用户名: 密码: 验证码:
集成涡流无损检测系统设计与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无损检测技术一个最重要的发展方向就是多种无损检测手段的集成及综合应用。本文从涡流检测以及电磁感应原理出发研究集成涡流无损检测技术,将传统单频涡流、交变磁场测量、脉冲涡流以及多频涡流无损检测技术结合起来,扬长避短,优势互补,不仅具有单一涡流检测方法的检测能力,而且通过统一的数据接口、一体化的软硬件系统平台,使得多种涡流检测方法实现资源共享和检测信息融合,降低对操作人员经验的依赖性,极大的提高缺陷检测的可靠性和检测效率。本文针对航空集成化、小型化、原位化、快速化的检测需求,对集成涡流无损检测系统设计以及关键技术,包含系统通用模型分析,检测系统结构分析及优化,系统架构分析与设计、检测方法及原理集成以及传感器优化设计、研制应用等方面开展了细致的研究工作。本文(课题)核心研究内容与主要创新点包括:
     讨论并分析了涡流检测技术的物理及理论基础,对涡流检测问题的通用物理模型和计算方法进行了探讨,对涡流传感器线圈的感生涡流分布及阻抗和磁场分布特性进行了深入的研究和讨论;通过分析各种涡流无损检测系统特性,以数字化、集成化、模块化为目标,对传统各种涡流无损检测系统进行了优化设计。以麦克斯韦方程为基础,用电磁位函数数学表征单频激励条件下的时谐电磁场问题。以轴对称简化模型描述传统的典型线圈型涡流传感器,进而在轴坐标下分析涡流效应对传感器阻抗以及磁场分布的影响。文中对几种常见涡流检测技术的系统特点进行了分析和讨论,通过优化设计部分系统组件,提取不同检测系统的共性,优化独立系统架构从而抑制系统差异,为集成无损涡流检测系统的深入研究工作奠定物理平台基础。
     对涡流检测原理和不同的涡流检测系统特点进行了深入的探讨和分析,提出了一种全新的涡流检测系统原理层通用模型和功能层通用模型;以该模型为指导,提出了一种涡流无损检测系统的“双总线分层系统架构体系”;以“双总线分层系统架构体系”为基础,以集成化、模块化、可复用为指导思想和设计思路,深入研究并设计了集成涡流检测信号发生器和集成涡流检测信号调理系统。不同的涡流检测技术在检测原理上具有一定的差别,对应的激励信号类型、信号处理方式等方面均有差异,通过分析涡流检测技术的基本检测原理,提取不同涡流检测系统的共性,采用模块化、集成化、可复用的设计思路和技术路线,提出了涡流检测系统的原理层通用模型;通过分析不同的涡流检测系统的功能模块构成,求同存异,并按细化功能形成模块,提出了功能层通用模型。以这两个模型为指导,提出了一种以顶层全局总线和底层局部总线相结合的双总线分层系统构架体系,其中顶层对应原理层通用模型,底层对应功能层通用模型。基于两个模型和双总线分层系统架构体系,深入研究并设计了集成涡流无损检测信号发生器和集成涡流无损检测信号调理两个子系统,为集成涡流无损检测系统的研究和设计奠定了工程专业基础。
     借鉴虚拟仪器“以软代硬”的设计思想,以集成化、模块化、可重构为系统设计目标,以工业计算机为基础平台,以“双总线分层系统架构体系”为指导,设计并实现了集成涡流无损检测系统。系统不仅能够实现ACFM、常规单频涡流检测、多频检测和脉冲涡流检测功能,而且通过统一的数据接口和系统平台实现资源共享和信息融合,是真正意义上的集成涡流无损检测系统。依据前面提到的系统模型和双总线分层架构设计思想,借鉴虚拟仪器“以软代硬”、“软件即仪器”的设计思想,综合考虑项目研究的实际,建立了基于工控计算机的系统平台。其中,顶层全局总线采用PCI总线,底层局部总线采用IIC总线。详细介绍了集成涡流检测系统的硬件平台、软件系统以及传感器等设计等。将D-S证据理论引入对不同的涡流检测手段的集成检测结果中来,对检测结果进行了数据融合,以置信概率为特征量来表征缺陷识别,提高了缺陷检测的准确性和检测概率。针对航空装备无损检测实际需求,通过相关实验验证了系统的检测性能。
     针对航空无损检测的实际需求,提出了一种全新的涡流无损检测方法—脉冲交变磁场测量技术(PACFM),该检测方法集成了脉冲涡流检测和ACFM交变磁场测量两种检测方法,通过优化传感器结构、信号处理方法、信号源激励模式等方面融合了PECT和ACFM技术的优势、抑制或消除了单一检测方法的缺点。通过比较分析实验研究,PACFM技术不尽具有良好的深层缺陷检测能力而且具备优异的缺陷定量能力。ACFM技术以场量测量为基础,具有能够定量评估缺陷尺寸、无需同被测物体接触、对提离效应不敏感等优点,但是一般只适用于被测物体表面缺陷的检测,对深埋隐藏缺陷的检测能力较差。脉冲涡流无损检测由于脉冲信号中含有丰富的频谱谐波分量,能够对不同深度的缺陷产生作用,在多层结构深层缺陷检测方面效果较好。然而,由于采用瞬态响应信号时域特征量进行分析,容易受到外界噪声干扰且提离效应影响明显,进而极大降低缺陷检出概率。针对这种实际情况,提出了一种脉冲交变磁场测量技术,该技术集成融合了两种检测技术各自的优势,降低或减少了各自的劣势,采用脉冲周期信号激励矩形传感器线圈,提取瞬态脉冲响应信号的特征量描述三维磁场场量值,采用场量测量和瞬态信号分析相结合的方法实现缺陷识别与定量评估。与传统ACFM技术相比,PACFM不仅具有等同的表面缺陷检测能力,而且具有优异的深层缺陷识别与定量评估能力。
     对脉冲交变磁场测量技术在深层缺陷的定量评估和定性分析方面进行深入的研究,引入并定义了“立体蝶形图”、“DPV-峰值偏差”以及“标准偏差比率”三个特征量,应用于缺陷的定性检测、定量评估以及缺陷分类中,基于脉冲涡流谱分析的研究方法,对双层复合结构中的缺陷进行了分类研究,提出了基于差分谱分析的三维缺陷检测信息FFT谱分析方法,能够实现良好的针对双层复合结构缺陷分类效果。在讨论了ACFM检测技术中采用的二维蝶形图判断模型的基础上,结合PACFM技术特点,提出了“立体蝶型图”的三维判断模型,该模型增加了一维信息量,不尽能有效提高缺陷检测的精度和准确性,亦能提高对包含传感器提离效应在内的干扰抑制;以“DPV-峰值偏差”为特征量,重点研究PACFM技术的缺陷扫描过程以及缺陷的定量评估;基于脉冲涡流谱分析的研究方法,对双层复合结构中的缺陷进行了分类研究,研究结果表明基于三维缺陷检测信息FFT谱分析方法能够取得有效的缺陷分类效果。
