用户名: 密码: 验证码:
模块化多电平换流器电磁暂态高效建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模块化多电平换流器高压直流输电(Modular Multilevel Converter based High Voltage Direct Current, MMC-HVDC)以其独特的技术优势,已成为未来电压源换流器高压直流输电(Voltage Source Converter based HVDC, VSC-HVDC)领域的发展趋势,将在我国电力系统中发挥重大作用。与两电平、三电平VSC-HVDC在电磁暂态(Electromagnetic Transient, EMT)仿真中采用单个器件代表整个换流阀不同,高电压、大功率的MMC-HVDC在电磁暂态仿真中必须单独仿真超大数量的开关器件,导致仿真速度非常缓慢,使得MMC-HVDC一次电路参数选取及控制系统参数的优化变得非常困难,很大地阻碍了高电平MMC-HVDC的研究进展及工程化应用。因此,深入分析MMC-HVDC的运行特性,研究开发在保证其系统仿真精度的前提下的高效建模方法,具有重大的理论及工程意义。论文针对模块化多电平换流器电磁暂态高效建模方法进行全面深入的基础研究。
     1) MMC-HVDC拓扑机制及运行特性研究
     为了研究MMC-HVDC的电磁暂态高效建模方法,首先分析了MMC的通用拓扑结构及三种常见子模块,也即半桥型子模块(Half-Bridge Sub-module, HBSM)、双箝位型子模块(Clamp-double Sub-module, CDSM)和全桥型子模块(Full-Bridge Sub-module, FBSM)的拓扑结构和工作模式。其次从理论上证明了不同子模块结构的MMC均适用传统同步旋转坐标系下的站级解耦控制策略,并推导了该策略在MMC中的具体表达式。进而分别介绍了传统的基于最近电平逼近控制(Nearest Level Control, NLC)和载波移相正弦脉宽调制(Carrier Phase Shifted Sinusoidal Pulse Width Modulation, CPS-SPWM)的MMC调制和电容电压平衡控制策略。
     基于上述MMC站级解耦控制及调制均压策略,不同子模块结构的MMC均可以构造闭环MMC型VSC-HVDC系统。三种MMC子模块的最大区别在于切断双极直流短路故障引起的短路电流的能力不同,为了精确评估不同结构MMC切断直流故障电流的能力,提出了MMC-HVDC的直流故障穿越能力指标(DCFaults Ride-through Capability Index, DFRTI)。仿真结果表明,在相同的系统参数下, DFRTI(FBSM)> DFRTI(CDSM)>DFRTI(HBSM).以采用FBSM的3端MMC-HVDC为例,提出了具备直流故障穿越能力的多端MMC-HVDC (Multi-terminal MMC-HVDC, MMC-MTDC)系统的直流故障线路定位和隔离以及快速功率恢复的控制策略,PSCAD/EMTDC下的仿真验证了所提出控制策略的正确性和有效性。
     2)基于受控源的MMC通用建模方法研究.
     在仿真超大规模MMC所包含的大量子模块的开关器件时,PSCAD/EMTDC等电磁暂态仿真软件需要不断地对超高阶导纳矩阵求逆,这是其在电磁暂态仿真中速度非常缓慢的本质原因。因此,全部MMC的仿真提速模型都需要在保证仿真精度的前提下对高阶导纳矩阵进行降阶求解。
     根据节点电压分析法,提出了基于受控源的MMC电磁暂态仿真提速模型,其本质为将求解MMC的每个桥臂所对应的超高阶矩阵转化为求解与桥臂内子模块数目相同的小矩阵,并使其与原有矩阵同解。因此,所提出的MMC模型可以在显著提升仿真速度的同时,精确等效MMC的外特性以及子模块的电容电压充放电过程等内部特性。所提出的模型完全采用电磁暂态仿真平台模型库中的已有元件,无需用户自定义;同时,采用节点电压法证明了该模型与原有详细模型同解,且由证明过程的一般性可知,所提出模型不仅适用于三种常见MMC在PSCAD/EMTDC下的仿真,对其余MMC结构以及诸如MATLAB/SIMULINK等电磁暂态仿真平台都具有很强的通用性。在PSCAD/EMTDC中搭建的不同电平数半桥型MMC模型验证了所提出模型的仿真精度及提速效果。
     3)基于戴维南等效的MMC整体建模方法研究
     在上述基于受控源的MMC通用仿真提速模型中,由于不需要用户自定义,模型中所采用的开关元件与详细模型完全相同,因此其必须与详细模型(Detailed Model, DM)采用完全相同的调制及电容电压平衡控制方法。然而,MMC-HVDC不同于两电平、三电平VSC-HVDC的一个显著特点是复杂的调制及电容电压平衡控制算法,仿真表明,控制算法的复杂度已成为制约MMC的电磁暂态仿真效率的重要因素。因此,有必要以用户自定义的形式开发MMC等效模型,并提出一种计算效率较高的MMC子模块电容均压算法。
     分别以基于HBSM和FBSM的MMC为例,采用后退欧拉法(Backward Euler Method)将每个子模块的电容离散化为戴维南电压源和电阻的串联,并假设子模块中的开关器件在断开状态时为理想器件(即无穷大电阻),因此在对MMC一次电路求解时的计算量得到大大简化。同时,由于采用后退欧拉法,每个子模块电容电压的瞬时值只取决于子模块当前步长的投切状态。基于上述假设,提出了一种计算复杂度与桥臂子模块个数相同的MMC高效排序均压方法,并介绍了所提出MMC整体建模的闭锁功能实现方法,使其具备仿真换流器的启动与直流故障闭锁等功能。上述换流器及均压算法的整体建模,使MMC的计算复杂度随电平数线性变化。仿真验证表明,所提出的MMC模型及排序均压算法均具有极高的仿真精度并在上千电平时与MMC平均值模型(Averaged-value Model, AVM)的仿真效率具有可比性。最后,将所提出的整体建模方法应用到了全桥型MMC中并进行了仿真验证。
