用户名: 密码: 验证码:
模块化多电平换流器型直流输电系统控制保护策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模块化多电平换流器(Modular Multilevel Converter, MMC)是一种新型电压源换流器拓扑结构。相比于传统的2电平或3电平拓扑,基于MMC的高压直流输电(HighVoltage Direct Current, HVDC)系统因其开关损耗小、易于扩展、不依赖器件串联技术等优势,已成为电压源换流器型高压直流输电(Voltage Source Converter Based HVDC, VSC-HVDC)工程的建设趋势。
     MMC-HVDC系统控制保护策略的研究直接关系到MMC-HVDC输电系统的可靠性能及安全性能,具有明显的工程应用价值和现实意义。本文采用理论分析和仿真验证相结合的研究手段,重点研究了MMC-HVDC系统的稳态控制、故障控制、保护策略及其相关技术。
     (1)MMC-HVDC系统的数学模型
     为了研究MMC-HVDC系统的控制保护策略,建立了理想条件下和交流系统电网电压不平衡条件下MMC-HVDC系统的数学模型。基于MMC的运行工作原理,推导了理想条件下适用于暂态分析的MMC的开关函数数学模型和适用于稳态分析的低频动态数学模型。在此基础上,利用瞬时对称分量理论和同步旋转坐标关系,建立了交流系统电网电压不平衡时MMC的低频动态数学模型。并对这两种情况下MMC交、直流两侧的有功平衡关系进行了分析。数学模型的建立和功率平衡关系的分析是设计MMC-HVDC控制保护系统的基础。
     (2)MMC-HVDC系统控制保护体系框架
     控制保护系统是MMC-HVDC系统的核心之一,为了自上而下开展MMC-HVDC控制保护系统设计,构建了MMC-HVDC系统控制保护体系框架。首先阐述了MMC-HVDC控制保护系统的设计原则和主要功能,指出采用冗余配置和分层设计的必要性,其次在搭建了MMC-HVDC控制保护系统总体结构的基础上,提出了直流控制保护系统的设计和实现方案,建立了四层结构的MMC-HVDC控制保护体系框架,即直流系统控制层、极控制保护层、阀控层、子模块控制保护单元,并进一步明晰了各控制层的控制功能及各层相互关系,为直流控制保护系统的设计和研发奠定了基础。
     (3)(?)MMC-HVDC系统阀控层控制策略研究
     从MMC-HVDC系统的控制体系结构出发,重点研究了MMC-HVDC系统阀控层的MMC内部环流抑制、MMC调制及子模块电容电压平衡控制策略。为了抑制MMC内部环流,在MMC内部数学模型的基础上,采用二倍频负序旋转坐标变换和欧拉近似公式,设计了基于离散模型的环流抑制控制器(Circulating Current Suppressing Controller, CCSC),消除了桥臂电流的环流分量,减少了桥臂电流的畸变程度和电容电压的波动幅度。针对MMC的调制策略,重点介绍了最近电平逼近调制(Nearest Level Modulation,NLM)策略和载波移相调制(Carrier Phase Shifted Sinusoidal Pulse Width Modulation, CPS-SPWM)策略的原理及实现。为了均衡MMC各个子模块的电容电压,对传统排序法进行了改进,通过排序前引入不同的保持系数,改善了子模块频繁投切的状况,有效地降低了开关器件的开关频率和开关损耗。最后在PSCAD/EMTDC环境下仿真验证了所提出控制策略的有效性。
     (4)MMC-HVDC系统极控层控制策略研究
     极控层是MMC-HVDC系统的核心控制层,重点研究了理想情况下MMC-HVDC系统极控制层的控制策略。针对串级PI调节的双闭环控制系统参数调节困难、稳定工作区域小等缺点,将PWM整流控制领域中的无源控制理论应用于MMC-HVDC的控制器设计。基于MMC的无源性和欧拉-拉格朗日(Euler-Lagrange,EL)数学模型,通过阻尼注入方法,提出了由状态期望稳定平衡点、状态及状态误差设计无源控制规律的新方法,设计了内环电流无源控制器,实现了MMC-HVDC有功功率和无功功率的解耦控制。基于广泛应用于计算机控制中的离散控制,建立了旋转坐标系下MMC离散数学模型,设计了内环电流离散控制器。为了补偿离散控制的延时,设计了基于Smith预估器的内环电流离散控制器,改善了系统的暂态性能。最后对向无源网络供电的MMC-HVDC系统的整流侧和逆变侧控制器进行了设计,并在PSCAD/EMTDC环境下对上述提出的控制策略进行了验证,仿真结果表明,所提出的控制策略具有良好的动稳态控制性能,便于工程实际应用。
     (5)交流系统故障时MMC-HVDC控制保护策略研究
     MMC-HVDC交流系统故障时的控制保护策略是MMC-HVDC安全、经济运行的保障。将MMC-HVDC系统的控制策略研究从理想情况过渡到交流系统发生故障的运行工况下,研究了交流系统故障时MMC-HVDC系统的控制保护策略。首先分析了MMC-HVDC系统交流系统故障时的故障特征,以抑制负序电流为目标,设计了基于MMC欧拉-拉格朗日模型的正负序无源控制器,抑制了不对称故障引起的负序电流,仿真表明无源控制器具有良好的控制性能和限流能力。其次分析了MMC-HVDC系统两侧交流系统分别发生故障时对MMC直流电压控制的影响,并提出了相应的控制保护对策。仿真结果表明,设计的含直流电压控制环节的外环有功功率控制器和保护策略能够实现直流电压的控制和限流,提高了MMC-HVDC系统的持续运行能力及安全性。最后针对向无源网络供电的MMC-HVDC系统交流系统故障时的故障特性,提出了故障时的正负序无源控制策略及保护策略。最后在PSCAD/EMTDC环境下对所提出控制保护策略的有效性进行了仿真验证。
Modular Multilevel Converter (MMC) is a new type of voltage source converter(VSC) topology, which has great potential in high voltage and large power applications. Compared to the traditional two-level or three-level VSC topologies, the MMC-based HVDC system with low requirements for power electronic devices and good scalability can be easily extended to high voltage and power levels, and has better steady-state and transient performances. So MMC has become the trend of the VSC-HVDC projects for its advantages of less switching losses and independent technology of devices in series.
