用户名: 密码: 验证码:
模块化多电平VSC-HVDC换流器的优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电压源型换流器高压直流输电(Voltage Sourced Converter based HVDC VSC-HVDC)技术是一种新型的直流输电技术,已有的工程运行经验表明,其非常适合孤岛供电、新能源并网和城市配电网增容等领域应用。近年来围绕VSC-HVDC技术的研究取得了一系列的突破,其中最引人注目的是模块化多电平换流器(Modular Multi-level Converter, MMC)在直流输电工程上的成功应用。
     MMC自身储能单元能量的有效控制是保证系统暂稳态运行性能的基础和关键。然而,随着输送容量和直流电压等级的提升,MMC所需储能单元急剧增加,对控制系统提出了更高的要求。再者,拓扑结构和工作机理的不同使得MMC在某些工况下的暂态特性相比于传统两电平、三电平换流器有较大区别。本文以MMC-HVDC换流器能量平衡控制机理为出发点,对换流器在对称以及桥臂子模块数和电网电压两种非对称工况下的暂稳态特性及其优化控制策略进行了研究。
     1、研究了计及各桥臂子模块数量差异的MMC-HVDC数学模型。建立了完整的MMC开关周期平均模型,推导了桥臂交流小信号模型;考虑子模块电容电压之和与直流电压的差异,建立了系统对称和两种典型非对称工况下MMC的低频等效模型。
     2、研究了MMC-HVDC换流器能量平衡控制策略及功率运行区间的优化方法。分析了桥臂分段电容电压平衡机理,提出了两种段间电容电压平衡控制策略;分析了MMC开关频率的影响因素,提出了以满足周期内最值控制要求为目标的段内电容电压优化控制策略,有效降低了器件的等效开关频率;分析了上下桥臂、相间以及总的子模块能量平衡控制机理,讨论了不同站级有功类控制方式下总的子模块电容电压控制的实现方式;提出了基于三倍频调制电压注入和子模块基值调整的MMC-HVDC换流器功率运行区间优化方法。
     3、研究了基于分桥臂电流控制的子模块故障非对称容错控制策略。分析了故障子模块旁路退出对MMC内部及输出特性特性的影响,讨论了保证系统持续运行的子模块故障数量上限;提出了改进的分桥臂电流控制策略,结合两种子模块电容电压控制目标,改善了MMC的子模块故障非对称容错控制效果。
     4、研究了基于子模块电容电压和环流预估的非对称电网故障穿越优化控制策略。基于瞬时功率平衡理论,提出了子模块电容电压在线预估实现方案;讨论了非对称电网电压下各序分量对MMC内部及直流侧变量的影响;明确了暂态期间子模块电容电压和桥臂环流等内部变量的预期控制目标;提出了基于子模块电容电压预估调制和桥臂环流预估控制的复合控制策略;结合具体的站级控制策略,仿真分析了复合控制策略对改善系统暂态运行性能的控制效果。
     5、开展了401电平MMC-HVDC动模系统相关控制策略的试验研究。介绍了401电平物理动模、混合实时仿真平台的系统架构和主要功能,基于两种试验系统分别进行了分段电容电压平衡和非对称电网故障穿越优化控制动模试验,试验结果验证了相关理论分析和所提出的控制策略的正确性。
Voltage Sourced Converter based HVDC (VSC-HVDC) systems is a new kind of HVDC technology. It has been indicated that VSC-HVDC is very suitable for island power supply, renewable energy source integration and urban distribution network capacity increase etc. There has been a series of striking breakthroughs in VSC-HVDC technology in recent years, one of which is the successful application of Modular Multi-level Converter (MMC) in an HVDC project.
     The effective control of the energy stored in MMCs is a basic and key requirement to ensure the system's well-performance both under the steady and transient states. However, with the enhancement of the power transmission capacity and dc voltage level, the sub-module number in MMC increases dramaticly, which places greater demands on the control system. Furthermore, because of the topology and operating mechanism, the transient characteristics in some conditions are of great differences compared to the traditional two-level or three-level converter. Based on the study of the energy-balance mechanism of MMC, this dissertation mainly focuses on the transient-performance analysis and the optimization control under balanced and the two typical unbalanced conditions.