     4)MMC平均值模型在直流电网中的应用研究
     在前述两类MMC模型中,子模块电容充放电特性得以精确体现,因此其外部特性与MMC详细模型完全相同。然而,MMC的平均值模型分别采用受控电压源与电流源来等效MMC详细模型的交、直流侧,且采用平均化技术,只有一个直流侧等效电容,因此其无法仿真详细模型内部每个子模块的充放电特性,一般用于多端直流电网的系统级高效仿真。由于MMC详细模型的非线性运行特性非常复杂,而平均值模型对其进行了很大的简化,因此分析研究平均值模型的适用性是很有意义的。
     以采用MMC详细模型搭建的4端直流电网为基准,对比发现平均值模型有效的前提是相对应的详细模型中的子模块电容值足够大,以使其全部电容电压几乎恒定。同时,分析发现不同的MMC调制及均压算法对平均值模型的适用性无明显影响,但使用平均值模型所带来的加速比却随着调制均压算法的计算复杂度而上升。同时,原有平均值模型无法精确仿真直流故障特性及换流器闭锁等多端直流电网仿真中的必备功能。为了弥补这一不足,提出了改进平均值模型拓扑,仿真表明其可以满足直流电网的各种仿真需求。虽然本文以半桥型MMC平均值模型为例,但是所提出的平均值模型适用性分析方法和拓扑改进措施对另外两种MMC平均值模型也具有理论指导意义。
Modular Multilevel Converter based High Voltage Direct Current (MMC-HVDC) is playing an more and more important role in the power system of China, and it has become the development trend of the Voltage Source Converter based HVDC (VSC-HVDC), due to its special technical advantages. In the Electromeganetic Transient (EMT) programs, such as PSCAD/EMTDC, the conventional2or3-level VSC-HVDC uses single semiconductor to represent the whole multi-valve. However, the ultral-high voltage and power ratings MMC-HVDC has to simulate the large number of sub-modules (SMs) in each multi-valve individually, which makes the EMT-type simulations extremely slow and the circuit parameters selection and optimization of control systems extremely difficult. Furthermore, it constitutes enormous obstacles for the research of ultral-large MMC-HVDC systems and their engineering applications. Therefore, it is of great theoretical and engineering values to analyze the operational characteristics of MMC-HVDC and propose the EMT-type efficient modelling methods of MMC with the simulation accuracy preserved, which is investigated fundamentally and comprehensively in this dissertation.
     1) Research on the topology mechanisms and operational characteristics of MMC-HVDC
     For the purpose of investigating the EMT-type efficient modelling methods of MMC, the universal topology of MMC and the working modes of the three common sub-module implementations, including Half-Bridge Sub-module (HBSM), Clamp-Double Sub-module (CDSM) and Full-Bridge Sub-module (FBSM) are analyzed. This paper theoretically demonstrated that the traditional dq axis based decoupled control strategies are applicable to the three sub-modules based MMCs, and further deduced the specific control formulas for MMC. Then the Nearest Level Control (NLC) and Carrier Phase Shifted Sinusoidal Pulse Width Modulation (CPS-SPWM) based MMC internal modulation and capacitor voltage balancing algorithms are presented.