     本文的研究成果已通过专家鉴定,系统样机也已投入我军某新型战机的日常维护和定期检测中,真正满足了装备无损检测对集成化、小型化、快速化以及原位化的检测需求,受到应用单位的一致好评,有效地减少了维护人员的工作量,降低了对操作人员经验的依赖,并极大缩短了现场检修时间,提高了检测效率。
Integrated eddy current non-destructive testing (IECNDT) including allthe advantages of different NDT techniques has been going to be theinevitable trend of eddy current non-destructive techniques in future.Integrated eddy current non-destructive testing technique has not only thecapability of single eddy current testing technique, but also higheraccuracy through the unifying data interface and data fusion. Accordingto the inspecting practical needs of miniaturization, in-situ and fastoperation, some in-depth studys on several crucial issues of IECNDT systemhad been made, for instance, system model analysis, eddy current testingsystem optimization and several other key aspects. The main researchcontents and innovations are as follows.
     Based on analysis of the physical and theoretical basis of the ECT,the common physical models and calculation methods of ECT are discussed.The impedance characteristic of the sensor and induced eddy currentdistribution researched. Some optimizations for ECT system are carried outincluding digital controlled bridge and the pulsed signal generator. Basedon Maxwell law, the electromagnetic potential function is used to expressthe time harmonic electromagnetic problem excited by sine signal and thetraditional coil sensor is expressed by a simplified axisymmetric model.The impendance and magnetic field distribution affected by eddy currenteffect are analyzed. In the paper, optimizations for ECT system are carriedout including a digital controlled bridge and the pulsed signal generator,which are based on the analysis of ECT system structures. All the researchwould support the work of integrated eddy current testing technique.
     A novel common principle-layer model and a common function-layer modelare proposed. Based on the models, a deep study on dual-bus and dividedlayer system architecture was carried out. A novel integrated eddy currentsignal generator signal generator and conditioner. There are differencesbetween different ECT techniques. Through analyzing principle of ECT, basedon the design thinking of integration, fast inspection and replaceconfiguration, a novel common principle-layered model is proposed. Throughanalyzing function of ECT system, a novel common functional layered model is brought forward. And then, dual-bus and divided-layered systemarchitecture studied. A design of integration eddy current signal generatorand conditioner is made based on the models, which support the work ofintegrated eddy current testing technique.