     1. Taking into account the variation of sub-module numbers, the mathematical models of MMC-HVDC are studied. Based on the cycle by cycle switch average model of MMC, the ac small signal model of MMC is presented. Considering the difference between the sum of capacitor voltages in each arm and dc voltage, the low-frequency mathematical models of MMC under the unbalanced sub-module and grid voltage conditions are set up.
     2. The energy-balance control strategy and operation region optimization method are studied. According to the mechanism of arm-segment control scheme, two voltage-balancing control strategy among segments are proposed. The factors influencing the switching frequency of IGBTs in MMC are analyzed, and an optimization capacitor voltage balancing control strategy within each segment is proposed to reduce the switching frequency. The energy balance mechanism among arms and the total energy control for each MMC in a two-end system is introduced. Combing with the total energy control schemes of MMC in different stations, the power operation region optimization method, based on the injection of triple modulation voltage and the adjustment of capacitor voltage, is discussed.
     3. The asymmetric sub-module fault-tolerant control of MMC based on the arm current-based control scheme is studied. The impact of sub-modules asymmetric faults on the internal and output characteristics of MMC is analyzed and the ceiling of the failure sub-module is determined. An improved arm current-based control strategy is proposed. Based on the two voltage control targets, the performance during and after bypassing the failure sub-module is improved obviously.
     4. The unbalanced grid fault ride-through optimization control strategy bases on the sub-module capacitor voltage and the circulating current estimation are studied. An online sub-module capacitor voltage estimation scheme is proposed. The effect of each sequence component to the internal and the dc-side characteristics of MMC is discussed. The control targets of sub-module capacitor voltage and circulating current under unbalanced condition is determined. Then, a compound control strategy include the sub-module capacitor voltage predicted based nearest level modulation and circulating current predicted based direct circulating current control is proposed. Combined with specific station-level transient control strategy, the validity of the compound control to improve the transient performance is analyzed.
     5. The proposed control strategies are tested based on the401-level MMC-HVDC dynamic simulation experiment system. The system architectures and main features of the401-level physical dynamic simulation platform and digital-analog hybrid real-time simulation platform are introduced respectively. The algorithm for arm-segment capacitor voltage balancing and the optimization control strategy for unbalanced grid conditions are tested and verified respectively.
引文
[1]《国家中长期科学和技术发展规划纲要(2006-2020年)》,中华人民共和国国务院.http://www.gov.cn/jrzg/2006-02/09/content_183787.htm [M].
    [2]中国可再生能源学会风能专业委员会.2012年中国风电装机容量统计[J].中国风能,2013.
    [3]《太阳能发电发展“十二五”规划》,中华人民共和国国家能源局.http://zfxxgk.nea.gov.cn/auto87/201209/t20120912_1510.htm [M].
    [4]《国家能源科技“十二五”规划(2012-2015年)》,中华人民共和国国家能源局.http://www.zfxxgk.nea.gov.cn/auto87/201209/t20120912_1510.htm [M].
    [5]《可再生能源中长期发展规划》,中华人民共和国国家发展与改革委员会.http://www.sdpc.gov.cn/zcfb/zcfbtz/2007tongzhi/W020070904607346044110.ppd [M].
    [6]Ooi B T, Wang Xiao. Boost type PWM HVDC transmission system. IEEE Transactions on Power Delivery,1991,6(1):1557-1563.
    [7]CIGRE B4-37 Working Group. DC Transmission Using Voltage Sourced Converters [R]. Paris, France:International Council on Large Electric Systems,2004.
    [8]ABB AB Grid Systems-HVDC. It's time to connect-Technical description of HVDC Light technology[R]. Ludvika, Sweden:ABB AB Grid Systems-HVDC,2007.