     The control and protection strategies of MMC-HVDC directly affect its practical operations. Thus to research on the control and protection strategies is of evident application value and practical significances. In this dissertation, the control and protection strategies of MMC-HVDC and its related technologies under steady state and ac system fault conditions are investigated, by means of theoretical analysis and the simulation validations. The main contents of this dissertation are as follows:
     (1) The mathematical model of MMC-HVDC system
     For the purpose of investigating the control and protection strategies of MMC-HVDC, the mathematical models of MMC-HVDC under ideal conditions and unbalanced ac voltage conditions are studied and developed respectively. Under the ideal conditions, the high frequency mathematical models and the low frequency dynamic models of the MMC in the three-phase static coordinates are developed. Based on these studies, the low frequency dynamic model of MMC in d-q coordinates is established. Using the concept of the instantaneous symmetrical components, the low frequency dynamic mathematical models of MMC under unbalanced ac voltage conditions are developed in d-q synchronous reference frame. The active power balancing relation between the ac and dc sides of MMC are analyzed under both ideal and unbalanced conditions. Simulation results show that the double-frequency fluctuation will appear in the dc voltage and the active power under ac system asymmetrical fault conditions. Analysis of the mathematical model and power balancing are the basis for the design of MMC-HVDC control and protection system.
     (2) Control and protection system framework of MMC-HVDC system
     In order to design of MMC-HVDC control and protection system from top to bottom, the control and protection system framework of MMC-HVDC system is built. Based on the topological structure of MMC-HVDC, the design principles and main functions of its control and protection system are illustrated. Since the control and protection system is of great importance, the necessity of its redundant configuration and multi-layer design are pointed out. Its overall structure is given and a four-layer framework is proposed:dc system control layer, polar control and protection layer, valve control layer and sub-module control and protection unit. The control functions of each control layer and relationship among these layers are further introduced. The research has guiding significance for the design of MMC-HVDC control and protection.
     (3) Research on the control strategies of valve control layer of MMC-HVDC system
     Three main important issues of valve control layer of MMC-HVDC are studied which includes modulation strategy, capacitor voltage balancing algorithm and circulating current suppression controller (CCSC). According to the inner mathematical model of MMC through a double fundamental frequency negative rotational frame to decompose the circulating currents to two DC components, a CCSC based on the inner discrete mathematical model of MMC is designed to eliminate the circulating currents among the three phase-units, and the designed CCSC can minimize the peak value and the distortion degree of the arm current significantly. The modulation principle of nearest level modulation (NLM) and carrier phase-shifted pulse width modulation (CPS-SPWM) are investigated. For the purpose of balancing the sub-module capacitor voltages, an improved capacitor voltage values based raking method was proposed to reduce the averaged switching frequency and the losses. Simulations in PSCAD/EMTDC validated its correctness and effectiveness.
     (4) Research on the control strategies of polar control layer of MMC-HVDC system
     The control strategies of polar control layer of MMC-HVDC under ideal conditions are studied. The control system of the MMC based on the traditional series PI regulator is analyzed, and the theory of the passive control is applied to design the controller of MMC-HVDC. Then based on the Euler-Lagrange (EL) mathematical model in synchronous d-q coordinates and its passivity, the passive control with expected state balance points, states and state errors is proposed by damp injection. The proposed control algorithm can realize the decoupled control of real and reactive power, and maintain very good static and dynamic performances. Using the theory of computer discrete control, a discrete inner-loop current controller based on Smith predictor is also designed and the decoupled control of active and reactive currents is realized rapidly. So the MMC controllers are greatly simplified and the control performances are improved. The passive controller of MMC-HVDC supplying passive networks are designed and validated under multi-conditions such as variable reactive power, voltage regulating and passive load disturbance, etc. Finally21-level MMC-HVDC model in PSCAD/EMTDC validated the effectiveness and correctness of all the proposed control methods.