     Based on the above MMC internal control algorithms, the different sub-modules based MMCs can be constructed to closed-loop control MMC-HVDC systems. The essential metrics of the three sub-modules are the capabilities to suppress the short circuit currents under DC pole to pole short circuit fault. Hence the DC Faults Ride-through Capability Index (DFRTI) is proposed to evaluate such capabilities precisely. Simulations show that under the same system configuration, DFRTI(FBSM)> DFRTI(CDSM)> DFRTI(HBSM). Taking the FBSM based3-terminal MMC-HVDC to exemplify, the DC faults location, isolation and fast power recovery schemes for the multi-terminal MMC-HVDC (MMC-MTDC) which is capable of riding through the severe DC faults are proposed and simulations in PSCAD/EMTDC valitated its correctness and effectiveness.
     2) Research on the controlled source based universal modelling method of MMC
     With the ultral-large number of semeconductor components in the large scale MMC switch on and off alternatively, the EMT-type programs has to inverse the large order admittance matrix constantly, this is why it takes extremely long time to simulate ultral-large MMC-HVDC system on EMT-type programs. Therefore, all the accelerated MMC models have to reduce the matrix order of the MMC converters with the simulation accuracy preserved.
     Based on the Node Voltage Analysis method, the controlled source based EMT-type MMC accelerated model is proposed. The essence of the new model is the partition of one large-scale admittance matrix into substantial small-scale matrices which provide the equivalent solutions; hence it guarantees the accuracy of the MMC external and internal behaviros. Meanwhile, the computation burden of MMC is significantly reduced, as compared to the full detailed model. The proposed MMC model uses the existing building blocks in the user library of the EMT-type program, no need for user-defined modules. Therefore, the new model is not only suitable for the three types sub-modules based MMC systems on PSCAD/EMTDC, but also other multi-level converters on other EMT-type programs. Finally, the HBSM based MMC models on PSCAD/EMTDC valitates the accuracy and speed-up factor of the proposed model.
     3) Research on the Thevenin's equivalent based overall modelling of MMC
     There is no need for user-defined module in the above controlled source based MMC model; hence the building blocks as well as the modulation and capacitor voltage balancing algorithms are the same as the full detailed model. However, one of the remarkable features that MMC-HVDC compared to2or3-level VSC-HVDC is the complex voltage balancing algorithms, and simulations have shown that it does have great impact on the computation efficiency of MMC simulating on EMT-type programs. To solve the problem, this paper proposes the user-difined Thevenin's equivalent MMC model and the highly efficient sorting based balancing algorithm to overall model the MMC system.
     Taking the HBSM and FBSM based MMC models to exemplify, using the Backward Euler Method to discretize the capacitor in each sub-module to the series connection of the Thevenin's equivalent voltage source and resistance, and assuming the switches to be ideal (i.e. infinite resistance) if they are switched off, hence the computation complexity of the converter is significantly reduced. Meanwhile, as Backward Euler Method is applied to the capacitors, the instantaneous capacitor voltage of each sub-module is determined by only one time step history knowledge of its switching state. Then an efficient MMC capacitor voltage sortinig algorithm whose computation burden increases linearly with the number of the MMC sub-modules is proposed, and the blocking mode implementation of the proposed MMC model is introduced. The CPU efficiency of the overall MMC model is in direct proportion to the simulation scale. Also the MMC model which is composed of the improved converter and the tranditional CPS-SPWM control algorithm is also implemented and validated. Simulations on PSCAD/EMTDC show that the proposed MMC models are comparable with corresponding Averaged-value Model (AVM) in CPU efficiency for the case of MMC model with more than one thoudand sub-modules per arm. Finally, the proposed overall modeling method is extended to full-bridge MMC and its accuracy is validated.
     4) Research on the use of the averaged-value model of MMC in DC grid
     In the above proposed controlled source and Thevenin's equivalent based models, the MMC internal capacitor charging and discharging characteristics are precisely simulated, hence their external behaviors are identical to the full detailed MMC models. However, the averaged-value MMC model uses controlled voltage sources and current sources to represent the AC and DC sides of the Detailed Model (DM). The AVM applies averaging technique and has only one equivalent capacitor, thus it cannot simulate the MMC internal charging and discharging characteristics of each capacitor in DM and quite suitable for efficient system-level simulation of multi-terminal DC grid. However, due to the strong nonlinearity and complex operational characteristics of the DM, the applicability of the AVM needs strict proof to avoid misuse.
