94-190, Nov 1995.
    [47]Murray, Y.D., Modeling Rate Effects in Rock and Concrete [C]. Proceedings of the 8th International Symposium on Interaction of the Effects of Munitions with Structures, Volume IA, Defense Special Weapons Agency, April 1997.
    [48]Grote D L, Park S W, Zhou M. Dynamic behavior of concrete at high strain rates and pressures:I Experimental characterization [J]. Int J Impact Eng 2001,25(3):869-86
    [49]黄承逵,赵国藩,尚仁杰等.动荷载下混凝土强度变形特性及其实验方法的研究[J].水电站设计1997,13(1):17-22
    [50]徐文峥,杨榕.弹药几何因素对过载特性影响的数值分析[J].弹箭与制导学报.2010.30(2):97-100
    [51]Zhang, W., et al., Numerical analysis of the projectile deformation during the penetration of concrete targets [C]. Dymat 2009:9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, Vol 2.2009.1643-1648.
    [52]韩丽,高世桥,李明辉等.弹丸垂直贯穿混凝土靶的数值研究[J].北京理工大学学报.2006.26(11):953-956.
    [53]周燕.钻地弹土中弹道影响因素的数值模拟研究[D].南京理工大学,2009
    [54]Huang, F., et al., A numerical simulation on the perforation of reinforced concrete targets [J]. International Journal of Impact Engineering,2005.32(1-4):p.173-187.
    [55]NystrSm, U. and K. Gylltoft. Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete [J]. International Journal of Impact Engineering.2011. 38(2-3):95-105.
    [56]C.Y. Tham.2005. Reinforced concrete perforation and penetration simulation using AUTODYN-3D [J]. Finite Elements in Analysis and Design.41:1401-1410
    [57]杨冬梅,王晓鸣.动能弹对有限厚土壤介质靶侵彻的数值仿真[J].弹箭与制导学报,5(2003)
    [58]杨冬梅,王晓鸣.反机场弹药斜侵彻多层介质靶的三维数值仿真.弹道学报[J],3(2004)
    [59]曾必强,姜春兰,李明,茶晓燕.侵彻弹斜侵彻多层介质的三维数值仿真[J].弹道学报,2(2008)
    [60]曾必强,姜春兰,王在成,常志远.反跑道动能弹斜侵彻机场多层跑道的三维数值模拟[J].兵工学报.2007;12:1433-1437
    [61]Shirai, T., Kambayashi, A., Ohno, T., et al. Experiment and numerical simulation of double-layered RC plates under impact loadings [J]. Nucl. Eng. Des.1997,176 (3):195-205.
    [62]Felice,C. W., Gupta, Y. M. Penetration physics at the meso-scale[R]
    [63]Zaitsev J W, Wittmann F H. Crack propagation in a two-phase material such as concrete [J]. Solid Wastes Management Refuse Removal Journal,1978,3B:1197-1203.
    [64]Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of composite structures [J]. Materials Science and Engineering,1985,68(2):239-248.
    [65]Sadouki H S, Wittmann F H. On the analysis of the failure process in composite materials by numerical simulation [J]. Materials Science & Engineering A:Structural Materials: Properties, Microstructure and Processing,1988, A104:9-20.
    [66]马怀华,陈厚群,黎保琨.混凝土细观力学研究进展及评述[J].中国水利水电科学研究院学报,2004,2(2):124-130
    [67]唐春安,朱万成.混凝土损伤与断裂——数值试验[M].北京:科学出版社,2003
    [68]田威,党发宁,陈厚群.单轴压缩条件下混凝土细观损伤演化机理的CT试验研究[J].实验力学.2011,26(1):54-60
    [69]吴锋,卓家寿.混凝土材料破坏过程的细观数值分析[J].重庆交通大学学报(自然科学版),2008,27(5):705-708,834.
    [70]Van Mier J G M. Fracture Processes of Concrete Assessment of Material Parameters for Fracture models [C]. CRC Press,1997
    [71]Cundall P A, Strack O D L. A discrete numerical model for granular assembles. Geotechnique [J],1979,29(1):47-65.
    [72]Tang T N. Triaxial Test simulations with discrete element method and hydrostatic boundaries [J]. Journal of Engineering Mechanics,2004,130(10):1188-1194
    [73]Camborde F, Mariotti C, Donze F V. Numerical study of rock and concrete behaviour by discrete element modeling [J]. Computers and Geotechnics,2000,27(4):225-247.
    [74]Prochazka P P. Application of discrete element methods of fracture mechanics of rock bursts [J]. Engineering Fracture Mechanics,2004,71(4-6):601-618.