    [9]Dietmar Retzmann. HVDC PLUS-innovative multilevel technology [EB/OL]. Ger-many: Siemens,2009[1995-05-17]. http://www.energy.siemens.com/fi/en/power transmission/HVDC/HVDC-plus/.
    [10]Alstom Grid. HVDC-VSC transmission technology of the future[J]. Alstom Grid,2011(1): 13-17.
    [11]汤广福,阮前途,杨玉林,等.电压源型换流器直流输电前期技术研究报告[R].北京:中国电力科学研究院,2008.
    [12]汤广福,贺之渊,徐政,等.电压源型换流器直流输电基础理论研究[R].北京:中国电力科学研究院,2008.
    [13]汤广福.基于电压源型换流器的高压直流输电技术[M].北京:中国电力出版社,2010.
    [14]Horle N, Erisson K, Maeland A. et al. Electrical supply for offshore installations made possible by use of VSC technology[C]. Cigre 2002 conference, Paris, August 2002.
    [15]Eriksson K, Trollerz O. Small scale transmission to AC networks by HVDC Light[C].12th Cepsi conference, Pattaya, Thailand, November 1998.
    [16]Lu Weixing, Ooi B T. Optimal acquisition and aggregation of offshore wind power by multi-terminal Voltage-Source HVDC[J]. IEEE Trans, on Power Delivery,2003,18(1): 201-206.
    [17]Kirby N M, Xu Lie, Luckett M, et al. HVDC transmission for large offshore wind farms[J]. Power Engineer Journal, July 2002:135-141.
    [18]Andersen B R. Wind farms interconnections[C].2006 International Conference on Power System Technology, Chongqing, China,2006.
    [19]Cigre B4-39 Working Group. Integration of Large Scale Wind Power Using HVDC and Power Electronics[R]. Cigre,2007.
    [20]Asplund G. Sustainable energy systems with HVDC transmission[C]. Proceedings of the Power Engineering Society General Meeting,2004,2:2299-2303.
    [21]Meier S, Norrga S, Nee H P. New topology for more efficient AC/DC converters for future offshore wind farm[R]. Nordic Workshop on Power and Industrial Electronics (NORPIE), Trondheim, Norway, June 2004.
    [22]Weimeis L. New Markets needs new technology[C]. Powercon 2000 Conference, Perth, Western Australia, December,2000.
    [23]Asplund G. HVDC using voltage source converters-A new way to build highly controllable and compact HVDC substation[C]. Cigre SC 23 Symposium, Paris, France, Aug 27-Sept 2,2000.
    [24]Stendius L, Eriksson K. HVDC Light-an excellent tool for city center infeed[C]. PowerGen Conference, Singapore, September 1999.
    [25]Jiang H, Ekstrom A. Multi-terminal HVDC systems in urban areas of large cities [J]. IEEE Trans, on Power Delivery,1998,13(4):1278-1284.
    [26]Weimers L. HVDC Light-a new technology for a better environment[C]. IEEE Winter meeting in Tampa, Florida, USA,1998.
    [27]Bahrman M, Edris A A, Haley R, Asynchronous back-to-back HVDC link with voltage source converters[C]. Minnesota power systems conference, USA, November 1999.
    [28]Weimers L. Implementing the latest technology in interconnects[C]. Interconnect 2000 Conference, Sydney, Australia, March 2000.
    [29]Jiang-Hafner Y, Duchen H, Linden K, et al. Improvement of sub-synchronous tensional damping using VSC-HVDC[C]. PowerCon2002, Kunming, China,2002:998-1003.
    [30]汤广福,贺之渊,庞辉.柔性直流输电工程技术研究、应用及发展[J].电力系统自动化,2013,37(15):3-14.
    [31]徐政,等.柔性直流输电系统[M].北京:机械工业出版社,2012.
    [32]Lesnicar A, Hildinger J, Marquardt R. Modulares stromrichterkonzept fur netzkupplungsanwendungen bei hohen spannungen[C]. Proc. ETG-Fachbericht. Bad Nauheim, Germany,2002:155-161.