     The HBSM based AVM is benchmarked by comparison with a4-terminal DM based MMC-HVDC grid. Analysis results show that the AVM is just effective when the capacitors are large enough to maintain nearly constant voltage across each MMC sub-module. The type of MMC internal modulation and voltage balancing scheme does not appear to have significant impact on the validity of the model, but the speed-up afforded by the AVM is more when a more complex voltage scheme is in effect. Due to the topological reasons, the previously developed AVM cannot simulate dc faults as well as MMC blocking behaviors properly, as would be required for multi-terminal DC grid simulations. To address this issue, the paper proposed the improved AVM which is shown to work well simulating all DC grid operating conditions. The applicability analysis method and improvements for the HBSM based AVM is with an important reference for CDSM and FBSM based AVMs.
引文
[1]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004
    [2]刘振亚,舒印彪,张文亮,等.直流输电系统电压等级序列研究[J].中国电机工程学报,2008,28(10):1-8
    [3]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010
    [4]徐政.交直流电力系统的动态行为分析[M].北京:机械工业出版社,2004
    [5]赵成勇,孙营,李广凯.双馈入直流输电系统中VSC-HVDC的控制策略[J].中国电机工程学报,2008,28(7):97-103
    [6]孙营.HVDC和VSC-HVDC的协调控制策略研究[D].保定:华北电力大学,2006
    [7]浙江大学发电教研组直流输电科研组.直流输电[M].北京:电力工业出版社,1982
    [8]徐政,屠卿瑞,裘鹏.从2010国际大电网会议看直流输电技术的发展方向[J].高电压技术,2010,36(12):3070-3077
    [9]Chunyi Guo and Zhao Chengyong. Supply of an Entirely Passive AC Network Through a Double-Infeed HVDC System[J]. IEEE Transactions on Power Electronics,2010,25 (11):2835-2841.
    [10]Chunyi Guo, Yi Zhang, A.M. Gole, and Chengyong Zhao. Analysis of Dual-Infeed HVDC with LCC-HVDC and VSC-HVDC[J]. IEEE Transactions on Power Delivery,2012,27(3):1529-1537
    [11]郭春义,赵成勇,Allan Montanari, Aniruddha M. Gole,肖湘宁..新型混合双极高压直流输电系统的特性研究[J].中国电机工程学报,2012,32(10):98-104
    [12]许烽,徐政,傅闯.多端直流输电系统直流侧故障的控制保护策略[J].电力系统自动化,2012,36(6):74-78
    [13]刘海涛,程林,孙元章,等.交直流系统可靠性评估[J].电网技术,2004,28(23):27-31
    [14]戴熙杰.直流输电基础[M].北京:水利电力出版社,1990
    [15]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998
    [16]XiaoWang, Boon-Teck Ooi. High Voltage Direct Current Transmission System Based on Voltage Source Converters[C]. Power Electronics Specialists Conference, PESC'90 Record.,21st Annual IEEE 1990:325-332
    [17]Boon-Teck Ooi, Xiao Wang. Voltage Angle Lock Loop Control of the Boost Type PWM Converter for HVDC Application[J]. IEEE Transactions on Power Electronics,1990,5(2):229-235
    [18]李庚银,吕鹏飞,李广凯,等.轻型高压直流输电的发展与展望[J].电力系统自动化,2003,27(4):77-81
    [19]Flourentzou Nikolas, Agelidis Vassilios G. and Demetriades Georgios D. VSC-Based HVDC Power Transmission Systems:An Overview[J]. IEEE Transaction on Power Electronics,2009,24(3):592-602
    [20]郭春义,赵成勇.Novel Control Strategy for Voltage Source Converter Based HVDC and Controller Parameters Optimization.中国电机工程学报[J],2010,30(15):1-9
    [21]赵成勇,李金丰,李广凯.基于有功功率和无功功率独立调节的VSC-HVDC控制策略[J].电力系统自动化,2005,29(9):20-24
    [22]李金丰,李广凯,赵成勇.三相电压不对称时VSC-HVDC的控制策略[J].电网技术,2005,29(16):16-20
    [23]Agelidis Vassilios G., Demetriades Georgios D., and Flourentzou Nikolas. Recent Advances in High-Voltage Direct-Current Power Transmission Systems. Industrial Technology,2006. ICIT 2006. IEEE International Conference on, pp.206-213
    [24]Lesnicar A, Marquardt R. An Innovative Modular Multilevel Converter Topology Suitable for a Wide Power Range[C].2003 IEEE Bologna Power Tech Conference. Bologna, Italy:IEEE,2003
    [25]韦延方,卫志农,孙国强等.适用于电压源换流器型高压直流输电的模块化多电平换流器最新研究进展[J].高电压技术,2012,38(5):1243-1252
    [26]Kurt Friedrich. Modern HVDC PLUS application of VSC in Modular Multilevel Converter Topology. Industrial Electronics (ISIE),2010 IEEE International Symposium on, pp:3807-3810
    [27]刘隽,贺之渊,何维国,等.基于模块化多电平换流器的柔性直流输电技术[J].电力与能源,2011,1(1):33-38
    [28]Hans-Joachim, Knaak, "Modular Multilevel Converters and HVDC/FACTS: a success story," Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on, Aug.30 2011-Sept.1, pp:1-6
    [29]Steffen Rohner, Steffen Bemet, and Marc Hiller, "Modulation, Losses, and Semiconductor Requirements of Modular Multilevel Converters," IEEE Transactions On Industry Applications., vol.57, no.8, pp:2633-2642, Aug. 2010.