     IECNDT systems based on the thought of fast operation, modulation aredesigned and implemented. It is a hotspot to employ multiplenon-destructive testing methods for enhancing the probability of detection;meanwhile, there are increasing requirements of rapidity, intelligence andintegration in in-situ aviation NDT. A novel integrated ECNDT system wasdeveloped based on the universal model of eddy current testing system inprinciple and function. The system has modularized and reconfigurablesystem architectures and employs dual-bus structure: PCI and IIC. Itcontains not only functions of PECT, general ECT, MFECT, ACFM and AECT,but also integration of multiple ECNDT methods, like PACFM (PEC and ACFM).The system of integrated eddy current nondestructive testing has beensuccessfully used in some aviation filed, which has obtained a goodevaluation.
     Traditional alternating current field measurement (ACFM) technique hasadvantages of quantitative defect detection and non-contact feature, butpoor detective performances on deep-layer defects. Pulsed eddy currenttesting (PECT) has a better detectability in deep-layer defect, but poorerquantitative performances than ACFM, and moreover, it is easily interferedby lift-off due to ultilising transient signal analysis method so asdifficult to be applied practically. A method of alternating current filedmeasurement with pulsed signal excitation was proposed, which implementsdefect detection and quantitative evaluation by means of transient signalanalysis combined with3D magnetic field measurement based on pulsedresponse signal. Some features which can reflect the magnetic fieldtendency were extracted. Through the study we found that Pulsed AC fieldmeasurement has not only an equivalent detective performance on surfacedefects, but also an excellent performance on defect identification andevaluation of deep-layer defect.
     A deep study of defect detection for deep-layered structure is madeusing proposed PACFM. Some novel characteristic variables, for example, DPV, are proposed. Quantitative evaluation for deep-layercorrosion in aircraft multi-layer structure is extremely important forhealthy monitoring and lifetime prediction of aircraft. A novel AC fieldmeasurement method with pulsed excitation was proposed, which implementsdeep-layer corrosion detection and quantitative evaluation based on pulsedresponse signal using magnetic field measurement method. The feature whichcan reflect the magnetic field perturbation caused by corrosion wasextracted and the research on quantitative length evaluation for deep-layercorrosion on the basis of response signal fromBz probe was made. Moreoverthe experiments for studying the influences of different depth and widthof corrosions on the quantitative length evaluation were carried out.
     The results of this paper have been identified by experts. The systemprototype has been put into the day-to-day maintenance and periodic testingof a new type of aeroplane in our army, which turely meet the needs of thenon-destructive testing equipment integration, miniaturization, fast andin-situ detection and got the praise from application units. It haseffectively reduced the workload of the maintenance staff and dependenceon operator experience, moreover has greatly shorten the time on-sitemaintenance, improve the detection efficiency.
引文
[1]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社,2002:2-4.
    [2]美国无损检测学会.美国无损检测手册(电磁卷)[M].北京:世界图书出版公司,1996:28~38:21-22,901-921.
    [3]徐可北,周俊华.涡流检测[M].北京:机械工业出版社,2004:1,23-25.
    [4]任吉林,林俊明.电磁无损检测[M].北京:科学出版社,2008:1-3,70-72.
    [5]田武刚.航空发动机关键构件内窥涡流集成化原位无损检测技术研究[D].长沙:国防科技大学,2009:15-19.
    [6]高军哲.多频涡流无损检测的干扰抑制和缺陷检测方法研究[D].长沙:国防科学技术大学,2011:37-47.
    [7] A.Sophian, G.Y.Tian, J.Rudlin. Electromagnetic and eddy current NDT: a review.Insight,2001,43(5):302-306.
    [8] J.B.Nestleroth. In line inspection technologies for mechanical damage and SCCin pipelines. Final Report, Contract No.DTRS57-97-C-0010,2000:23-28.
    [9]谢宝宗.材料复合式无损检测及其信号处理系统[D].南京:华南理工大学,2007.54-64.
    [10] Klyuev V V, Fedosenko Y K.50th Anniversary of Non-Destructive Testing inRussia[C].17th World Conference on Nondestructive Testing2008, Shanghai,China. Oct.25-28,2008:1-9.
    [11] Shen G T. Progress of Nondestructive Testing and Evaluation in China[C].17thWorld Conference on Nondestructive Testing2008, Shanghai, China. Oct.25-28,2008:1-14.
    [12] Geng R S. An Overview of the Rapidly Developing Non-Destructive TestingTechnology in China[C].17th World Conference on Nondestructive Testing2008, Shanghai, China. Oct.25-28,2008:1-6.