    [33]Marquardt R, Lesnicar A. A new modular voltage source inverter topology. EPE 03, Toulouse, France,2003.
    [34]Lesnicar A, Marquardt R. An innovative modular multilevel converter topology suitable for a wide power range[C]. IEEE Power Technology Conference. Bologna,2003:23-26.
    [35]Marquardt R, Lesnicar A. New concept for high voltage-modular multilevel converter. PESC 2004 Conference, Aachen, Germany,2004.
    [36]Marquardt R. Modular Multilevel Converter:A universal concept for HVDC-Networks and extended DC-Bus application[C]. Power Electronics Conference (IPEC),2010 International: 2010:502-507.
    [37]Marquardt R. Modular Multilevel Converter topologies with DC-Short circuit current limitation[C]. Power Electronics and ECCE Asia (ICPE&ECCE),2011 IEEE 8th International Conference on:2011:1425-1431.
    [38]Davidson C C, Trainer D R. Innovative concepts for hybrid Multi-Level converters for HVDC power transmission[C].2010,9th IET International Conference on AC and DC Power Transmission. London. United Kingdom.
    [39]Feldman R. Tomasini M, Clare J C, et al. A hybrid voltage source converter arrangement for HVDC power transmission and reactive power compensation [C].2010 5th IET International Conference on Power Electronics, Brighton, United Kingdom.
    [40]Merlin M M C, Green T C, Mitcheson P D, et al. A new hybrid multi-level voltage-source converter with DC fault blocking capability[C].2010,9th IET International Conference on AC and DC Power Transmission, London, United Kingdom.
    [41]Jacobson B, Karlsson P, Asplund G, et al. VAC-HVDC transmission with cascaded two-level converters[C]. CIGRE Session. Paris, France:CIGRE,2010.
    [42]Dorn J, Huang H, Retzmann D. A new multilevel voltage-sourced converter topology for HVDC applications[C]. CIGRE Session. Paris, France:International Council on Large Electric Systems,2008:B4-304,1-8.
    [43]Ahmed Noman, Norrga Staffan, Nee Hans-Peter, et al. HVDC Super Grids with modular multilevel converters-The power transmission backbone of the future [J]. International Multi-Conference on Systems, Signals and Devices (SSD),2012:1-7.
    [44]Wang Yeqi, Marquardt R. Future HVDC-Grids employing Modular Multilevel Converters and Hybrid DC-Breaker[C].2013,15th European Conference on Power Electronics and Applications (EPE),2013:1-8.
    [45]Flourentzou N, Agelidis V G, Demetriades G D. VSC-based HVDC power transmission systems:an overview[J]. IEEE Transactions on Power Electronics,2009,24(3):592-602.
    [46]Westerweller T, Friedrich K, Armonies U, et al. Trans bay cable-world's first HVDC system using multilevel voltage-sourced converter[C]. CIGRE Session. Paris, France:CIGRE, 2010.
    [47]赵岩,郑斌疑,贺之渊.南汇柔性直流输电示范工程的控制方式和运行性能[J].南方电网技术,2012,6(6):6-10.
    [48]中电普瑞电力公司有限公司.世界范围柔性直流输电工程情况分析[R],北京:国家电网公司智能电网研究院,2013.
    [49]Patricia L F, Silvia S V, Sylvain G. New French-Spanish VSC link[C]. CIGRE Session. Paris, France,2012:B4-110,1-8.
    [50]徐政,屠卿瑞,裘鹏.从2010国际大电网会议看直流输电技术的发展方向展[J].高电压技术,2010,36(12):3070-3077.
    [51]CIGRE WG B4.52. Feasibility of HVDC grids[R]. CIGRE technical brochure 533, Paris, April 2013.
    [52]Til K V, Sebastian D, Yang Y. The CIGRE B4 DC Grid Test System[R]. CIGRE, Paris, April 2013.
    [53]王晓鹏,杨晓峰,范文宝,等.模块组合多电平变换器的脉冲调制方案对比[J].电工技术学报,2011,26(5):28-33.