    [75]Langston P A, Mohammad A A, Feras Y F, Badel N A. Distinct element modeling of non-spherical frictionless particle flow [J]. Chemical Engineering Science,2004,59(2): 425-435
    [76]Matthew R K. Smooth convex three-dimensional particle for the discrete element method [J]. Journal of Engineering Mechanics,2003,129(5):539-547
    [77]Roland W L, Gethin D T, Xinshe S Y, Ray C R. A combined finite discrete element method for simulating pharmaceutical powder tableting [J]. International Journal for Numerical Methods in Engineering,2005,62(7):853-869
    [78]Gethin D T, Ransing R S, Lewis R W, Dutko M, et al. Numerical comparison of a deformable discrete element model and an equivalent continuum analysis for the compaction of ductile porous material [J]. Computers and Structures,2001,79(13): 1287-1294
    [79]Bazant Z P, Tabbara M R. Random particle models for fracture of aggregate or fiber composites [J]. Journal of Engineering Mechanics, ASCE,1990,116(8):1686-1705
    [80]Zhong X X, Chang C S. Micromechanical modeling for behavior of cementitious granular materials [J]. Journal of Engineering Mechanics, ASCE,1999,125(11):1280-1285
    [81]刑纪波.梁-颗粒模型导论[M].地震出版社,1999
    [82]Kawai T.New elemet models in discrete structural analysis [J]. Japanese civil engineering society symposium,1976,7(15):584-591
    [83]王宝庭.基于刚体-弹簧元的全级配混凝土本构行为模拟[D].大连:大连理工大学,1997:54-86
    [84]张德海,朱浮生,刑纪波.冲击载荷下混凝土破坏过程的数值模拟[J],东北大学学报,2005,26(8):790-793
    [85]张德海,朱浮生,刑纪波.梁-颗粒模型在混凝土侵彻问题中应用[J],爆炸与冲击,2005,25(1):85-89
    [86]朱浮生,张德海,王凤池.动能弹侵彻素混凝土板的数值模拟[J].力学与实践,2006,28(3):60-63
    [87]Mohamed A R, Hansen W. Micromechanical modeling of concrete response under static loading:Part Ⅰ:Model development and validation [J]. ACI Materials Journal,1999,96(2): 196-203
    [88]Mohamed A R, Hansen W. Micromechanical modeling of concrete response under static loading:Part Ⅱ-Model predictions for shear and compressive loading [J]. ACI Materials Journal,1999,96(3):354-358
    [89]Mohamed A R, Hansen W. Micromechanical modeling of crack-aggregate interaction in concrete materials [J]. Cement and Concrete Composites,1999,21(5-6):349-359
    [90]邱志章,王宗敏.混凝土随机骨料结构在非线性有限元分析中的应用[J].混凝土.2010,7:22-24,27
    [91]马怀华.全级配大坝混凝土动态损伤破坏机理研究及其细观力学分析方法[M].中国水利水电出版社,2008
    [92]高政国,刘光廷,二维混凝土随机骨料模型研究.清华大学学报[J],2003,43(5):710-714
    [93]郑建军,周欣竹,刘彦青.混凝土骨料二维分布的模拟和应用.水利学报[J],2003(7):80-84
    [94]张剑,金南国等.混凝土多边形骨料分布的数值模拟方法.浙江大学学报(工学版)[J],2004,38(5):581-585
    [95]彭一江,黎保琨,刘斌.碾压混凝土细观结构力学性能的数值模拟.水利学报[J],2001,11(6):19-22
    [96]马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,10:27-35
    [97]Wang Z M, Kwan AK H, Chan H C. Mesoscopic study of concrete I:generation of random aggregate structures and finite element mesh[J].Computers and structure.1999,70:533-544
    [98]Bazant Z.P., Tabbara M R, Kazemi M T, etal. Random particle model for fracture of aggregate or fiber composites [J], Engrg Mesh ASCE.1990,116:1686-1705
    [99]刘光廷,高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报,2003,43(8):29-36
    [100]杨冠颖,黄海燕.混凝土任意形状骨料及其界面层有限元模型的生成方法[J].混凝土,2008(2):54-59.
    [101]程伟峰.混凝土三维随机凸型骨料模型生成方法研究[J].水利学报,2011,42(5):609-615
    [102]刘光廷,高政国.三维凸型混凝土骨料随机投放算法[J].精华大学学报,2003,43(8):29-36.
