用户名: 密码: 验证码:
基于MMC的牵引网谐波和负序综合治理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路运输作为公认的能耗低、环境污染小的绿色交通运输方式,近年来在我国得到了快速发展,机车运行密度和单机功率均处于世界前列。然而,由于我国电网发展相对滞后,电气化铁路给这种相对薄弱电网带来的电能治理问题凸显。近年来,随着交-直-交电力机车的推广,负序电流和宽频域谐波已成为主要的电能质量问题。特别是交-直-交、交-直这两类机车混跑时,经常出现车网谐振和交-直机车阻容烧损等现象,这不仅威胁到机车自身的安全运行,更影响到同网其他用户的正常生产和生活;又由于交-直机车的保有量大,两类机车混跑局面将在我国长期存在,因此该类电能质量问题已成为业界学者研究的热点。众学者主要对采用降压变压器多重化H桥背靠背并联的铁路静止功率调节器(RPC)及其与静止无功补偿器(SVC)组成的混合方式展开研究,但是由于多绕组变压器带来了损耗高、占地面积大等问题,而且受单个开关器件通载能力的限制,难以实现大容量的功率调节和谐波抑制。为此,在总结现有技术的基础上,本文分析了两类机车混跑下的牵引网谐波和负序特性,对基于MMC的铁路静止功率调节器(MRPC)的运行原理及相关控制技术展开研究,其主要研究和创新性成果如下:
     (1)提出了MRPC新拓扑结构,其利用半桥级联技术实现了低压开关器件在高压系统中的直接应用,消除了变压器带来的延时、相移、占地多和成本高等问题;同时,牵引网之间的能量可通过MRPC的高压直流母线进行融通,双向传输的能量几乎不受限制,避免了传统RPC装置直流电流大而导致的散热问题和低感设计难题。另外,由于是多个逆变模块单元级联,MRPC的等效开关频率高,能方便实现对谐波的精确补偿。随后对两桥臂、三桥臂和四桥臂MRPC的工作原理进行了分析,并对其优缺点及适用场合进行了对比研究。
     (2)以V/v牵引变电所为对象,分析了RPC两个端口输出的电流幅值、相角与负序电流的关系,建立了在电压波动范围、总功率因数、装置容量、变压器容量、有功平衡约束下的负序电流模值最小的多维非线性约束数学模型,并提出了基于序列二次规划的牵引供电系统负序电流的自适应优化算法。该算法根据检测到的负载情况,自动获取RPC的指令电流最优解;该算法计算速度快、精度高,可以满足实时优化的需要。
     (3)分析了三桥臂MRPC补偿系统的电压、电流、功率电气量数学关系,对其控制关键技术进行了研究,然后提出了适用于电网不同工况的基于二阶广义积分器(SOGI)的系统负序和无功检测方法,进而提出了两相静止坐标系下基于比例谐振(PR)调节器的控制方案,在保证直流环节电压稳定的前提下,实现了对牵引网负序和无功的有效补偿,同时减小了MRPC的桥臂环流。
     (4)针对宽频域谐波问题,提出了基于MRPC与高通滤波器(HPF)的混合谐波抑制方法,利用MRPC对低次谐波进行抑制,而HPF对高次谐波进行吸收。针对MRPC的谐波抑制,在分析传统的SOGI控制方法对谐波检测分离及补偿原理的基础上,针对其不能单独提取某次谐波的不足,提出了改进型SOGI算法,并应用PR调节器,实现了对特定次谐波的精确提取和补偿。
     (5)根据某牵引变电所的参数,对两相三桥臂MRPC的支撑电容、输出电感、开关器件等关键部件参数进行了计算,并搭建了基于RT-LAB的MRPC实时仿真模型,对系统参数、检测方法和控制策略进行了验证。结果表明,本文所提出的MRPC系统能有效实现牵引网负序和谐波的综合治理,并具有良好的动态性能。
As a green transportation way with low energy loss and low pollution, railway transportation has been developed rapidly in China, which makes its transportation density and unit-power at the forefront of the world. However, with comparatively slow development of China grid, it faces great challenge to electrified railway on power quality improvement. Currently, the negative-sequence current and wide-band frequency harmonic are coming as the main problems in power supply with the increasing of AC-DC-AC locomotives, which frequently leading to the damage of RC and circuit resonance, especially in the situation of two kinds of locomotive being mixed run. It not only threatens locomotives safe operating, but also influences the production and life of people who sharing the same grid. As there are a large number of AC-DC locomotives, the phenomenon of mixed-running will exist for a long time, as well as the problem of power quality. That's why it has been a hotspot for many scholars in this field to research on. It mainly depends on the combination mode of railway static power conditioner (RPC, which is comprised by converter based on back to back parallel H-Bridge and step-up transformer) and Static Var Compensator (SVC). However multi winding transformer has the shortages of high loss and big volume, meanwhile with the current capacity limit of single switching device, it is hard to realize a large capacity power regulation and harmonic suppression. Therefore, based on the summary of current technologies, it analyzed the harmonic characteristic of two kinds of locomotive mixed run, and researched the operation principles and control techniques of the modular multi-level railway static power conditioner (MRPC).The main innovative results are listed as follows.