    [30]Marquardt R. Modular Multilevel Converter:An universal concept for HVDC-Networks and extended DC-Bus-applications. Power Electronics Conference (IPEC),2010 International.2010:502-507
    [31]R. Marquardt. Modular Multilevel Converter Topologies with DC-Short Circuit Current Limitation. Power Electronics and ECCE Asia (ICPE & ECCE),2011 IEEE 8th International Conference on, May 30 2011-June 3, pp: 1425-1431
    [32]Yinglin Xue, Zheng Xu, and Qingrui Tu. Modulation and Control for a New Hybrid Cascaded Multilevel Converter With DC Blocking Capability. IEEE Transactions on Power Delivery,2012,27(4):2227-2237
    [33]Jacobson B, Karlsson P, Asplund G, et al. VSC-HVDC transmission with cascaded two-level converters[C]. CIGRE B4-110. Paris:CIGRE,2010:1-8
    [34]Samir Kouro, Mariusz Malinowski, Gopakumar K, et al. Recent advances and industrial applications of multilevel converters[J]. IEEE Transaction on Industrial Electronics,2010,57(8):2553-2580
    [35]Simon P. Teeuwsen. Modeling the Trans Bay Cable Project as Voltage-Sourced Converter with Modular Multilevel Converter Design[C]. Power and Energy Society General Meeting. Detroit, Michigan, USA:IEEE, 2011:1-8
    [36]俞俊霞,肖斌.基于VSC-HVDC的南汇风电场并网应用研究[J].上海电力,2013,3:234-237
    [37]SIEMENS. Ready for the Future:Siemens Erects Power Converter Stations for HVDC Link Between France and Spain as Part of the Trans-European Network [EB/OL]. (2011-01-12). [2011-10-18]. http://www.siemens.com/press/en/pressrelease/?press=/en/pressrelease/2011/ power_transmission/ept201101032.htm
    [38]ABB Group. Skagerrak HVDC Interconnections [EB/OL]. (2011-02-11). [2011-10-18]. http://www.abb.com/industries/ap/db0003db004333/448A5ECA0D6E15D3C 12578310031E3A7.aspx
    [39]P. Labra Francos, S. Sanz Verdugo, H. Fernandez Alvarez, et al. INELFE-Europe's first integrated onshore HVDC interconnection[C]. Power and Energy Society General Meeting, San Diego, CA:IEEE,2012:1-8
    [40]郑超,周孝信,李若梅.电压源换流器式高压直流输电的动态建模与暂态仿真[J].电网技术,2005,29(16):1-5
    [41]张静.VSC-HVDC控制策略研究[D].杭州:浙江大学,2009
    [42]陈谦,唐国庆,胡铭.采用dq0坐标的VSC-HVDC稳态模型与控制器设计[J].电力系统自动化,2004,28(16):61-66
    [43]魏晓光,汤广福,郑健超.电压源高压直流输电离散模型及其控制策略[J].中国电机工程学报,2007,27(28):6-11
    [44]陈海荣.交流系统故障时VSC-HVDC系统的控制与保护策略研究[D].杭州:浙江大学,2007
    [45]Robert S Whitehouse. Technical Challenges of Realising Multi-terminal Networking with VSC. Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on, pp:1-12
    [46]汤广福.高压直流输电装备核心技术研发及工程化[J].电网技术,2012,36(1):1-6
    [47]王珊珊,周孝信,汤广福,等.模块化多电平电压源换流器的数学模型[J].中国电机工程学报,2011,31(24):1-8
    [48]丁冠军,汤广福,丁明,等.新型多电平电压源换流器模块的拓扑机制与调制策略[J].中国电机工程学报,2009,29(36):1-6
    [49]管敏渊,徐政,潘伟勇,等.最近电平逼近调制的基波谐波特性解析计算[J].高电压技术,2010,36(5):1127-1132
    [50]管敏渊,徐政,屠卿瑞,等.模块化多电平换流器型直流输电的调制策略[J].电力系统自动化,2010,34(2):48-52
    [51]李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制方法[J].电力系统自动化,2010,34(22):75-79123
    [52]丁冠军,汤广福,丁明,等.新型多电平VSC子模块电容参数与均压策略[J].中国电机工程学报,2009,29(30):1-6
    [53]管敏渊,徐政.MMC型VSC-HVDC系统电容电压的优化平衡控制[J].中国电机工程学报,2011,31(12):9-14
    [54]Salvador Ceballos, Josep Pou, Sanghun Choi, et al. Analysis of voltage balancing limits in modular multilevel converters. IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society, pp:4397-4402