     (5) Research on the control and protection strategies of MMC-HVDC system under ac system faults
     The control and protection strategies of MMC-HVDC are studied under ac system unbalanced conditions. First, the decoupled positive-negative sequence passive controller based on Euler-Lagrange mathematical model is proposed to suppress the negative sequence current. The controller with favorable control performance and current limitation can restrain the negative sequence current caused by unbalanced faults, and then the control performance of positive-negative sequence passive controller is compared to the traditional vector controller. Second, the influences of different ac side faults of MMC-HVDC on the dc voltage control of the MMC are analyzed. To restrain dc voltage fluctuation caused by ac system faults, an active power controller integrating dc voltage control is developed, leading to improve the sustained operation capability. Moreover the protection strategy under fault condition is proposed to ensure MMC-HVDC meet the requirements of its safety operation. The results show that the dc voltage is controlled and current limitation of MMC is realized. Finally, the control and protection strategies of MMC-HVDC supplying passive network under fault conditions are proposed. The simulation results in PSCAD/EMTDC show that the proposed controller and protection strategies have very good dynamic performances and are valuable to the practical system.
引文
[1]浙江大学发电教研组直流输电科研组.直流输电[M].北京:电力工业出版社,1982
    [2]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998
    [3]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004
    [4]刘振亚.特高压直流输电技术研究成果专辑(2008年)[M].北京:中国电力出版社,2009:3-6
    [5]徐政.交直流电力系统的动态行为分析[M].北京:机械工业出版社,2004
    [6]中国南方电网超高压输电公司.高压直流输电现场实用技术问答[M].北京:中国电力出版社,2008:3-5
    [7]ABB Group. It's Time to Connect-Technical Description of HVDC Light Technology, ABB Power Technology AB,2005, Internet: http://www.abb.com/hvdc
    [8]X. Wang. B.T. Ooi. High Voltage Direct Current Transmission System Based on Voltage Source Converters[C]. Power Electronics Specialists Conference, San Antonio, USA,1990:325-332
    [9]Boon-teck Ooi, Xiao Wang. Boost Type PWM HVDC Transmission System[J]. IEEE Transactions on Power Delivey,1991,6(4):1557-1563
    [10]徐政,陈海荣.电压源换流器型直流输电技术综述[J].高电压技术,2007,33(1):1-10
    [11]Flourentzou N, Agelidis V G, Demetriades G D. VSC-Based HVDC Power Transmission Systems:An Overview [J]. IEEE Transactions on Power Electronics, 2009,24(3):592-602
    [12]Rodriguez J, Laij S, Ppengf Z. Multilevel Inverters:a Survey of Topologies, Controls, and Applications[J]. IEEE Transactions on Industrial Electronics,2002, 49(4):724-738
    [13]B. Gemmell, J. Dorn, D. Retzmann, et al. Prospects of Multilevel VSC Technologies for Power Transmission[C]. IEEE PES Transmission and Distribution Conference and Exposition, Chicago, USA,2008:1-16
    [14]Nikolas Flourentzou, and Vassilios G. Agelidis. Multimodule HVDC System Using SHE-PWM With DC Capacitor Voltage Equalization[J]. IEEE Transactions on Power Delivery,2012,27(1):79-86
    [15]Marquardt R.Stromrichterschaltungen mit verteilten ergiess-peichern:German, DE10103031A1[P].2001-01-24
    [16]Lesnicar A, Marquardt R. An Innovative Modular Multilevel Converter Topology Suitable for a Wide Power Range[C]. IEEE Bologna Power Technology Conference Proceedings, Bologna,Italy,2003:1-6
    [17]Franquelo L G, Rodriguez J, Leon J I, et al. The Age of Multilevel Converters Arrives[J]. IEEE Industrial Electronics Magazine,2008,2(2):28-39
    [18]徐政,屠卿瑞,裘鹏.从2010国际大电网会议看直流输电技术的发展方向[J].高电压技术,2010,36(12):3070-3077
    [19]《中华人民共和国国民经济和社会发展第十二个五年规划纲要(2011-2015年)》,中华人民共和国国务院.http://www.gov.en/jrzg/
    [20]Simon P. Teeuwsen. Modeling the Trans Bay Cable Project as Voltage-Sourced Converter with Modular Multilevel Converter Design [C]. Power and Energy Society General Meeting,2011 IEEE, San Diego, CA,2011:1-8