     (1) A new MRPC topology is proposed, which can realize the direct application of low voltage devices in high voltage system by adopting half-bridge cascaded technology, and the problems which brought by transformers such as time delay, phase shift, room occupation and cost can be resolved. Furthermore, because the energy transmission of MRPC is realized through high voltage DC bus, and its DC current is low and the energy of bi-directional transmission is almost unrestricted, the difficult problems of heat dissipation and low-inductance design caused by high DC current in traditional RPC are avoided. In addition, equivalent high frequency is obtained with the cascaded design of multiple converters, and utilization of low frequency device which is beneficial to realize compensation for harmonic and reactive power. Then the operating principles of two bridge-arm, three bridge-arm and four bridge-arm MRPC topologies are analyzed, and their advantages and disadvantages, applicable fields are comparatively studied in detail.
     (2) Taking V/V traction substation as a research object, the relationship between current amplitude and phase Angle of RPC and negative sequence current is analyzed, and the mathematic model of the minimum negative sequence current is established under the restraining conditions of voltage fluctuation, total power factor, device capacity, transformer capacity and active power balance. In order to resolve the multidimensional nonlinear constrained optimization problem, a self-adaptive optimization algorithm based on the sequence quadratic programming traction power supply negative sequence current is proposed. According to the load condition, the optimal value of RPC instruction current amplitude and phase angle is achieved based on the real-time optimization. The calculating speed was nearly to5ms every time, the efficiency of precise operations was satisfied for the need of real-time optimization.
     (3) Analysis of three MRPC engineering application focus on voltage, current, power, electrical mathematic relationships and make a research into its key control technology. Raised out detection methods suitable for grid applications based on SOGI system negative sequence and reactive power, also two-phase stationary coordinate of PR regulator control proposal has been introduced to actively compensate traction negative sequence and active power in guarantee of DC voltage stable, to reduce the MRPC leg circulation current.
     (4) Aiming at the problem of wide-band frequency harmonic, the combined harmonic suppression method based on MRPC and HPF is proposed, the former is used to suppress the low-order harmonic,and the latter is used to absorb the high-order harmonic. For the sake of improving the harmonic extraction accuracy based on traditional second-order generalized integrator, the upgrade method is consisting of the second-order generalized integrator and PR adjustor is proposed, which is beneficial to separate the specific form characteristic harmonic, and guarantee the precision of compensation.
     (5) According to the parameters of a certain traction substation, the parameters of three bridge-arm MRPC is calculated, including DC-link capacitance, sub-module capacitance, bridge-arm inductance, output inductance and switching devices, etc. The system parameter and control strategy are verified by the RT-LAB real-time simulation platform. The simulation results show that the mixed system of MRPC and HPF can realize the integrated compensation of harmonic and negative sequence current, together with a better dynamic performance.
引文
[1].景德炎,陈学光,肖志强.中国电气化铁路发展的回顾和展望[A].中铁电气化局集团有限公司、中国铁道学会电气化委员会.中国电气化铁路两万公里学术会议论文集,2005:4.
    :2].何正友,胡海涛,方雷等.高速铁路牵引供电系统谐波及其传输特性研究[J].中国电机工程学报,2011,31(24):1-8
    [3].杨少兵,吴命利.基于实测数据的高速动车组谐波分布特性与概率模型研究[J].铁道学报,2010,32(3):33-38
    [4].解绍锋,李群湛.高速列车再生制动对负序影响研究[J].铁道学报,2011,33(7):14-18
    [5].周胜军,于坤山,冯满盈.电气化铁路供电电能质量测试主要结果分析[J].电网技术,2009,33(13):15-19
    [6].周方圆,王卫安.高速铁路对供电质量的影响及治理措施[J].大功率变流技术,2010,06:41-45.
    [7].吴传平.电气化铁路供电系统电能质量综合补偿技术研究[D].湖南大学,2012.
    [8].贺威俊,高仕斌.电力牵引供变电技术[M].成都:西南交通大学出版社,1998.
    [9].张定华,桂卫华,王卫安,等.牵引变电所电能质量混合动态治理技术[J].中国电机工程学报,2011,31(7):48-55.