    [13] Regor S, Nathanael G, Ken C, et al. Nondestructive Methods and Special TestInstrumentation Supporting NASA Composite Overwrapped Pressure VesselAssessments[C].48th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference, Honolulu, Hawaii. Apr.23-26,2007:1-18.
    [14]耿荣生,郑勇.航空无损检测技术发展动态及面临的挑战[J].无损检测,2002,24(1):1-5.
    [15] Joubert P Y, Bihan Y Le, Placko D. Localization of Defects in Steam GeneratorTubes Using a Multi-Coil Eddy Current Probe Dedicated to High SpeedInspection[J]. NDT&E International,2002,(35):53-59.
    [16]曾祥照.无损检测文化概论[J].无损探伤,2002,(2):34-37.
    [17]黄越雯.电涡流检测在电机铁芯生产过程中的应用[D].杭州:浙江大学,2004
    [18]石井勇伍郎.无损检测学[M].北京:机械工业出版社,1993:1-2.
    [19] Libby H L. Introduction to Electromagnetic Nondestructive Test Methods[M].New York: Robert Kriegger Publisher Company,1979:1-10.
    [20] Ramos H G, Ribeirol A L, Je dík P, et al. Eddy Current Testing of ConductiveMaterials[C]. IEEE International Instrumentation and Measurement TechnologyConference2008, Vancouver Island, Canada. May12-15,2008:1-5.
    [21]康宜华,宋凯,杨建桂等.几种电磁无损检测方法的工作特征[J].无损检测,2008,30(12):928-930,933.
    [22]刘松平.无损检测在航空工业中的机遇与挑战[J].航空制造技术,2009,(25):62-66.
    [23]林俊明.电磁(涡流)检测技术现状及发展趋势[J].航空制造技术,2004,(40):40-41.
    [24] Forsyth D S, Lepine B A. Development and Verification of NDI for CorrosionDetection and Quantification in Airframe Structures[J]. Review of QuantitativeNondestructive Evaluation,2002,(21):1787-1791.
    [25]谢小荣,杨小林.飞机损伤检测[M].北京:航空工业出版社,2006:6-8.
    [26]候维娜,屈双慧.涡流检测的现状及新进展[J].重庆工学院学报(自然科学版),2007,21(8):67-70.
    [27] Meyendor N, Hoffmann J, Shell E. Early Detection of Corrosion in AircraftStructure[J]. Review of Quantitative Nondestructive Evaluation,2002,(21):1792-1797.
    [28]任吉林.电磁无损检测的新进展[J].无损探伤,2001,(5):1-2,28.
    [29]游凤荷.涡流检测技术的某些新进展[J].无损检测,2001,23(2):70-73,77.
    [30]陈金贵.掌上型数字涡流探伤仪的研制[D].南昌:南昌航空大学,2007.
    [31]刘宝,徐彦霖,王增勇等.涡流检测技术及进展[J].测控技术,2006,25(3):80-82.
    [32] Raine A, Lugg M. A Review of the Alternating Current Field MeasurementInspection Technique[J]. Sensor Review,1999,19(3):207-213.
    [33]康中尉.基于场量测量和频率扫描技术的电磁无损检测技术研究[D].长沙:国防科学技术大学,2005:1-9.
    [34] Raine A. Cost Benefit Applications Using the Alternative Current FieldMeasurement Inspection Technique[J]. Insight: Non-Destructive Testing andCondition Monitoring,2002,44(1):25-30.
    [35]陈建忠,史耀武.无损检测交变磁场测量法[J].无损检测,2001,23(3):96-99.
    [36] Laenen C. Additional Applications With the Alternating Current FieldMesurement (ACFM) Technique[J]. Insight: Non-Destructive Testing andCondition Monitoring,1998,40(12):860-863.
    [37] Dariush M S, Reza F M.1-D Probe Array for ACFM Inspection of Large MetalPlates[J]. IEEE Transactions on Instrumentation and Measurement,2002,51(2):374-382.
    [38] Papaelias M P, Lugg M C, Roberts C, et al. High-Speed Inspection of RailsUsing ACFM Techniques[J]. NDT&E International,2009,(42):328-335.
    [39] Raine G A, Smith N. NDT of On and Offshore Oil and Gas Installations Usingthe ACFM Technique[J]. Materials Evaluation,1996,54(4):461-465.
    [40]杨宾峰.脉冲涡流无损检测若干关键技术研究[D].长沙:国防科学技术大学2006:1-12.
    [41]幸玲玲,王恩荣.脉冲涡流检测中系统冲激响应的快速计算[J].中国电机工程学报,2005,25(20):147-150.