    [21]刘高原,季子孟,林思海.柔性直流换流站保护系统的研究与分析[J].华东电力,2011,39(7):1141-1144
    [22]B.T. Ooi, X. Wang. Voltage Angle Lock Loop Control of the Boost Type PWM Converter for HVDC Application[J]. IEEE Transactions on Power Electronics, 1990,5(2):229-235
    [23]Alejandro Pizano-Martinez, Claudio R. Fuerte-Esquivel, H. Ambriz-Perez, et al. Modeling of VSC-Based HVDC Systemsfor a Newton-Raphson OPF Algorithm [J]. IEEE Transactions on Power Systems,2007,22(4):1794-1803
    [24]M. Yin, G.Y. Li, G.K. Li, et al. Modeling of VSC-HVDC and Its Active Power Control Scheme[C].2004 International Conference on Power System Technology, Singapore,2004:1351-1355
    [25]Lidong Zhang, Lennart Harnefors, and Hans-Peter Nee. Modeling and Control of VSC-HVDC Links Connected to Island Systems [J]. IEEE Transactions on Power Systems,2011,26(2):783-793
    [26]S.G.Johansson, G. Asplund, E. Jansson, et al. Power System Stability Benefits with VSC DC-Transmission Systems[C]. CIGRE Session 2004, Paris, France, 2004:1-8
    [27]H.F. Latorre, M. Ghandhari. Improvement of Voltage Stability by Using VSC-HVDC[C].2009 IEEE Transmission & Distribution Conference & Exposition:Asia and Pacific, Seoul, Korea,2009:1-4
    [28]陈海荣,徐政.向无源网络供电的VSC-HVDC系统的控制器设计[J].中国电机工程学报,2006,26(23):42-48
    [29]潘武略,徐政,张静.基于电压源换流器的高压直流输电系统混合调制方式[J].电力系统自动化,2008,32(5):54-58
    [30]阮思烨,孙元章,李国杰.用电压源型高压直流输电解决高压电网中工业系统引起的电能质量问题[J].电网技术,2007,31(19):13-17
    [31]Weixing Lu and Boon-Teck Ooi. Premium Quality Power Park Based on Multi-Terminal HVDC[J]. IEEE Transactions on Power Delivery,2005,20(2): 978-983
    [32]张文亮,汤涌,曾南超.多端高压直流输电技术及应用前景[J].电网技术,2010,34(09):1-6
    [33]Jef Beerten, Stijn Cole, and Ronnie Belmans. Generalized Steady-State VSC MTDC Model for Sequential AC/DC Power Flow Algorithms [J]. IEEE Transactions on Power Systems,2012,27(2):821-829
    [34]A.S. Pilottol, A. Bianco, E.H. Watanabe, et al. Back-to-back VSC Devices: A New Solution for the Interconnection of Asynchronous AC Systems[C]. CIGRE Session, Paris, France,2000:1-6
    [35]W.X. Lu, B.T. Ooi. Multiterminal LVDC System for Optimal Acquisition of Power in Wind-Farm Using Induction Generators[J]. IEEE Transactions on Power Electronics,2002,17(4):558-563
    [36]M.P. Bahrman, J.G. Johansson, B.A. Nilsson. Voltage Source Converter Transmission Technologies:the Right Fit for the Application[C]. IEEE Power Engineering Society General Meeting, Toronto, Canada,2003:1840-1847
    [37]J. Dorn, H. Huang, and D. Retzmann. A new Multilevel Voltage-Sourced Converter Topology for HVDC Applications[C]. CIGRE session, Paris, France, 2008:1-8
    [38]汤广福,贺之渊,滕乐天,等.电压源换流器高压直流输电技术最新研究进展[J].电网技术,2010,32(22):39-44,89
    [39]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010
    [40]G. Asplund, K. Eriksson, K. Svensson. DC Transmission Based on Voltage Source Converters[C]. CIGRE SC14 Colloquium, South Africa,1997:1-8
    [41]U. Axelsson, A. Holm, C. Liljegren. The Gotland HVDC Light Project-Experiences from Trial and Commercial Operation[C]. CIRED Conference 2000, Amsterdam, Netherlands,2000:1-5
    [42]U. Axelsson, A. Holm, C. Liljegren, et al. Gotland HVDC Light Transmission World's First Commercial Small Scale DC Transmission[C]. CIRED Conference 1999, Nice, France,1999:1-5
    [43]B.Jacobson, Y. Jiang hafner, P. Rey, et al. HVDC with Voltage Source Converter and Extruded Cables for up to±300kV and 1000MW[C]. CIGRE Session, Paris, France,2006:1-8
    [44]ABB Group. Skagerrak HVDC Interconnections[EB/OL]. (2011-02-11) [2011-03-01]. http://www.abb.com/industries/ap/db0003db004333/448A5ECA0 D6E15D3C12578310031E3A7.aspx
    [45]SIEMENS. Ready for the Future:Siemens Erects Power Converter Stations for HVDC link Between France and Spain as part of the Trans-European Network[EB/OL]. (2011-01-12)[2011-10-18]. http://www.siemens.com/press/e n/pressrelease/?press=/en/pressrelease/2011/power_transmission/ept201101032