    [103]周尚志.混凝土动静力破坏过程的数值模拟及细观力学分析[J].西南理工大学,2007
    [104]夏晓舟.混凝土细观数值仿真及宏细观力学研究[D].河海大学.2007
    [105]刘强.基于随机骨料模型的混凝土细观损伤与宏观强度研究[D].北京工业大学.2005
    [106]任中俊.基于椭圆形微裂纹变形及扩展的岩石混凝土三维细观损伤模型[D].重庆大学.2008
    [107]尹艳辉.混凝土骨料有限元模型的自动生成方法[D].大连理工大学.2004
    [108]唐欣薇.基于宏细观力学的混凝土破损行为研究[D].清华大学,2008
    [109]田威,党发宁,陈厚群.混凝土CT图像的3维重建技术[J].四川工业大学学报(工程科学版),2010,42(6):12-16
    [110]关正群,宋超,顾元宪等.有限元网格生成方法研究的新进展[J].计算机辅助设计与图形学学报.2003,15(1):1-14
    [111]李曙光,李庆斌.混凝土三维细观分析中界面过渡区的网格划分方法[J].混凝土,2010,9:4-5,20
    [112]党发宁,梁昕宇,陈厚群.混凝土三维细观接触面模型数值模拟与CT试验验证[J].计算力学学报,2011,1:119-124
    [113]陈裕泽.弹体侵彻非均匀地质靶的参量影响研究[R]中国工程物理研究院总体工程研究所内部报告,2010
    [114]E.B.Marin, M.L.Chiesa, P.M. Booker. Parametric Studies of Penetration Events:A Design and Analysis of Experiments Approach [R]. SAND2005-0951,2005
    [115]黄含军.混凝土靶Φ25mm炮侵彻试验总结报告[R].中国工程物理研究院总体工程研究所内部报告,2011
    [116]黄含军,毛勇建,黄海莹等.混凝土靶侵彻响应测试与分析[J].应用力学学报,38(增刊),2011:69-72
    [117]Andesron D D,Roskais A J. Comparison of three real time techniques for the measuerment of dynamic fracture initiation toughness in metals [J].Engineering Fracture Mechanics,2005,72:535-555.
    [118]Rosenberg Z, Bourne N K and Millett J C F. Direct measurements of strain in shock-lodaed Glass specimens[J]. Journal of APPlied Physies,1996,79(8):3971-3974.
    [119]Shan R L, Jiang Y S, Li B Q. Obtaining dynamic complete stress-strain curves for rock using the split Hopkinson pressure bar technique[J].International Journal of Rock Mechanics Sciences.2000,37:983-992.
    [120]Wicks A L, Kaiser M A,et al. Experimentally derived bar dispersion and transducer selection for split Hopkinson Bars[A].Shock Comperssed of Condensed Matter1999 [C].USA:Americna Instiutte of Physics, NY,2000:1099-1102.
    [121]巫绪涛.钢纤维高强混凝土动态力学性质的研究[D].中国科学技术大学博士学位论文,2006
    [122]郭弦,于飞,鲁飞.应变片栅长对混凝土表面静态应变测量结果的影响分析[J].电子测量技术.2010,33(1):89-91
    [123]振动与冲击手册(第二卷)[M].国防工业出版社.1990
    [124]赵晓东.高g值加速度计冲击校准理论与实验研究[D].中北大学硕士学位论文.2010
    [125]李庆丰.高g值加速度计激光干涉冲击校准技术研究[D].中北大学硕士学位论文.2008
    [126]陈裕泽.混凝土板的侵彻破坏[R].中国工程物理研究院总体工程研究所内部报告,2011
    [127]刘俊新.压实粘性土动态力学性能研究[R].中国工程物理研究院博士后研究工作报告,2011
    [128]黄含军等.XXXX中物院参试总结报告[R].中国工程物理研究院总体工程研究所内部报告,2011
    [129]LS-DYNA keywords user's manual [M],2007
    [130]Murray, Y.D. Users manual for LS-DYNA concrete material model 159 [R]. FHWA-HRT-05-063, Federal Highway Administration,2007
    [131]Murray, Y.D, Akram Abu-Odeh, Roger Bligh. Evaluation of LS-DYNA Concrete Material Model 159 [R], FHWA-HRT-05-063, Federal Highway Administration,2007
    [132]Murray, Y.D. Theory and Evaluation of Concrete Material Model 159 [C].8th International LS-DYNA Users Conference.2004
    [133]宁建国,王成,马天宝.爆炸与冲击动力学[M],国防工业出版社,2010
    [134]黄西成.内爆与外爆加载下壳体的力学状态及破坏模式分析[D].中国工程物理研究院研究生部.2010
    [135]周义清.30CrMnSiNi2A钢的动态性能研究[D].中北大学硕士学位论文,2007
    [136]毛勇建,陈裕泽等.XXXXX数值试验研究方案[R].中国工程物理研究院总体工程研究所内部报告,2011
    [137]E.B.Marin, M.L.Chiesa, P.M.Booker. Parametric Studies of penetration Events:A Design and Analysis of Experiments Approach [R]. Sandia Report, SAND2005-0951,2005
    [138]成岳,夏光华.科学研究与工程试验设计方法[M].武汉理工大学出版社,2004
    [139]张国宝AutoCAD Visual Basic开发技术[M].科学出版社.2000
    [140]张研,张子明.材料细观力学[M].科学出版社.2008
    [141]C.W.Young. Penetration Equations [R], Sandia National laboratories Report, SAND97-2426,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700