    [55]Ricardo Lizana, Cristian Castillo and Marcelo A. Perez et al. Capacitor voltage balance of MMC converters In bidirectional power flow operation. IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, pp:4935-4940
    [56]Y. Zhang, G.P. Adam and T.C. Lim, et. Al. Analysis of modular multilevel converter capacitor voltage balancing based on phase voltage redundant states [J]. IET Power Electron.,2012, Vol.5, Iss.6, pp:726-738
    [57]Michail Vasiladiotis, Nicolas Cherix, and Alfred Rufer. Accurate Voltage Ripple Estimation and Decoupled Current Control for Modular Multilevel Converters.15th International Power Electronics and Motion Control Conference, EPE-PEMC 2012 ECCE Europe, Novi Sad, Serbia, pp: LSla-1.2-1-LS1a-1.2-8
    [58]Stefan P., Engel, Rik W. De Doncker. Control of the Modular Multi-Level Converter for Minimized Cell Capacitance. Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on, pp:1-10
    [59]赵昕,赵成勇,李广凯,等.采用载波移相技术的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,,2011,31(21):48-55
    [60]Makoto Hagiwara, Hirofumi Akagi. Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters[J]. IEEE Transactions On Power Electronics,2009,24(7):1737-1746
    [61]李笑倩,宋强,刘文华,等.采用载波移相调制的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,2012,32(9):49-55
    [62]屠卿瑞,徐政,郑翔等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,36(2),2010:547-552
    [63]Tu Qingrui, Xu Zheng, Xu Lie. Reduced Switching-Frequency Modulation and Circulating Current Suppression for modular Multilevel Converters[J]. IEEE Transactions On Power Delivery,2011,26(3):2009-2017
    [64]屠卿瑞,徐政,管敏渊,等.模块化多电平换流器环流抑制控制器的设计[J].电力系统自动化.2010,34(18):57-61
    [65]孔明,邱宇峰,贺之渊等.模块化多电平式柔性直流输电换流器的预充电控制策略[J].电网技术,2011,35(11):67-73
    [66]Lie Xu, Bjarne R. Andersen and Phillip Cartwright. VSC Transmission Operating Under Unbalanced AC Conditions-Analysis and Control Design [J]. IEEE Transactions on Power Delivery, vol.20, no.1, Jan.2005, pp: 427-434
    [67]薛英林,徐政.C-MMC直流故障穿越机理及改进拓扑方案[J].中国电机工程学报,2013(网络优先出版)
    [68]Minyuan Guan, Zheng Xu. Modeling and Control of a Modular Multilevel Converter-Based HVDC System Under Unbalanced Grid Conditions [J]. IEEE Transactions On Power Electronics,2012,27(12):4858-4867
    [69]陈海荣,徐政.向无源网络供电的VSC-HVDC系统的控制器设计[J].中国电机工程学报,2006,26(23):42-48
    [70]G. Bergna, M. Boyra and J. H. Vivas, "Evaluation and proposal of MMC-HVDC control strategies under transient and steady state conditions," in Proc.2011 Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on, pp:1-10
    [71]Qingrui Tu, Zheng Xu. Impact of Sampling Frequency on Harmonic Distortion for Modular Multilevel Converter[J]. IEEE Transactions On Power Delivery,2011,26(1):298-306
    [72]Lennart Harnefors, Antonios Antonopoulos, Staffan Norrga, Lennart Angquist and Hans-Peter Nee. Dynamic Analysis of Modular Multilevel Converters. IEEE Transactions on Industrial Electronics,60(7),2013, pp: 2526-2537
    [73]Maryam Saeedifard, Reza Iravani. Dynamic Performance of a Modular Multilevel Back-to-Back HVDC System[J]. IEEE Transactions On Power Delivery,2010,25(4):2903-2912
    [74]Antonios Antonopoulos, Lennart Angquist and Hans-Peter Nee, "On dynamics and voltage control of the Modular Multilevel Converter," in Proc. 2009 Power Electronics and Applications,2009. EPE'09.13th European Conference on, pp:1-10