    [46]汤广福,刘泽洪.2010年国际大电网会议系列报道——高压直流输电和电力电子技术[J].电力系统自动化,2011,35(5):1-4
    [47]A. Lesnicar, R. Marquardt. A New Modular Voltage Source Inverter Topology[C].10th European Conference on Power Electronics and Applications, Toulouse, France,2003:1-10
    [48]R. Marquardt, A. Lesnicar. New Concept for High Voltage-Modular Multilevel Converter[C]. PESC 2004 conference, Aachen, Germany,2004:1-5
    [49]M. Glinka. Prototype of Multiphase Modular Multilevel-Converter with 2 MW Power Rating and 17-Level-Output-Voltage[C].2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany,2004:2572-2576
    [50]J. Dorn, D. Ettrich, J Lang, et al. Benefits of Multilevel VSC Technologies for Power Transmission and System Enhancement[C]. International Exhibition and Seminar of Electrical Networks of Russia-LEP, Moscow, Russia,2007:1-23
    [51]G.J. Ding, G.F. Tang, Z.Y. He, et al. New Technologies of Voltage Source Converter(VSC) for HVDC Transmission System Based on VSC[C].2008 IEEE Power and Energy Society General Meeting, Pittsburgh, USA,2008:1-8
    [52]B. Gemmell, J. Dorn, D. Retzmann, et al. Prospects of Multilevel VSC Technologies for Power Transmission[C]. IEEE PES Transmission and Distribution Conference and Exposition, Chicago, USA,2008:1-16
    [53]C.C. Davidson, D.R. Trainer. Innovative Concepts for Hybrid Multi-Level Converters for HVDC Power Transmission[C].9th IET International Conference on AC and DC Power Transmission, London, UK,2010:1-5
    [54]P. Labra Francos, S. Sanz Verdugo, H. Fernandez Alvarez, et al. INELFE Europe's first integrated onshore HVDC interconnection[C]. Power and Energy Society General Meeting, San Diego, CA:IEEE,2012:1-8
    [55]徐政.柔性直流输电系统[M].北京:机械工业出版社,2012
    [56]Marquardt R. Modular Multilevel Converter:An Universal Concept for HVDC Networks and Extended DC-bus Applications[C]. Power Electronics Conference(IPEC) 2010 International. Sapporo, Japan:IEEE Industry Applications Society and IEEE PES,2010:502-507
    [57]Modeer T, Hans-Peter Nee, Norrga S. Loss Comparison of Different Sub-module Implementations for Modular Multilevel Converters in HVDC Applications[C]. Proceedings of the 2011-14th European Conference on Power Electronics and Applications(EPE 2011). Birmingham, United Kingdom:IEEE IAS, IEEE IES and IEEE PES,2011:1-7
    [58]许建中,赵成勇,刘文静.超大规模MMC电磁暂态仿真提速模型[J].中国电机工程学报,2013,33(10):114-120
    [59]于德政.基于模块化多电平换流器结构的HVDC Light系统的研究[D].合肥:合肥工业大学,2009
    [60]M. Hagiwara, H. Akagi. PWM Control and Experiment of Modular Multilevel Converters[C]. Proceedings of the 39th IEEE PESC. Rhodes, Greece:IEEE, 2008:154-161
    [61]A. Antonopoulos, L. Angquist, H.P. Nee. On Dynamics and Voltage Control of the Modular Multilevel Converter[C].13th European Conference on Power Electronics and Applications, Barcelona, Spain,2009:1-10
    [62]刘隽,贺之渊,何维国等.基于模块化多电平变流器的柔性直流输电技术[J].电力与能源,2011,1(1):33-38
    [63]L. Yang, C.Y. Zhao, X.D. Yang. Loss Calculation Method of Modular Multilevel HVDC Converters[C]. IEEE Electrical Power and Energy Conference, Winnipeg,Canada,2011:97-101
    [64]《国家电网报》杂志.国家电网公司评审多端柔性直流可研报告[EB/OL]. (2012-07-05)[2012-07-20]. http://www.sgcc.com.cn/ztzl/newzndw/z ndwzx/gnzndwzx/2012/07/275919
    [65]中国电力网.国内首个柔性多端直流输电工程落地汕头[EB/OL]. (2012-05-28)[2012-11-27]. http://www.chinapower.com.cn/newsarti cle/1159/newl 159528
    [66]Gnanarathna U.N, Chaudhary S.K, Gole A.M, etal. Modular Multilevel Converter Based HVDC System for Grid Connection of Offshore Wind Power Plant[C]. Proceedings of the 9th International Conference on AC and DC Power Transmission, London, UK:IET,2010:1-5
    [67]赵静,赵成勇,孙一莹,等.模块化多电平直流输电联网风电场时低电压穿越技术[J].电网技术,2013,37(3):726-732
    [68]连霄壤.模块化多电平STATCOM控制策略研究[D].杭州:浙江大学,2012.