    [42]张斌强,田贵云,王海涛等.脉冲涡流检测技术的研究[J].无损检测,2008,30(10):750-753.
    [43]余付平,朱荣新,王韫江等.脉冲涡流检测技术的研究进展和展望[J].无损检测,2008,30(11):842-846,857.
    [44] Tsuboi H, Seshima N, Sebestyén I, et al. Transient Eddy Current Analysis ofPulsed Eddy Current Testing by Finite Element Method[J]. IEEE Transactions onMagnetics,2004,40(2):1330-1333.
    [45] Clauzon T, Thollon F, Nicolas A. Flaws Characterization With Pulsed EddyCurrents NDT[J]. IEEE Transactions on Magnetics,1999,35(3):1873-1876.
    [46] Kiwa T, Kawata T, Yamada H, et al. Fourier-Transformed Eddy CurrentTechnique to Visualize Cross-Sections of Conductive Materials[J]. NDT&EInternational,2007,(40):363-367.
    [47]王春艳,陈铁群,张欣宇.脉冲涡流检测技术的某些进展[J].无损探伤,2005,29(4):1-4.
    [48]何赟泽.脉冲涡流无损检测技术研究[D].长沙:国防科技大学,2008.
    [49] József P. Numerical Calculation Method for Pulsed Eddy-Current Testing[J].IEEE Transactions on Magnetics,2002,38(2):1169-1172.
    [50] Tai C C, Yang H C. Pulsed Eddy Current for Deep Metal Surface CracksInspection[J]. Review of Progress in Quantitative Nondestructive Evaluation,2001,(20):354-360.
    [51]范孟豹,黄平捷,叶波等.脉冲涡流解析模型研究[J].浙江大学学报(工学版),2009,43(9):1621-1624.
    [52]杨宾峰,罗飞路,张玉华等.飞机多层结构中裂纹的定量检测及分类识别[J].机械工程学报,2006,42(2):63-67.
    [53] Murner C, Hansen J P. Buried Corrosion Detection in Multi-Layer AirframeStructures[C].17th World Conference on Nondestructive Testing2008, Shanghai,China. Oct.25-28,2008:1-7.
    [54]林俊明.多频涡流检测原理及应用[J].无损检测,1996,18(1):23-26.
    [55]林俊明,余兴增,林春景等.基于小波分析的涡流信号去噪处理[J].无损检测,2003,25(5):257-259.
    [56]张连玉.预多频技术在汽车零件检测中的应用与研究[J].汽车工艺与材料,2002,(3):34-38.
    [57]楼敏珠,张云柯,程英丽.一种基于预多频涡流检测技术的钢球硬度分选系统[J].理化检验,2009,45(12):780-783.
    [58]曾照鸿.预多频涡流硬度分选技术的应用[J].装备维修技术,2001,(1):29-31.
    [59]单韶峰.涡流及预多频检测技术[J].汽车制造业,2008,(7):48-50,54.
    [60]任吉林.涡流检测技术近20年的进展[J].无损检测,1998,20(5):121-128.
    [61]张玉华.基于场-路耦合模型的涡流探头设计及提离干扰抑制方法研究[D].长沙:国防科技大学,2010年.
    [62] Bartels K A, Fisher J L. Multifrequency Eddy Current Image ProcessingTechniques for Nondestructive Evaluation[C]. IEEE International ConferenceImage Process1995, Washington, USA. Oct.23-26,1995:486-489.
    [63] He D F, Yoshizawa M. Dual-Frequency Eddy-Current NDE Based on High-TcRF SQUID[J]. Physica C-Superconductivity and Its Applications,2002,(383):223-226.
    [64] Liu Z, Tsukada K, Hanasaki K, et al. Two-Dimensional Eddy Current SignalEnhancement via Multifrequency Data Fusion[J]. Research in NondestructiveEvaluation,1999,(11):165-177.
    [65] Xiang P, Ramakrishnan S, Cai X, et al. Automated Analysis of Rotating ProbeMulti-Frequency Eddy Current[J]. International Journal of AppliedElectromagnetics and Mechanics,2000,(12):151-164.
    [66] Crowther P. Nondestructive Evaluation of Coatings for Land Based Gas TurbingsUsing a Multi-Frequency Eddy Current Technique[C].16th World Conference onNondestructive Testing2004. Montreal, Canada. Aug.30-Sep.3,2004:1-7.
    [67] Ida N, Xu B Q. An Analytic Approach to Characterization of the Remote FieldEffect[J]. Review of Progress in Quantitative Nondestructive Evaluation,1991,(10A):309-316.
    [68]徐小杰.铁磁性管道中轴向裂纹的远场涡流检测技术研究[D].长沙:国防科学技术大学,2008:1-11.