    [10].赵朝蓬.分相绝缘器在运营中存在的问题及采取的措施[J].电气化铁路,2004(4):31-33.
    [11].李群湛,贺建闽,李曙辉.牵引供电系统优化设计研究[J].西南交通大学学报,1992(1):83-90.
    [12].李群湛,贺建闽.电气化铁路的同相供电系统和对称补偿技术[J].电力系统自动化,1996(4):9-12.25
    [13].贺建闽,李群湛.用于同相供电系统的对称补偿技术[J].铁道学报,1998,20(6):47-51.26
    [14].曾国宏,郝荣泰.基于有源滤波器和阻抗匹配平衡变压器的同相供电系统[J].铁道学报,2003,25(3):49-54.
    [15].吕晓琴.基于“V”型变压器的同相供电技术研究[D].西南交通大学,2006.
    [16].李晶.同相AT供电系统单台变压器式接线研究[D].西南交通大学,2007.
    [17].魏光,李群湛,黄军等.新型同相牵引供电系统方案[J].电力系统自动化.2008,32(10):80-83.
    [18].周建佳,胡成,杨苏飞.基于UPQC的电气化铁路同相供电方案的研究[J].电气技术.2010,(1):14-17.
    [19].皮俊波,姜齐荣,魏应冬.一种基于链式结构UPQC的电气化铁路同相供电方案研究[J].电力设备,2008,10:4-9.
    [20].吕晓琴,张秀峰.基于有源滤波器和V,x结线的同相牵引供电系统[J].电力系统自动化.2006,18(6):73-78.
    [21].张秀峰,李群湛,吕晓琴.基于有源滤波器的V,v接同相供电系统[J].中国铁道科学,2006,27(2):98-103.
    [22].周福林.同相供电系统结构与控制策略研究[D].西南交通大学,2012.
    [23].吴萍.电气化铁路同相供电技术研究[D].西南交通大学,2008.
    [24].庞棋峰.电气化铁路同相供电潮流控制实验装置研究与设计[D].西南交通大学,2012.
    [25].刘昊君.基于三相变压器和DN供电方式的同相供电系统的研究[D].西南交通大学,2012.
    [26].谢杰,张秀峰,孙吉,吕晓琴,蒋锐,吴连.基于Y,d11接线变压器的同相供电技术方案[J].电网技术,2010,06:149-153.
    [27]. Han, Zhengqing; Cao, Xingyu; Gao, Shibin; Bo, Zhiqian. Protection and control system for cophase supply traction substation[C]. Developments in Power Systems Protection,2012.Page(s):1-5.
    [28]. Minwu Chen; Qun-zhan Li; Guang Wei. Optimized Design and Performance Evaluation of New Cophase Traction Power Supply System[C]. Power and Energy Engineering Conference,2009.Page(s):1-6.
    [29]. Zhao Yanling; Zhao Liping; Li Qunzhan. Some Key Problems on Cophase Traction Power Supply Device[C]. Information Technology and Applications (IFITA),2010, Page(s):444-449.
    [30]. Zeliang Shu; Shaofeng Xie; Qunzhan Li. Single-Phase Back-To-Back Converter for Active Power Balancing, Reactive Power Compensation, and Harmonic Filtering in Traction Power System[C]. IEEE Transactions on Power Electronics,26(2):334-343.
    [31]. Lao, K.-W.; Dai, N.; Liu, W.-G.; Wong, M.-C. Hybrid Power Quality Compensator With Minimum DC Operation Voltage Design for High-Speed Traction Power Systems[C].IEEE Transactions on Power Electronics,28(4):2024-2036.
    [32].黄英.电气化铁路混合型有源电力滤波器的研究[D].中南大学,2012
    [33].熊以旺.SVG对电气化铁路电能质量补偿效果的研究[D].上海交通大学,2009.
    [34].邱大强,李群湛,周福林,余俊祥.基于背靠背SVG的电气化铁路电能质量综合治理[J].电力自动化设备,2010,06:36-39.
    [35]. Lu Fang, An Luo, Xianyong Xu, Houhui Fang. A Novel Power Quality Compensator for Negative-Sequence and Harmonic Currents in High-Speed Electric Railway [C]. Power and Energy Engineering Conference (APPEEC),2011,Page(s):1-5.
    [36]. Tint Soe Win; Baba, Yusuke; Okamoto, M.; Hiraki, E.; Tanaka, T. A half-bridge inverter based Active Power Quality Compensator with a DC voltage balancer for electrified railways [C]. Power Electronics and Drive Systems (PEDS),2011, Page(s):185-190.