    [69]N.M. Macleod, C.D. Barker, R.S. Whitehouse, et al. VSC HVDC Converter Design with DC Fault Blocking Capability for Overhead Line Applications[R]. Palo Alto:EPRI HVDC/FACTS Conference,2011
    [70]R. Marquardt. Modular Multilevel Converter Topologies with DC-Short Circuit Current Limitation[C].8th International Conference on Power Electronics-ECCE Asia, Shilla Jeju, Korea,2011:1425-1431
    [71]Friedrich K. Modern HVDC PLUS Application of VSC in Modular Multilevel Converter Topology[C].2010 IEEE International Symposium on Industrial Electronics. Bari, Italy,2010:3807-3810
    [72]M. Hagiwara, R. Maeda, and H. Akagi. Control and Analysis of the Modular Multilevel Cascade Converter Based on Double-star Choppersubmodules [J]. IEEE Transactions on Power Electronics,2011,26(6):1649-1658
    [73]M. Hagiwara, H. Akagi. Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters[J]. IEEE Transactions on Power Electronics, 2009,24(7):1737-1746
    [74]Gnanarathna U N, Gole A M, Jayasinghe R P. Efficient Modeling of Modular Multilevel HVDC Converters on Electromagnetic Transient Simulation Programs[J]. IEEE Transactions on Power Delivery,2011,26(1):316-324
    [75]Soto-Sanchez D., Green T. C. Control of a Modular Multilevel Converter-based HVDC Transmission System[C]. Proceedings of 14th European Power Electronics Applications Conference,2011:1-10
    [76]Solas E, Abad G, Barrema J A, et al. Modulation of Modular Multilevel Converter for HVDC Application[C]. Proceedings of 14th Power Electronics and Motion Control Conference, Ohrid, Macedonia,2010:T2-84-T2-89
    [77]Munch P, Gorges D, Izak M, et al. Integrated Current Control, Energy Control and Energy Balancing of Modular Multilevel Converter[C]. Proceedings of 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, Arizona, USA:2010:150-155
    [78]Zhang Lidong, Lennart Harnefors, Hans-Peter Nee. Modeling and Control of VSC-HVDC Links Connected to Island System[J]. IEEE Transactions on Power Systems,2011,26(2):783-793
    [79]Jianzhong X, Chengyong Z, Wenjing L, et al. Accelerated Model of Modular Multilevel Converters in PSCAD/EMTDC[J]. IEEE Transactions on Power Delivery,2013,28(1):129-136
    [80]Tu Qingrui, Xu Zheng. Impact of Sampling Frequency on Harmonic Distortion for Modular Multilevel Converter[J]. IEEE Transactions on Power Delivery, 2011,26(1):298-306
    [81]Rohner S, Bernet S, Hiller M, et al. Electrical Safe Analysis and Simulation of a 6KV,6MVA Modular Multilevel Converter[C]. Proceedings of 35th Annual Conference on IEEE Industrial Electronics, Porto, Portugal:2009:1-5
    [82]Rohner S, Bernet S, Hiller M, et al. Pulse Width Modulation Scheme for the Modular Multilevel Converter[C]. Proceedings of 13th European Conference on Power Electronics Applications, Barcelona, Germany,2009:1-10
    [83]Konstantinou G S, Agelidis V G. Performance Evaluation of Half-bridge Cascaded Multilevel Converters Operated with Multi-carrier Sinusoidal PWM Techniques[C]. Proceedings of 4th IEEE Conference on Industrial Electronics and Applications, Xi'an, China,2009:3399-3404
    [84]K. Ilves, A. Antonopoulos, S. Norrga, et al. A New Modulation Method for the Modular Multilevel Converter Allowing Fundamental Switching Frequency[J]. IEEE Transactions on Power Electronics,2012,27(8):3482-3494
    [85]Kouro S, Bernal R, Miranda H, et al. High-performance Torque and Flux Control for Multilevel Inverter feed Induction Motors[J]. IEEE Transactions on Power Electronics,2007,22(6):2116-2123
    [86]Rohner S, Bernet S, Hiller M, et al. Modulatiom, Losses, and Semiconductor Requirements of Modular Multilevel Converter[J]. IEEE Transactions on Industrial Electronics,2010,57(8):2633-2642
    [87]E. Solas, G. Abad, J. A. Barrena, et al. Modulation of Modular Multilevel Converter for HVDC Application [C].14th International Power Electronics and Motion Control Conference, EPE-PEMC 2010:84-89
    [88]Perez M, Rodriguez J, Jorge Pontt, et al. Power Distribution in Hybrid Multi-cell Converter with Nearest Level Modulation[C]. IEEE International Symposium on Industrial Electronics, Vigo,2007:736-741
    [89]管敏渊,徐政,潘伟勇,等.最近电平逼近调制的基波谐波特性解析计算[J].高电压技术,2010,36(5):1327-1332