    [54]M.Hagiwara, K.Nishimura and H.Akagi. A modular multilevel pwm inverter for medium-voltage motor drives[C]. Proceedings of IEEE Energy Conversion Congress and Exposition ECCE 2009,2009, pp:2557-2564.
    [55]赵听,赵成勇,李广凯,等.采用载波移相技术的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,2011,32(27):48-55.
    [56]李笑倩,宋强,刘文华,等.采用载波移相调制的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,2012,32(9):49-55.
    [57]Juan Colmenares. Analisis, Implementation and Experimental Evaluation of a Phase Shifted PWM Control System For A Modular Multilevel Converte[D]. School of Electrical Engineering, KTH,2011.
    [58]李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制方法[J].电力系统自动化,2010,34(22):75-79,123.
    [59]丁冠军,汤广福,丁明,等.新型多电平电压源型换流器模块的拓扑机制与调制策略[J].中国电机工程学报,2009,29(36):1-8.
    [60]管敏渊,徐政,屠卿瑞,等.模块化多电平换流器型直流输电的调制策略[J].电力系统自动化,2010,34(2):48-52.
    [61]管敏渊,徐政,潘伟勇,等.最近电平逼近调制的基波谐波特性解析计算[J].高电压技术,2010,36(5):1327-1332.
    [62]丁冠军,汤广福,丁明,等.新型多电平VSC子模块电容参数与均压策略[J].中国电机工程学报,2009,29(30):1-6.
    [63]Wang K, Li Y, Zheng Z, Xu L. Voltage balancing and fluctuation suppression method of floating capacitors in a new Modular Multilevel Converter[J]. IEEE Transactions On Industrial Electronics,2012, PP(99):1.
    [64]董文杰,张兴,刘芳,等.模块化多电平变流器均压策略研究[J].电力电子技术,2012,46(2):69-71.
    [65]管敏渊,徐政.MMC型VSC-HVDC系统电容电压的优化平衡控制[J].中国电机工程学报,2011,31(12):9-14.
    [66]Rohner S, Bernet S, Hiller M, et al. Pulse width modulation scheme for the Modular Multilevel Converter[C]. Proceedings of European Power Electronics and Applications Conference (EPE). Barcelona Spain:Institute of Electrical and Electronics Engineers,2009: 1-10.
    [67]Rohner S, Bernet S, Hiller M, et al. Modeling, simulation and analysis of a Modular Multilevel Converter for medium voltage applications[C]. Proceedings of IEEE International Conference on Industrial Technology (ICIT). Vina del Mar Chile:Institute of Electrical and Electronics Engineers,2010:775-782.
    [68]屠卿瑞,徐政,郑翔,等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010,36(2):547-552.
    [69]孔明,汤广福,贺之渊,等.不对称交流电网下MMC-HVDC输电系统的控制策略[J].中国电机工程学报,2013,28(33):41-49.
    [70]Tu Q R, Xu Z, Xu L. Reduced Switching-Frequency Modulation and Circulating Current Suppression for Modular Multilevel Converters[J]. IEEE Transactions on Power Delivery, 2011,26(3):2009-2017.
    [71]屠卿瑞,徐政,管敏渊,等.模块化多电平换流器环流抑制控制器设计[J].电力系统自动化,2010,34(18):57-61.
    [72]Zhang M, Huang L, Yao W X, et al. Circulating Harmonic Current Elimination of a CPS-PWM Based Modular Multilevel Converter with Plug-In Repetitive Controller[J]. IEEE Transactions on Power Electronics,2014,29(4):2083-2097.
    [73]Angquist L, Antonopoulos A, Siemaszko D. Open-loop control of modular multilevel converters using estimation of stored energy[J]. IEEE Transactions on Industry Applications, 2011,47(6):2516-2524.
    [74]Angquist L, Antonopoulos A, Siemaszko D, et al. Inner control of modular multilevel converters-an approach using open-loop estimation of stored energy[C]. International Power Electronics Conference (IPEC) Proceedings, Sapporo, Japan:Institute of Electrical and Electronics Engineers,2010:1579-1585.