    [37]. Tanaka, T.; Ishikura, N.; Hiraki, E. A novel simple control method of an active power quality compensator used in electrified railways with constant DC voltage control[C]. Industrial Electronics,2008.Page(s):502-507.
    [38]. Zhuo Sun; Xinjian Jiang; Dongqi Zhu; Guixin Zhang. A novel active power quality compensator topology for electrified railway[C]. IEEE Transactions on Power Electronics Volume:19, Issue:4 2004, Page(s):1036-1042.
    [39]. Ding Na; Shu Zeliang; Guo Yuhua. A railway power quality conditioner based on chain circuit using impedance-matching balance transformers[C]. Advanced Power System Automation and Protection (APAP),2011,Page(s):374-377.
    [40]. Baseri, M.A.A.; Nezhad, M.N.; Sandidzadeh, M.A. Compensating procedures for power quality amplification of AC electrified railway systems using FACTS [C]. Power Electronics, Drive Systems and Technologies Conference (PEDSTC),2011 2nd:518-521.
    [41]. Mochinaga, Y.,Hisamizu, Y.,Takeda, M.,Miyashita, T-,Hasuike, K..Static power conditioner using GTO converters for AC electric railway[C].Power Conversion Conference,2002, Page(s):641-646.
    [42]. Morimoto H, Ando M, Mochinaga Y,et al. Development of railway static power conditioner used at substation for Shinkansen[C]. Power Conversion Conference, Osaka, Japan,2002.
    [43]. Uzuka T, Ikedo S,Ueda K. A static voltage fluctuation compensator for AC electric rail way [C]. Power Electronics Specialists Conference, Aachen, German, 2004.
    [44].王科,周峰,陈建业,朱桂萍.能量融通型STATCOM提高牵引变电站供电能力研究[J].电力自动化设备,2012,02:44-49.
    [45].周胜军,于坤山,冯满盈,等.电气化铁路供电电能质量测试主要结果分析[J].电网技术,2009,33(13):54-57
    [46].王果.电气化铁路牵引供电系统综合有源补偿研究[D].兰州交通大学,2011.
    [47].马伏军,罗安,徐先勇,等.大功率混合型电气化铁路功率补偿装置[J].电工技术学报,2011,10:93-102.
    [48].戚庆茹,张春朋.一种用于电铁牵引变电站负荷平衡的新型补偿器[J].现代电力,2012,03:38-41.
    [49].张鑫.电气化铁路电能质量的治理方法研究[D].浙江大学,2013.
    [50].吴传平,罗安,徐先勇,等.采用V_v变压器的高速铁路牵引供电系统负序和谐波综合补偿方法[J].中国电机工程学报,2010,30(16):111-117
    [51].马伏军,罗安,吴传平,等.基于半桥结构的新型高速铁路功率调节器[J].中国电机工程学报,2011,31(12):1-8
    [52].马伏军,罗安,熊桥坡,等.一种简化型三电平高速铁路功率调节器[J].电力系统自动化,2012,36(16):108-114
    [53].马伏军,罗安,吴传平,等.V_V牵引供电系统中铁路功率调节器的控制方法研究[J].中国电机工程学报,2011,31(3):63-70
    [54]. Dietmar R. HVDC plus-innovative multilevel technology for power transmission[R].2009
    [55]. Marquardt R, Lesnicar A. New concept for high voltage-modular multilevel converter[C].power Electronics Specialists Conference. Aachen, Germany: IEEE,2004:1-5.
    [56].杨晓峰,孙浩,支刚,等.双星型模块组合型多电平变换器的PWM控制策略[J].电力电子,2010,(2):14-19,25.
    [57]. Glinka M, Marquardt R. A new AC/AC multilevel converter family[J]. IEEE Transactions on Industrial Electronics,2005,52(3):662-669.
    [58].王卫安,桂卫华,马雅青,张杰,管敏渊,徐政.向无源网络供电的模块化多电平换流器型高压直流输电系统控制器设计[J].高电压技术,2012,03:751-761.
    [59].杨晓峰.模块组合多电平变换器(MMC)研究[D].北京交通大学,2012.
    [60].赵埕萱.模块化多电平逆变器的研究[D].安徽理工大学,2012.
    [61].王思蕴.模块化多电平变流器控制方法的研究[D].浙江大学,2013.
    [62].申斐斐.模块化多电平变流器控制系统的研究[D].浙江大学,2012.
    [63]. Friedrieh K. Modern HVDC PLUS application of VSC in modular multilevel converter topology[C].2010 IEEE International Symposium on Industrial Electronics.Bari, Italy:IEEE,2010.