    [90]Munch P, Liu S, and Dommaschk M. Modeling and Current Control of Modular Multilevel Converter Considering Actuator and Sensor Delays[C]. Proceedings of 35th Annual Conference on IEEE Industrial Electronics Society, Porto, Portugal:IEEE,2009:1633-1638
    [91]Munch P, Liu S, and Ebner G. Multivariable Current Control of Modular Multilevel Converters with Disturbance Rejection and Harmonics Compensation[C].2010 IEEE International Conference on control Applications, Yokohama, Japan:IEEE 2010:196-201
    [92]丁冠军,汤广福,丁明,等.新型多电平电压源换流器模块的拓扑机制与调制策略[J].中国电机工程学报,2009,29(36):1-6
    [93]Das A, Nadeni H, Norum L. A Method for Charging and Discharging Capacitors in Modular Multilevel Converter[C].37th Annual Conference on IEEE Industrial Electronics Society, Melbourne, Australia:1058-1062
    [94]孔明,邱宇峰,贺之渊,等.模块化多电平式柔性直流输电换流器的预充电控制策略[J].电网技术,2011,35(11):67-73
    [95]周月宾,江道灼,郭捷,等.模块化多电平换流器型直流输电系统的启停控制[J].电网技术,2012,36(3):204-209
    [96]屠卿瑞,徐政,郑翔,等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010,36(2):547-552
    [97]Zixin Li, Ping Wang, Zunfang Chu, et al. An Inner Current Suppressing Method for Modular Multilevel Converters [J]. IEEE Transactions on Power Electronics, 2013,28(11):4873-4879
    [98]屠卿瑞,徐政,管敏渊,等.模块化多电平换流器环流抑制控制器设计[J].电力系统自动化,2010,34(18):57-61
    [99]Tu Qingrui, Xu zheng, and Zhang Jing. Circulating Current Suppressing Controller in Modular Multilevel Converter[C].36th Annual Conference on IEEE Industrial Electronics Society, Phoenix, USA,2010:3198-3202
    [100]Tu Qingrui, Xu zheng, and Xu L. Reduced Switching-fequency Modulation and Circulating Current Suppression for Modular Multilevel Converters[J]. IEEE Transactions on Power Delivery,2011,26(3):2009-2017
    [101]杨晓峰,郑琼林.基于MMC环流模型的通用环流抑制策略[J].中国电机工程学报,2012,32(18):59-65
    [102]B.Gemmell, J. Dorn, D. Retsmann, and D.Soerangr. Prospects of Multilevel VSC Technologies for Power Transmission[C]. IEEE PES Transactions. Distribution Conference, Bogota, Colombia, IEEE 2008:1-16
    [103]管敏渊,徐政.MMC型VSC-HVDC系统电容电压的优化平衡控制[J].中国电机工程学报,2011,31(12):9-14
    [104]屠卿瑞,徐政,郑翔,等.一种优化的模块化多电平换流器电压均衡控制方法[J].电工技术学报,2011,26(5):15-20
    [105]许建中,赵成勇.模块化多电平换流器电容电压优化平衡控制算法[J].电网 技术,2012,36(6):256-261
    [106]赵昕,赵成勇,李广凯,等.采用载波移相技术的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,2011,31(21):48-55
    [107]Antonopoulos A, Angquist L, Nee H. P. On Dynamics and Voltage Control of the Modular Multilevel Converter[C]. European Power Electronics and Applications Conference, Barcelona, Spain,2009:1-10
    [108]Angquist L, Antonopoulos A, Siemaszko D, et al. Inner Control of Modular Multilevel Converters:An Approach Using Open-loop Estimation of Stored Energy[C].2010 International Power Electronics Conference, Sapporo, Japan, 2010:1579-1585
    [109]Siemaszko D, Antonopoulos A, lives K. Evaluation of Control and Modulation Methods for Modular Multilevel Converters[C].2010 International Power Electronics Conference, Sapporo, Japan,2010:746-753
    [110]Wang K, Li Y D, and Zheng Z D. Voltage Balancing Control and Experiments of a Noval Modular Multilevel Converter[C].2010 IEEE Energy Conversion Congress and Exposition, Atlanta, USA:IEEE 2010:3691-3696
    [111]Saeedifard M, Iravani R. Dynamic Performance of a Modular Multilevel Back-to-back HVDC System [J]. IEEE Transactions on Power Delivery,2010, 25(4):2903-2912
    [112]Li K, Zhao C Y. New Technologies of Modular Multilevel Converter for VSC-HVDC Application[C]. Asia-Pacific Power and Energy Engineering Conference, Chengdu, China,2010:1-4
    [113]Teeuwsen S. Simplified Dynamic Model of a Voltage-sourced Converter with Modular Multilevel Converter Design[C]. IEEE PES Power System Conference and Exposition, Seattle, USA:IEEE,2009:1-6
    [114]胡静,赵成勇,赵国亮等.换流站通用集成控制保护平台体系结构[J].中国电机工程学报,2012,32(22):133-140
    [115]Qiang Song, Wenhua Liu, Xiaoqian Li, et al. A Steady-State Analysis Method for a Modular Multilevel Converter [J]. IEEE Transactions On Power Electronics,2013,28(8):3702-3713
    [116]王姗珊,周孝信,汤广福,等.交流电网强度对模块化多电平换流器HVDC运行特性的影响[J].电网技术,2011,35(2):17-24
    [117]刘钟淇,宋强,刘文华.采用MMC变流器的VSC-HVDC系统故障态研究[J].电力电子技术,2010,44(9):69-71
    [118]邵文君,宋强,刘文华.轻型直流输电系统的不对称故障控制策略[J].电网技术,2009,33(12):42-48