    [75]王姗姗,周孝信,汤广福等.模块化多电平HVDC输电系统子模块电容值的选取和计算[J].电网技术,2011,35(1):27-32
    [76]刘栋,汤广福,贺之渊等.基于面积等效法的模块化多电平换流器损耗分析[J].电网技术,2012,36(4):197-204
    [77]Tomas Modeer, Hans-Peter Nee, et al. "Loss Comparison of Different Sub-Module Implementations for Modular Multilevel Converters in HVDC Applications," Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on, pp:1-7
    [78]刘钟淇,宋强,刘文华.采用MMC变流器的VSC-HVDC系统故障态研究[J].电力电子技术,2010,44(9):69-71
    [79]潘伟勇.模块化多电平直流输电系统控制和保护策略研究[M].杭州:浙江大学,2012
    [80]赵岩,胡学浩,汤广福,等.模块化多电平变流器HVDC输电系统控制策略[J].中国电机工程学报,2011,31(25):35-42
    [81]Marcelo A. Perez, Ricardo Lizana F and Jose Rodriguez, "Decoupled current control of modular multilevel converter for HVDC applications," in Proc. 2012 Industrial Electronics (ISIE),2012 IEEE International Symposium on, pp:1979-1984
    [82]张振华,江道灼.基于MMC拓扑的UPFC控制策略仿真研究[J].电力系统保护与控制,2012,40(3):73-77
    [83]王姗姗,周孝信,汤广福等.交流电网强度对模块化多电平换流器HVDC运行特性的影响[J].电网技术,2011,35(2):17-24
    [84]屠卿瑞,徐政,姚为正.模块化多电平换流器型直流输电电平数选择研究[J].电力系统保护与控制,2010,38(20):33-44
    [85]王姗姗,周孝信,汤广福,等.模块化多电平换流器HVDC直流双极短路子模块过电流分析[J].中国电机工程学报,2011,31(1):1-7
    [86]Tang Lianxiang, "Control and Protection of Multi-terminal DC Transmission Systems Based on Voltage-Source Converters"Ph.D.dissertation, McGill University, Montreal, QC, Canada,2003
    [87]Tang Lianxiang, Boon-Teck Ooi. Locating and Isolating DC Faults in Multi-Terminal DC Systems[J]. IEEE Transactions On Power Delivery,2007, 22(3):1877-1884
    [88]Candelaria Jared, Park Jae-Do. VSC-HVDC system protection:A review of current methods. Power Systems Conference and Exposition (PSCE),2011 IEEE/PES,pp:1-7
    [89]赵成勇,陈晓芳,曹春刚,等.模块化多电平换流器HVDC直流侧故障控制保护策略[J].电力系统自动化,2011,35(23):82-87
    [90]Udana N. Gnanarathna, Aniruddha M. Gole, and Rohitha P. Jayasinghe, "Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs," IEEE Transactions On Power Delivery., vol.26, no.1, pp:316-324, Jan.2011
    [91]管敏渊,徐政.模块化多电平换流器的快速电磁暂态仿真方法[J].电力自动化设备,2012,32(6):36-40
    [92]Jayanta Kumar Debnath, Wai-Keung Fung, Aniruddha M. Gole and Shaahin Filizadeh, "Simulation of Large-Scale Electrical Power Networks on Graphics Processing Units," IEEE Electrical Power and Energy Conference, EPEC 2011,pp:199-204
    [93]Simon P. Teeuwsen. Simplified dynamic model of a voltage-sourced converter with modular multilevel converter design. in Proc.2009 Power Systems Conference and Exposition,2009. PSCE'09. IEEE/PES, pp:1-6
    [94]Daniel C. Ludois and Giri Venkataramanan, "Simplified dynamics and control of Modular Multilevel Converter based on a terminal behavioral model," in Proc.2012 Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, pp:3520-3527
    [95]Steffen Rohner, Jens Weber and Steffen Bernet, "Continuous model of Modular Multilevel Converter with experimental verification," in Proc.2011 Energy Conversion Congress and Exposition (ECCE),2011 IEEE, pp: 4021-4028
    [96]N. Ahmed, L. Angquist, S. Norrga and H. Nee, "Validation of the continuous model of the modular multilevel converter with blocking/de-blocking capability," in Proc.2012 International Conference on AC and DC Power Transmission,2012 IET, to be publised