    [64]. Guan M Y, Xu Z, Li H J. Analysis of DC voltage ripples in modular multilevel converters [C].2010 International Conference on Power System Technology. Hangzhou, China:[s.n.],2010.
    [65].管敏渊,徐政.模块化多电平换流器型直流输电的建模与控制[J].电力系统自动化,2010,34(19):64-68.
    [66]. Gnanarathna U N, Gole A M,Jayasinghe R P. Efficient modeling of modular multilevel HVDC converters on electromagnetic transient simulation programs [J]. IEEE Transactions on Power Delivery,2011,26(1):316-324.
    [67]. Solas E, Abad G, Barrena j A, et al. Modulation of modular multilevel converter for HVDC application[C].14th International Power Electronics and Morion Control Conference. Ohrid, Macedonia:[s.n.],2010.
    [68]. Hagowara M,Akagi H. PWM control and experiment of modular multilevel converters [C].39th IEEE Annual Power Electronics Specialists Conference. Rhodes, Greece:IEEE,2008.
    [69]. Solas E,Abad G, Barrena J A,et al. Modelling,simulation and control of modular multilevel converter[C].14th International Power Electronics and Motion Control Conference. Ohrid, Macedonia:[s.n.],2010.
    [70]. Munch P, Gorges D, Izak M, et al. Integrated current control, energy control and energy balancing of modular multilevel converters [C].36th Annual Conference on IEEE Industrial Electronics Society. Glendale,Arizona, USA:IEEE,2010.
    [71]. Konstantinou G S, Agelidis V G. Performance evaluation of half-bridge cascaded multilevel converters operated with multicarrier sinusoidal PWM techniques[C].IEEE Conference on Industrial Electronics and Applications Xian,China,2009:3399-3404.
    [72]. Hagiwara M, Akagi H. Control and experiment of Pulse width modulated modular multilevel converters [J]. IEEE Transctions on Power Electronics,2009, 24(7):1737-1746.
    [73].赵昕,赵成勇,李广凯,等.采用载波移相技术的模块化多电平换流器电容电压平衡控制[J].中国电机工程学报,2011,31(21):48-55.
    [74].王晓鹏,杨晓峰,范文宝,等.模块组合多电平变换器的脉冲调制方案对比[J].电工技术学报,2011,26(5):28-33.
    [75]. Lesnicar A, Marquardt R. An innovative modular multilevel converter topology suitable for a wide power range[C]. IEEE Bologna Power Tech Conference. Bologna,Italy:2003:1-6.
    [76].李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制方法[J].电力系统自动化,2010,34(22):75-79,123.
    [77].李强,贺之渊,汤广福,等.新型模块化多电平换流器空间矢量脉宽调制的通用算法[J].电网技术,2011,35(5):59-64.
    [78].王卫安,桂卫华.低电平MMC-HVDC样机滤波装置设计[J].电力系统及其自动化学报,2011,06:135-140.
    [79]. Tenlberger R, Jovcic D. Analytical modeling of a square-wave-controlled cascaded multilevel STATCOM[J]. IEEE Transactions on Power Delivery,2009, 24(4):2261-2269.
    [80]. Franquelo L G, Rodriguez J, Leon J I, et al. The age of multilevel converters arrives[J]. IEEE Industrial Electronics Magazine,2008,2(2):28-39.
    [81]. Rodriguez J, Franquelo L G, Kouro S, et al. Multilevel converters:an enabling technology for high-power applications [J].Proceedings of the IEEE,2009, 97(11):1786-1817.
    [82].管敏渊,徐政,潘伟勇,等.最近电平逼近调制的基波谐波特性解析计算[J].高电压技术,2010,36(5):1327-1332.
    [83].屠卿瑞,徐政,郑翔,等.一种优化的模块化多电平换流器电压均衡控制方法[J].电工技术学报,2011,26(5):15-20.
    [84].管敏渊,徐政,屠卿瑞,等.模块化多电平换流器型直流输电的调制策略[J],电力系统自动化,2010,34(2):48-52.
    [85]. Son G T, Lee H J, Nam T S, et al. Design and control of a modular multilevel HVDC converter with redundant power modules for non-interruptible energy transfer[J]. IEEE Transactions on Power Delivery,2012,27(3):1611-1619.
    [86].丁冠军,丁明,汤广福,等.新型多电平VSC子模块电容参数与均压策略[J].中国电机工程学报,2009,29(30):1-6.
    [87].孔明,邱宇峰,贺之渊,等.模块化多电平式柔性直流输电换流器的预充电控制策略[J],电网技术,2011,35(11):67-73.