    [69]严舒.远场涡流无损检测技术的发展与应用[J].石油科技论坛,2008,(3):55-56.
    [70] Atherton D L. Remote Field Eddy Current Inspection[J]. IEEE Transactions onMagnetics,1995,31(6):4142-4147.
    [71] Schmidt T R. The Remote Field Eddy Current Inspection Technique[J]. MaterialsEvaluation,1984,42(2):225-230.
    [72] E2097-00, Standard Practice for In Situ Examination of Ferromagnetic HeatExchanger Tubes Using Remote Field Testing[S].
    [73] Shin Y K. Design of Encircling Remote Field Eddy-Current Probe[J]. IEEETransactions on Magnetics,2002,38(2):1273-1276.
    [74] Kim D, Upda L, Upda S. Remote Field Eddy Current Testing for Detection ofStress Corrosion Cracks in Gas Transmission Pipelines[J]. Materials Letters,2004,(58):2102-2104.
    [75] Yasunishi M, Ohtsuka Y, Nishkawa M. Testing of CircumferentialDiscontinuities Using Remote Magnetic Field Analysis[J]. Materials Evaluation,2005,63(3):335-338.
    [76] Teitsma A, Takach S, Maupin J, et al. Remote-Field Eddy-Current Inspection ofUnpiggable Pipelines[J]. Pipeline World,2005,(9):5-12.
    [77] Mackintosh D, Cagle L, Russell D. A New ASTM Standard for Remote FieldTesting[J]. Materials Evaluation,2000,(10):1213-1215.
    [78] Grimberg R, Udpa L, Savin A, et al.2D Eddy Current Sensor Array[J]. NDT&EInternational,2006,(39):264-271.
    [79]赵磊.阵列涡流无损检测技术的研究及进展[J].无损探伤,2009,33(2):19-22.
    [80]丁天怀,陈祥林.电涡流传感器阵列测试技术[J].测试技术学报,2006,20(1):楼敏珠,郭韵.基于涡流阵列传感器的高强度螺栓扫描检测成像系统设计[J].无损检测,2009,31(6):485-487,496.
    [81] Leclerc R, Samson R. Eddy Current Array Probe for Corrosion Mapping onAgeing Aircraft[J]. Review of Progress in Quantitative NondestructiveEvaluation,2000:489-496.
    [82]林俊明,李同滨,林发炳等.阵列涡流探头在钢管探伤中的实验研究[J].钢管,2001,30(3):39-40.
    [83] Goldfine N, Schlicker D, Sheiretov Y. Conformable Eddy-Current Sensors andArrays for Fleetwide Gas Turbine Component Quality Assessment[J].Transactions of the ASME,2002,(124):904-909.
    [84] Chen X L, Ding T H. Flexible Eddy Current Sensor Array for ProximitySensing[J]. Sensors and Actuators A,2007,(135):126-130.
    [85] Chen G M, Li W, Wang Z X. Structural Optimization of2-D Array Probe forAlternating Current Field Measurement[J]. NDT&E International,2007,(40):455-461.
    [86] Huang H Y, Sakurai N, Takagi T. Design of an Eddy-Current Array Probe forCrack Sizing in Steam Generator Tubes[J]. NDT&E International,2003,(36):515-522.
    [87]程玉华,周肇飞,蔡鹏.法拉第磁光效应在可视化涡流检测中的应用[J].激光技术,2007,31(1):22-24,28.
    [88]邬冠华,任吉林,吴彦.磁光/涡流成象技术中的法拉第磁光效应的研究[J].无损检测,2001,23(10):415-420.
    [89] Radtke U, Zielke R, Rademacher H-G. Application of Magneto-Optical Methodfor Real-Time Visualization of Eddy Currents With High Spatial Resolution forNondestructive Testing[J]. Optics and Lasers in Engineering,2001,(36):251-268.
    [90] Novotny P, Sajdl P, Machá P. A Magneto-Optic Imager for NDTApplications[J]. NDT&E International,2004,(37):645-649.
    [91]王雅萍,朱目成.磁光/涡流成像无损检测技术的研究[J].激光与红外,2005,35(7):515-517.
    [92]程玉华,周肇飞,尹伯彪.磁光/涡流实时成像检测系统的研究[J].光学精密工程,2006,14(5):798-801.
    [93] Sbib W C L, Fitzpatrick G L. Magneto-Optic Imaging Technology: A New Toolfor Aircraft Inspection[J]. The AMPTIAC Quarterly,2001,6(3):17-23.
    [94]任吉林,吴彦,邬冠华.磁光成像技术在航空构件涡流检测中的应用[J].仪表技术与传感器,2001,(12):36-38.