    [75]Siemaszko D, Antonopoulos A, Ilves K, et al. Evaluation of control and modulation methods for modular multilevel converters[C]. Proceedings of International Power Electronics Conference (IPEC). Sapporo Japan:Institute of Electrical and Electronics Engineers,2010: 746-753.
    [76]周月宾,江道灼,郭捷,等.模块化多电平换流器子模块电容电压波动与内部环流分析[J].中国电机工程学报,2012,32(24):8-14.
    [77]孔明,汤广福,贺之渊,等.模块化多电平HVDC输电系统功率运行区间的优化方法[J].中国电机工程学报,2013,33(21):45-52.
    [78]Picas R, Pou J, Ceballos S, et al. Optimal injection of harmonics in circulating currents of modular multilevel converters for capacitor voltage ripple minimization[C]. ECCE Asia Downunder(ECCE Asia),2013:318-324.
    [79]Bergna G, Berne E, Egrot P, et al. An energy-based controller for hvdc modular multilevel converter in decoupled double synchronous reference frame for voltage oscillation reduction[J]. IEEE Transactions on Industrial Electronics,2013,60(6):2360-2371.
    [80]Rasic A, Krebs U, Leu H, et al. Optimization of the modular multilevel converters performance using the second harmonic of the module current[C]. Proceedings of 13 th European Conference on Power Electronics and Applications(EPE). Barcelona Spain Institute of Electrical and Electronics Engineers,2009:1-10.
    [81]赵岩.基于模块化多电平电压源型换流器的动态特性及其控制策略研究[D].北京:中国电力科学研究院,2010.
    [82]王姗姗,周孝信,汤广福,等.模块化多电平电压源换流器的数学模型[J].中国电机工程学报,2011,31(24):1-8.
    [83]刘栋,汤广福,郑建超,等.模块化多电平换流器小信号模型及开环响应时间常数分析[J].中国电机工程学报,2012,32(24):1-7.
    [84]Antonopoulos A, Angquist L, Harnefors L, et al. Global asymptotic stability of modular multilevel converters [J]. IEEE Transactions on Industrial Electronics,2014,61(2):603-612.
    [85]Harnefors L, Antonopoulos A, Norrga S, et al. Dynamic analysis of modular multilevel converters[J]. IEEE Transactions on Industrial Electronics,2013,60(7):2526-2537.
    [86]Guan M Y, Xu Z. Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions [J]. IEEE Transactions on Power Electronics,2012, 27(12):4858-4867.
    [87]王国强,王志新,李爽.模块化多电平换流器的直接功率控制仿真研究[J].中国电机工程学报,2012,2(25):64-71.
    [88]蔡新红,赵成勇.基于欧拉-拉格拉日模型的模块化多电平换流器的无源控制[J].电工技术学报,2013,28(10):224-232.
    [89]Saeedifard M, Iravani R. Dynamic performance of a modular multilevel back-to-back hvdc system[J]. IEEE Transactions on Power Delivery,2010.25(4):2903-2912.
    [90]National Grid Transco. Appendixl, Extracts from the Grid Code-Connection Conditions, 2004. http://www.nationalgrid.com[M].
    [91]《三相电压允许不平衡度》,中华人民共和国国家标准-电能质量,GB/T15543-1995,1996.
    [92]Bollen M H J..Understanding Power Quality Problems:Voltage Sags and Interruption[M]. New York, IEEE Press,1999.
    [93]Kezunovic M, Liao Y. A new Method for Classification and Characterization of Voltage Sags[J]. Electric Power Systems Research,2001,58(1):27-35.
    [94]Son G T, Lee H J, Nam T S, et al. Design and Control of a Modular Multilevel HVDC Converter With Redundant Power Modules for Noninterruptibie Energy Transfer[J]. IEEE Trans on Power Delivery,2012,27(3):1611-1619.