    [88]. Johannes K,Felix K,Michael B.Operating performance of modular multilevel converters in drive applications[C],Power Conversion Intelligent Motion. Nuremberg:2012:583-590.
    [89]. Hason D J, Woodhouse M L, Horwill C,et al. STATCOM:a new era of reactive compensation[J]. Power Engineering Journal,2002,16(3):151-160.
    [90].刘钊,刘邦银,段善旭,等.链式静止同步补偿器的直流电容电压平衡控制[J].中国电机工程学报,2009,29(30):7-12.
    [91]. Barrena J A, Marroyo L, idal M A R, et al. Individual Voltage balancing strategy for PWM cascaded H-bridge converter-based STATCOM[J]. IEEE Transactions on Power Electronics,2008,55(1):21-29.
    [92]. Akagi H, Inoue S, Yoshii T. Control and performance of a transformerless cascade PWM STATCOM with star configuration[J]. IEEE Transactions on Industry Applications,2007,43(4):1041-1049.
    [93].丁冠军,丁明,汤广福,等.新型多电平VSC子模块电容参数与均压策略[J].中国电机工程学报,2009,29(30):1-6.
    [94]. Solas E, Abad G, Barrena J A,et al. Modulation of modular multilevel converter for HVDC application [C]//14th International Power Electronics and Motion Control Conference. Ohrid, Macedonia,2010:84-89.
    [95]. Hagiwara M, Maeda R, Akagi H. Control and analysis of the modular multilevel cascade converter based on double-star chopper-cells (MMCC-DSCC)[J]. IEEE Transactions on Power Electronics,2011,26(6):1649-1658.
    [96]. Hagiwara M, Maeda R, Akagi H. Theoretical analysis and control of the modular multilevel cascade converter based on double-star chopper-cells (MMCC-DSCC)[C]//9TH International Power Electronics Conference. Sapporo, Japan,2010:2029-2036.
    [97]. Siemaszko D, Antonopoulos A, Ilves K, et al. Evaluation of control and modulation methods for modular multilevel converters[C]//9th International Power Electronics Conference. Sapporo,Japan,2010:746-753.
    [98].杨晓峰,王晓鹏,范文宝,等.模块组合多电平变换器的环流模型[J].电工技术学报,2011,26(5):21-27.
    [99].屠卿瑞,徐政,郑翔,等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010,36(2):547-552.
    [100].屠卿瑞,徐政,管敏渊,等.模块化多电平换流器环流抑制控制器设计[J].电力系统自动化,2010,34(18):57-61,83,
    [101].杨晓峰,郑琼林,基于MMC环流模型的通用环流抑制策略[J].中国电机工程学报,2012,32(18):59-65.
    [102].姜东红,吴根水,屠宁.RT-LAB软件在半实物仿真系统中的应用[J].测控技术,2008,04:71-73.
    [103].侯珏.电气化铁路电能质量问题及治理研究[D].安徽大学,2011.
    [104].赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究[J].中国电机工程学报,2007(16):60-64.
    [105].郭明富.交-直机车与交-直-交机车混跑仿真研究[D].西南交通大学,2011.
    [106].魏光.基于V型接线的同相牵引供电系统[J].电力自动化设备,2010,12:60-65.
    [107].张寅.基于V/v牵引变压器的高速铁路电能质量综合补偿系统研究[D].湖南大学,2012.
    [108].何常红,吴广宁,张雪原等.世界高速电气化铁路电能质量现状及治理措施[J].电气化铁路,2008,(1):1-5.
    [109].王卫安,桂卫华,张定华,薛蛟.基于大容量SVC的SCOTT变压器电能质量治理方案及应用[J].铁道学报,2011,01:31-38.
    [110].刘宇航.牵引网谐振规律研究[D].西南交通大学.2009
    [111].郭建伟,张健,王子婷等.牵引供电系统对电力系统影响的分析[J].电力学报,2012,27(4):293-296.
    [112].姚金雄,张涛,林榕.牵引供电系统负序电流和谐波对电力系统的影响及补偿措施[J].电网技术,2008,32(9):61-64.
    [113].解绍锋,李群湛.高速列车再生制动对负序影响分析[J].铁道学报,2011,33(7):14-18.
    [114].吴传平,罗安,孙娟等.一种电气化铁路电能质量综合补偿系统[J].电工技术学报,2011,26(10):68-76.
    [115]. M. Fukushima, "A successive quadratic programming algorithm with global and superlinear convergence properties," Mathematical Programming, vol.35, pp. 253-264,1986.
    [116]. Y. Ye, Interior point algorithms:theory and analysis vol.44:Wiley-Interscience, 1997.
    [117]. F. B. Hildebrand, Introduction to numerical analysis,2 ed.:Dover Pubns,1987.