    [95] Cheng C C, Dodd. C V, Deeds W E. General Analysis of Probe Coils NearStratified Conductors[J]. International Journal of Nondestructive Testing,1971,(3):109-130.
    [96] Dodd C V, Deeds W E. Analytical Solutions to Eddy-current Probe-coilProblems[J]. Journal of Applied Physics,1968,39(6):2829-2838.
    [97] Theodoulidis T P, Kriezis E E. Series Expansion in Eddy Current NondestructiveEvaluation Models[J]. Journal of Materials Processing Technology,2005,161(1-2):343-347.
    [98] Bowler J R. Eddy-Current Interaction With an Ideal Crack. I. the ForwardProblem. Journal of Applied Physics[J],1994,75(12):8138-8144.
    [99]幸玲玲,盛剑霓.涡流检测中平板导体的理想裂缝模型[J].中国电机工程学报,2002,22(2):41-46.
    [100]雷银照.时谐电磁场解析方法[M].北京:科学出版社,2000:73-107,178-218.
    [101] Machado V M. Eddy Current and Impedance Evaluation Using aTwo-Dimensional Finite Element Method[J]. IEEE Transactions on EnergyConversion,1993,8(3):362-368.
    [102]黄平捷,吴昭同,严仍春.多层厚度电涡流检测阻抗模型仿真及验证[J].仪器仪表学报,2004,25(4):24-28.
    [103] Tanaka M, Ikeda K, Tsuboi H. Fast Simulation Method for Eddy CurrentTesting [J]. IEEE Transactions on Magnetics,2000,36(4):1728-1731.
    [104] Badics Z, Matsumoto Y, Aoki K. An Effective3-D Finite Element Scheme forComputing Electromagnetic Field Distortions Due to Defects in Eddy-CurrentNondestructive Evaluation[J]. IEEE Transactions on Magnetics,1997,33(2):1012-1020.
    [105]朱卫星.神经网络在电磁无损检测技术中应用的研究[D].哈尔滨:哈尔滨理工大学,2005.
    [106]蒋齐密,张新访,刘土光.电涡流检测系统中的电磁场仿真[J].计算机仿真,2000,17(5):36-39.
    [107]雷银照.三维探伤涡流场及其逆问题的研究[D].北京:清华大学,1995:51-58.
    [108]谢德馨.三维涡流场的有限元分析[M].北京:机械工业出版社,2008:41-99.
    [109] Yan M, Upda S, Mandayan S, et al. Solution of Inverse Problems inElectromagnetic NDE Using Finite Element Method[J]. IEEE Transactions onMagnetics,1998,34(5):2924-2926.
    [110] Norton S J, Bowler J R. Theory of Eddy Current Inversion [J]. Journal ofApplied Physics,1993,73(2):501-512.
    [111] Wang B, Basart J P, Moulder J C. Fast Eddy Current Forward Models UsingArtificail Neural Networks[J]. Review of Progress in Quantitative NondestructiveEvaluation,1997,(16):789-795.
    [112] Wilde J, Lai Y. Design Optimization of an Eddy Current Sensor Using theFinite-Elements Method[J]. Microelectronics Reliabililty,2003,(43):345-349.
    [113]幸玲玲,王东进.涡流检测中的组合神经网络模型[J].电子学报,2002,30(5):734-737.
    [114]游凤荷,黄樟灿,孙砚飞等.粗糙集的约简算法在涡流传感器设计中的应用[J].无损检测,2003,25(3):117-120.
    [115]高扬华,张光新,黄平捷.基于GMR传感器的电涡流检测系统关键技术研究[J].传感器与微系统,2009,28(11):31-33,36.
    [116]陈亮,阙沛文,李亮.巨磁阻传感器在涡流检测中的应用[J].无损检测,2005,27(8):399-401.
    [117] Kim J, Yang G, Udpa L. Classification of Pulsed Eddy Current GMR Data onAircraft Structures [J]. NDT&E International,2010,(43):141-144.
    [118] Vacher F, Alves F, Gilles-Pascaud C. Eddy Current Nondestructive TestingWith Giant Magneto-Impedance Sensor [J]. NDT&E International,2007,(40):439-442.
    [119] Pattabiraman M, Nagendran R, Janawadkar M P. Rapid Flaw Depth EstimationFrom SQUID-Based Eddy Current Nondestructive Evaluation [J]. NDT&EInternational,2007,(40):289-293.
    [120] Krause H J, Kreutzbruck M V. Recent Developments in SQUID NDE [J].Physica C-Superconductivity and Its Applications,2002,(368):70-79.