    [119]马雅青,王卫安,张杰等.MMC-HVDC典型扰动暂态特性响应特性分析[J].电力系统及其自动化学报,2011,23(5):110-118
    [120]管敏渊,徐政.模块化多电平换流器子模块故障特性和冗余保护[J].电力系统自动化,2011,35(16):94-98
    [121]Gun Tae Son, Hee-Jin Lee, Tae Sik Nam, et al. Design and Control of a Modular Multilevel HVDC Converter with Redundant Power Modules for Noninterruptible Energy Transfer[J]. IEEE Transactions on Power Delivery, 2012,27(3):1611-1619
    [122]赵成勇,陈晓芳,曹春刚等.模块化多电平换流器HVDC直流侧故障控制保护策略[J].电力系统自动化,2011,35(23):82-87
    [123]Xiaoqian Li, Qiang Song, Wenhua Liu, et al. Protection of Nonpermanent Faults on DC Overhead Lines in MMC-based HVDC Systems[J]. IEEE Transactions on Power Delivery,2013,28(1):483-490
    [124]Guan Minyuan, Xu Zheng, Li Huijie. Analysis of DC Voltage Ripples in Modular Multilevel Converters[C]. International Conference on Power System Technology, Hangzhou,2010:1-6
    [125]Zhou Yuebin, Jiang Daozhuo, Guo Jie, et al. Control of Modular Multilevel Converter Based on Stationary Frame Under Unbalanced AC System[C]. Proceedings of in 3th International Conference Digital Manufacturing and Automation(ICDMA), Jul.,2012:293-296
    [126]Tu Qingrui, Xu Zheng, Yang Chang, et al. Suppressing DC Voltage Ripples of MMC-HVDC Under Unbalanced Grid Conditions[J]. IEEE Transactions on Power Delivery,2012,27(3):1332-1338
    [127]Guan Minyuan and Xu Zheng. Modeling and Control of a Modular Multilevel Converter-based HVDC System Under Unbalanced Grid Conditions[J]. IEEE Transactions on Power Electronics,2012,27(12):4858-4867
    [128]王姗姗,周孝信,汤广福,等.模块化多电平换流器HVDC直流双极短路子模块过流分析[J].中国电机工程学报,2010,31(1):1-7
    [129]Adam G P, Anaya-lara O, Burt G, et al. Comparison Between Two VSC-HVDC Transmission Technologies:Modular and Neutral Point Clamped Multilevel Converter[C].35th Annual Conference of the IEEE Industrial Electronics Society, Porto, Porthgal:IEEE,2009:1-4
    [130]Adam G P, Anaya-lara O, Burt G. Multi-terminal DC Transmission System Based on Modular Multilevel Converter[C]. Proceedings of the 44th International Univing Conference, Glasneer, Scotland UK,2009:1-5
    [131]孙志媛.基于EMTDC的多馈入直流输电系统换相失败的研究[D].广西:广西大学,2007
    [132]Schmitt D, Wang Y, Weyh T, et al. DC-side Fault Curret Management in Extended Multiterminal-HVDC-Grids[C].9th International Multi-Conference on Systems, Signals and Devices, Chemnitz, Germany,2012:1-5
    [133]郭捷,江道灼,周月宾,等.交直流侧电流分别可控的模块化多电平换流器控制方法[J].电力系统自动化,2011,35(7):42-47
    [134]王卫安,桂卫华,马雅青等.向无源网络供电的模块化多电平换流器型高压直流输电系统控制器设计[J].高电压技术,2012,38(3):751-755,760
    [135]汤广福,贺之渊,徐政,等.电压源型换流器直流输电基础理论研究[R].北京:中国电力科学研究院,2008
    [136]何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社,2002
    [137]孙浩.模块组合多电平变换器(MMC)的控制策略研究[D].北京:北京交通大学,2010
    [138]Gerardus C, Paap. Symmetrical Components in the Time Domain and Their Application to Power Network Calculatlon[J]. IEEE Transactions on Power systems,2000,15(2):522-528
    [139]刘高原,季子孟,林思海.柔性直流换流站保护系统的研究与分析[J].华东电力,2011,39(7):1141-1145
    [140]梁海峰,李庚银,王松,等.VSC-HVDC系统控制体系框架[J].电工技术学报,2009,24(5):141-147
    [141]石岩,韩伟等.特高压直流输电工程控制保护系统的初步方案[J].电网技术,2007,31(2):11-15
    [142]韩业辉,陈建业,关胜利.基于DSP、工控机和网络的SVC分布式控制系统[J].清华大学学报(自然科学版),2003(09):1206-1209
    [143]田杰.高压直流控制保护系统的设计与实现[J].电力自动化设备,2005,25(9):10-14
    [144]王徭.特高压直流输电控制与保护技术的研究[J].电力系统保护与控制,2009,37(15):53-58
    [145]滕松,宋新立,李广凯,等.模块化多电平换流器型高压直流输电综述[J].电网与清洁能源,2012,28(8):43-51
    [146]王久和,黄立培,杨秀媛.三相电压型PWM整流器的无源性功率控制[J].中国电机工程学报,2008,28(21):20-25
    [147]王久和.无源控制理论及其应用[M].北京:电子工业出版社,2010
    [148]王久和.电压型PWM整流器的非线性控制[M].北京:机械工业出版社,2008
    [149]Qin Jiangchao, Maryam Saeedifard. Predictive Control of a Modular Multilevel Converter for a Back-to-back HVDC System[J]. IEEE Transactions on Power Delivery,2012,27(3):1538-1547
    [150]魏晓光,汤广福.基于电压源换流器的高压直流输电系统离散化建模与仿真研究[J].电网技术,2006,30(20):34-39
    [151]刘金琨.先进PTD控制MATLAB仿真[M].第2版.北京:电子工业出版社,2005
    [152]杨浩,张楠,叶明佳.向无源网络供电的VSC-HVDC离散模型及其控制策略[J].电力系统保护与控制,2012,40(4):37-42
    [153]潘伟勇.模块化多电平直流输电控制和保护策略研究[D].杭州:浙江大学,2007
    [154]Hsieh G C, James C Hung. Phase-locked Loop Techniques Survery[J]. IEEE Transactions on Industrial Electronics,1996,43(6):609-615
    [155]张静,徐政,潘武略.VSC-HVDC系统新型广义直流电压控制策略[J].电力系统自动化,2008,32(21):46-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700