    [97]Jean Peralta, Hani Saad, Sebastien Dennetiere and Jean Mahseredjian, "Dynamic performance of averaged-value models for multi-terminal VSC-HVDC systems," in Proc.2012 Power and Energy Society General Meeting,2012 IEEE, pp:1-8
    [98]Jaime Peralta, Hani Saad, S. Dennetiere, Jean Mahseredjian and Samuel Nguefeu, "Detailed and Averaged Models for a 401-Level MMC-HVDC System," Power Delivery, IEEE Transactions on, vol.27, pp:1501-1508, 2012
    [99]赵成勇,刘涛,郭春义,等.基于实时数字仿真器的模块化多电平换流器的建模[J].电网技术,2011,35(11):85-90
    [100]Kai Strunz, Eric Carlson. Nested Fast and Simultaneous Solution for Time-Domain Simulation of Integrative Power-Electric and Electronic Systems[J]. IEEE Transactions On Power Delivery,2007,22(1):277-287
    [101]P. Le-Huy, P. Giroux, J.-C. Soumagne. Real-Time Simulation of Modular Multilevel Converters for Network Integration Studies. International Conference on Power Systems Transients, IPST2011, pp.1-6
    [102]S. Dennetiere, S. Nguefeu, H. Saad, J. Mahseredjian, "Modeling of Modular Multilevel Converters for the France-Spain link," International Conference on Power Systems Transients, IPST'13, Vancouver, Canada, July 2013
    [103]W. Z. El-Khatib, J. Holboell, T. W. Rasmussen, " High frequent modelling of a modular multilevel converter using passive components," International Conference on Power Systems Transients, IPST'13, Vancouver, Canada, July 2013
    [104]P. Le-Huy, S. Casoria, O. Saad, "Unified Modeling and Simulation Approach for Modular Multilevel Voltage Source Converters," International Conference on Power Systems Transients, IPST'13, Vancouver, Canada, July 2013
    [105]T. Maguire, B. Warkentin, Y. Chen, J. Hasler, " Efficient Techniques for Real Time Simulation of MMC Systems," International Conference on Power Systems Transients, IPST'13, Vancouver, Canada, July 2013
    [106]Mahmoud Matar, Dominic Paradis and Reza Iravani, " FPGA-based Implementation of Modular Multilevel Converter Model for Real-time Simulation of Electromagnetic Transients" International Conference on Power Systems Transients, IPST'13, Vancouver, Canada, July 2013
    [107]H. Saad, C. Dufour, J. Mahseredjian, S. Dennetiere, S. Nguefeu, " Real Time simulation of MMCs using the State-Space Nodal Approach," International Conference on Power Systems Transients, IPST'13, Vancouver, Canada, July 2013
    [108]K.H. Chan, J.A. Parle, N. Johnson, et al. Real-Time Implementation of a HVDC-VSC Model for Application in a Scaled-Down Wind Energy Conversion System (WECS)[C]. Seventh International Conference on AC-DC Power Transmission,28-30 Nov.2001:169-174
    [109]Liu Dong* Tang Guang-fu, He Zhi-yuan. A New Type Real-time Simulation Platform for Modular Multilevel Converter Based HVDC[C]. Power and Energy Engineering Conference, Shanghai,2012
    [110]高阳,刘栋,杨兵建.基于MMC的柔性直流输电阀基控制器及其动模试验[J].电力系统自动化,2013,30(15):53-58
    [111]Yuebin Zhou, Daozhuo Jiang and Pengfei Hu. A Prototype of Modular Multilevel Converters[J]. Power Electronics, IEEE Transactions on,2013 (early access)
    [112]Glinka M. Prototype of multiphase modular multilevel-converter with 2 MW power rating and 17-level-output-voltage[C]. Proceedings of IEEE Power Electronics Specialists Conference, Aachen, Germany,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700