    [118]. N. I. M. Gould, "An algorithm for large-scale quadratic programming," ed: Oxford University Press,1991.
    [119]. R. D. C. Monteiro and I. Adler, "Interior path following primal-dual algorithms. part Ⅱ:Convex quadratic programming," Mathematical Programming, vol.44, pp. 43-66,1989.
    [120]. S. J. Wright, Primal-dual interior-point methods:Society for Industrial and Applied Mathematics,1997.
    [121]. M. Fukushima, "A successive quadratic programming algorithm with global and superlinear convergence properties," Mathematical Programming, vol.35, pp. 253-264,1986.
    [122]. J. Nocedal and S. J. Wright, Numerical optimization,2 rd. New York:Springer, 2006.
    [123]. Y. Ye, Interior point algorithms:theory and analysis vol.44:Wiley-Interscience, 1997.
    [124].杨晓峰,林智钦,郑琼林,等.模块组合多电平变换器的方波脉冲循环调制策略[J].中国电机工程学报,2013,31(9):42-47.
    [125].马伏军,罗安,吴传平等.V/v牵引供电系统中铁路功率调节器的控制方法研究[J].中国电机工程学报,2011,31(13):63-70.
    [126].张丽艳,李群湛,易东,等.同相供电系统潮流控制器容量的优化配置[J].电力系统自动化,2013,37(8):59-64.
    [127].黄河,韦永忠,金丽莉,等.多电平静止无功发生器主电路拓扑综述[J].电工电气,2012(5):4-8.
    [128].马伏军,罗安,吴传平,等.基于半桥结构的新型高速铁路功率调节器[J].中国电机工程学报,2011,31(12):1-7.
    [129].王卫安,桂卫华.两相牵引供电系统电能质量有源综合治理技术研究[J].铁道学报,2013,35(9):3-7.
    [130].夏焰坤,李群湛,赵元哲,等.基于瞬时无功理论和平衡变压器的牵引变电所电流平衡补偿方法[J].电力自动化设备,2011,31(9):42-45.
    [131].申斐斐.模块化多电平变流器控制系统的研究[D].浙江大学,2012.
    [132].孙卓,朱东起,姜新建.牵引变电所新型电能质量调节器的研究[J].电力系统自动化,2002,26(19):41-44,51.
    [133].戚庆茹,张春朋.一种用于电铁牵引变电站负荷平衡的新型补偿器[J].现代电力,2012,29(03).
    [134].吕晓琴,章春军,张秀峰.电气化铁路负序、谐波及无功电流实时检测[J].电力自动化设备,2008,28(12):84-87.
    [135].马伏军,罗安,徐先勇,等.大功率混合型电气化铁路功率补偿装置[J].电工技术学报,2011(10).
    [136].王群,姚为正,刘进军,等.电压型谐波源与串联型有源电力滤波器[J].电力系统自动化,2000,24(7):30-35.
    [137]. Peng F Z, Akagi, Nabae A. A New Approach to harmonic Compensation in Power Systems A Combined System of Shunt Passive and Series Active Filters[J]. IEEE Transactions on Industry Applications,1990,26(3):983-990.
    [138].王兆安,李民,卓放.三相电路瞬时无功功率理论的研究[J].电工技术学 报,1992,7(3):55-59.
    [139].李庚银,陈志业,丁巧林.用于有源补偿器的广义瞬时无功电流实时检测方法[J].电力系统自动化,1997,21(10):28-31.
    [140]. Akagi. New Trends in Active Filters for Power Conditioning[J]. IEEE Transactions on Industry Applications,1996,32(6):1312-1322.
    [141].叶忠明,董伯藩,钱照明.谐波电流的提取方法比较[J].电力系统自动化,1997,21(12):21-24.
    [142].杨君,王兆安,邱关源.单相电路谐波及无功电流的一种检测方法[J].电工技术学报,1996,11(3):42-46.
    [143]. Ding Guanjun, Tang Guangfu, He Zhiyuan, Ding Ming. New technologies of voltage source converter (VSC) for HVDC transmission system based on VSC[C]. IEEE Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, USA,2008:1-8.
    [144]. El Mofty A, Youssef K. Industrial power quality problems [C]. Electricity Distribut ion, Part1:Contributions. CIRED.16th International Conference and Exhibition on (IEE Conf. Publ No.482), Amsterdam, Nelterlands, Volume: Summaries,2001:139-139.
    [145]. Power Quality Measuring, Recording, Compensation[M]. Siemens Power Engineering Guide:Transmission and Distribution,4th Edition.