    [95]管敏渊,徐振.模块化多电平换流器子模块故障特性和冗余保护[J].电力系统自动化,2011,35(16):94-98.
    [96]胡鹏飞,江道灼,周月宾,等.模块化多电平换流器子模块故障冗余容错控制策略[J].电力系统自动化,2013,37(15):66-70.
    [97]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2005.
    [98]刘钟淇.基于模块化多电平变流器的轻型直流输电系统研究[D].北京:清华大学,2010.
    [99]魏晓光.电压源换流器高压直流输电控制策略及其在风电场并网中的应用研究[D].北京:中国电力科学研究院,2007.
    [100]周国梁.基于电压源换流器的高压直流输电系统控制策略研究[D].北京:华北电力大学,2009.
    [101]陈海荣.交流系统故障时VSC-HVDC系统的控制与保护策略研究[D].杭州:浙江大学电气工程学院,2007.
    [102]皇甫成,贺之渊,汤广福,等.交流电网不平衡情况下电压源换相直流输电系统的控制策略[J].中国电机工程学报,2008,28(22):144-151.
    [103]Xu L, Andersen B R, Cartwright P. VSC transmission operating under unbalanced AC conditions-analysis and control design[J]. IEEE Trans on Power Delivery,2005,20(1): 427-434.
    [104]Hu J B, He Y K. Modeling and control of grid-connected voltage-sourced converters under generalized unbalanced operation conditions[J]. IEEE Transactions on Energy Conversion, 2008,23(3):903-913.
    [105]Du C Q, Sannino A, Math H, et al. Analysis of response of VSC-based HVDC to unbalance faults with difference control systems[C].2005 IEEE PES transmission and distribution conference and exhibition,2005:1-6.
    [106]Xu Lie, Andersen B, Cartwright P. VSC Transmission Operating Under Unbalanced AC Conditions-Analysis and Control Design[J]. IEEE Trans, on Power Delivery,2005,20(1): 427-434.
    [107]Yazdani A, Iravani R. A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions[J]. IEEE Transactions on Power Delivery, 2006,21(3):1620-1629.
    [108]Zhou Y B, Jiang D Z, Guo J, et al. Analysis and control of modular multilevel converters under unbalanced conditions[J]. Power Delivery, IEEE Transactions on,2013,28(4):pp. 1986-1995.
    [109]Moon J W, Kim C S, Park J W, et al. Circulating current control in mmc under the unbalanced voltage[J]. IEEE Transactions on Power Delivery,2013,28(3):1952-1959.
    [110]Tu Q R, Xu Z, Chang Y. Suppressing dc voltage ripples of MMC-HVDC under unbalanced grid conditions[J]. IEEE Transactions on Power Delivery,2012,27(3):1332-1338.
    [111]SONG W, HUANG A. Fault-tolerant design and control strategy for cascaded H-bridge multilevel converter-based STATCOM[J]. IEEE Trans on Industrial Electronics, 2010.57(8):2700-2708.
    [112]薛英林,徐政.适用于架空线路输电的新型双极MMC-HVDC拓扑[J].高电压技术,2013,39(2):481-487.
    [113]王广柱.模块化多电平换流器桥臂电流直接控制方案[J].电力系统自动化,2013,37(15):35-39.
    [114]郑博文,武守远,戴朝波,等.模块化多电平换流器分桥臂电流控制策略[J].电网技术,2013,37(6):1726-1731.
    [115]杨杰.VSC-HVDC交流系统故障数学建模及运行特性研究[D].北京:清华大学,2010.
    [116]赵岩,胡学浩,汤广福,等.模块化多电平变流器HVDC输电系统控制策略研究[J].中国电机工程学报,2011,31(25):35-41.
    [117]王姗姗.模块化多电平VSC-HVDC系统主电路参数选择的理论和方法[D].北京:中国电力科学研究院,2011.
    [118]何仰赞,温增银.电力系统分析(3版)[M].武昌:华中科技大学出版社,2002.
    [119]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700