    [146].向东.三相四线并联型有源电力滤波器指定谐波抑制技术[D],武汉:华中科技大学图书馆,2007.
    [147].杨晓峰,孙浩,郑琼林.双调制波CPS-SPWM在模块组合多电平变换器的应用研究[J].电气传动,2011,10:15-20.
    [148].卓谷颖,江道灼,连霄壤.模块化多电平换流器不平衡环流抑制研究[J].电力系统保护与控制,2012,40(24):118-124.
    [149].屠卿瑞,政徐,管敏渊,等.模块化多电平换流器环流抑制控制器设计[J].电力系统自动化,2010,34(18):57-62.
    [150].杨晓峰,林智钦,郑琼林,游小杰.模块组合多电平变换器的研究综述[J].中国电机工程学报,2013,33(6):1-15.
    [151].王卫安,桂卫华.基于MRPC的电气化铁路谐波治理技术研究.机车电传动,2014(2):21-25.
    [152].张树全,戴珂,谢斌,余蜜,康勇.多同步旋转坐标系下指定次谐波电流控制[J].中国电机工程学报,2010,03:55-62.
    [153].郭希铮,韩强,杨耕,杨公训.可选择谐波型有源电力滤波器的闭环控制和实现[J].电工技术学报,2006,09:51-56.
    [154]. Mattavelli P,Marafao F P.RePetitive-based control for selective harmonic compensation in active power filters.IEEE Transactions on Industral Electronics,2004,51 (5):722-729.
    [155]. Yuan X,Merk W,Stemmler H.Stationary frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions.IEEE Transactions on Industry Applications,2002,38(2):523-532
    [156]. D.N.Zmood,D.G Holmes,and G H.Bode.Frequeney-domain analysis of three-phase linear current regulators[Jl. IEEE Transactions on Industry Applications,2001,37:601-61.
    [157]. T.W.Rowan and R.J.Kekman.A new synchronous current regulator and ananalysis of current regulated PWM inverters [J], IEEE Transactions on Industry Applications.1986,22:678-690.
    [158]. Yazdani.D,Bakhshai.A,Joos.qetal.A real-time three-phase selective-harmonic extraction approach for gird connected converters.IEEE Transactions Industry Electronies.2009,56(10):4097-410.
    [159].Freijedo.F.D,Doval.G.J,LoPez.O,etal.A signal-processing adaptive algorithm for selective current harmonic cancellation in active power fitlers.IEEE Transactions Industry Electronies.2009,56(8):2829-2840
    [160]. Habrouk.M.E,Darwish.M.K.Design and implementation of a modified Fourier analysis harmonic current computation technique for power active filters using. DSPS.IEE Proc.Power application,2001,148(1):21-28
    [161].孙驰,魏光辉,毕增军.基于同步坐标变换的三相不对称系统的无功与谐波电流的检测[J].中国电机工程学报,2003,12:46-51.
    [162].杨柳,刘会金,陈允平.三相四线制系统任意次谐波电流的检测新方法[J].中国电机工程学报,2005,13:41-44.
    [163]. Wei Xueliang,DaiKe,FangXin,etal.Performance analysis and improvement of output current controller for three-phase shunt active power filter IEEE Industrial Electronies,IECON 2006,Paris,2006:175721762..
    [164].刘飞,邹云屏,李辉.基于重复控制的电压源型逆变器输出电流波形控制方法[J].中国电机工程学报,2005,19:58-63.
    [165]. Ying-Yu Tzou,Rong-Shyang Ou,Shih-Liang Jung,Meng Yueh Chang,"High-performance programmable AC power source with low harmonic distortion using DSP-based repetitive control technique", IEEE Transactions on Power Electronics,vol.12,no.4,July 1997:1201-1210.
    [166]. T.Inoue,M.Nakano,S.lwai,"High accuracy control of servomechanism for repeated contouring",in Proe.10th Annual Symp.Incremental Motion Control System and Devices,PP.258-292,1981.
    [167]. Y.Yamamoto,S.Hara,"The internal model principle and stability of repetitive control Systems,"Transaction SICE,vol.22,pp.830-834.195.
    [168].魏学良.三相三线并联型有源电力滤波器数字化控制技术:[D].武汉:华中科技大学,2008.
    [169].赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究[J].中国电机工程学报,2007(16):60-64.
    [170]. Zmood D N, Holmes D G, Bode G H. Frequency-domain analysis of three-phase linear current regulators [J]. IEEE Transactions on Industry Applications,2001,37(2):601-610.
    [171]. SING B, HADDAD K A. A new control approach to three phase ac-tive filter for harmonic and reactive power compensation [J].IEEE Transactions on Power System,1998,13(1):133-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700