    [121]江忠胜,丁红胜.超导量子干涉器无损检测的应用与研究进展[J].无损检测,2009,31(1):61-67,71.
    [122]白世武,丁红胜.直流超导量子干涉器无损检测的原理与应用[J].无损检测,2006,28(5):242-244,255.
    [123] Tian G Y, Sophian A, Taylor D, et al. Wavelet-Based PCA DefectClassification and Quantification for Pulsed Eddy Current NDT[J]. IEEProceedings-Science Measurement Technology,2005,152(4):141-148.
    [124] Shin B H. Independent Component Analysis for Enhanced Feature ExtractionFrom Non-Destructive Evaluation[D]. Michigan: Michigan State University,2004:28-83.
    [125]何岭松,周义刚,康宜华.数字化电磁无损检测信号的频域数字滤波[J].无损检测,2003,25(4):195-197.
    [126]孙晓云,陈德智,刘东辉等.小波变换在涡流无损检测中的应用[J].电工电能新技术,2000,(3):60-64.
    [127] Au-Yang M K, Griffith J C. Analysis of Eddy Current Data Using aProbabilistic Neural Network(PNN)[J]. Journal of Pressure Vessel Technology,2002,(124):261-264.
    [128] Grman J, Ravas R, Syrová L. Application of Neural Networks inMultifrequency Eddy-Current Testing[J]. Measurement Science Review,2001,1(1):25-28.
    [129]徐丽等.铸件缺陷无损检测方法的研究现状[J].铸造,2002,151(19):535-540
    [130] Udpa L, Ramuhalli P, Benson J, et al. Automated Analysis of Eddy CurrentSignals in Steam Generator Tube Inspection[C].16th World Conference onNondestructive Testing2004. Montreal, Canada. Aug.30-Sep.3,2004:1-8
    [131]孙金立.无损检测及在航空维修中的应用[M].北京:国防工业出版社,2004:1-11.
    [132]刘秀丽.超声波检测螺栓头下裂纹的检测概率曲线测定[J].机械强度.2002,24(4):626-628.
    [133]祝世兴,李永杰.基于翼梁结构的无损检测数据融合技术[J].中国民航大学学报.2007,25(6):46-49.
    [134]张清华,陈铁群等.超声与涡流复合式无损检测的机理与应用[J].现代制造工程.2010,3:140-143.
    [135]林俊明.电磁检测技术的发展与新成果[J].工程与实验.2011,51(1):1-3.
    [136]张思全,陈铁群等.复合无损检测技术在飞机结构缺陷检测中的应用[C]..IMCA高峰论坛2006:75-78.]
    [137]胡祥超,罗飞路,唐莺.航空原位集成涡流无损检测系统[J].无损检测,2011,33(3):59-62.
    [138]耿荣生.从罗马会议看无损检测技术的发展方向[J].无损检测.2001,23(1):2-6
    [139]林俊明.NDT集成新技术时代的到来[J].无损检测.2008.30(4):208-210
    [140] Reza K.Maryam R. et, al. Using AC field measurement data at an arbitraryliftoff distance to size long surface-breaking cracks in ferrous metals[J]. NDT&Einternational.41(2008):169-177.
    [141] D.Horn, W.R.Mayor. NDE reliability gains from combining eddy-current andultrasonic testing [J]. NDT&E International.33(2000):351-362
    [142] Liu Z, Forsyth D S, Lepine B A, et al. Quantifying Aircraft Hidden Corrosionby Using Multi-modal NDI Techniques[J]. Review of QuantitativeNondestructive Evaluation Vol.23,2004American Institute of Physics:1355~1362.
    [143] Zagrebelny V, Troitsky V, Voronina Y. Combined Use of Visual-optical andEddy Current Methods on Non-destructive Testing in Valuation of the Defects inStructural Elements [C].16thWorld Conference on Nondestructive Testing, Aug2004-Montreal, Canada.
    [144] Gupta K, Ghasr M T, Kharkovsky S,et al. Fusion of Microwave and EddyCurrent Data for a Multi-modal Approach in Evaluating Corrosion under Paintand in Lap Joints [C]. Review of Quantitative Nondestructive Evaluation Vol.26,2007American Institute of Physics:611~618.
    [145] Edwards R S, Sophian A, Dixon S, et al. EMAT and Eddy Current Dual Probefor Detecting Surface and Near-surface Defects [J]. Review of QuantitativeNon-destructive Evaluation Vol.25,2006American Institute of Physics:1515~1522.
    [146]范智勇.超声-涡流一体化NDE成象系统的研究[D].北京:北方交通大学,1998.
    [147]爱德森(厦门)电子有限公司.无损检测相关产品介绍[EB/OL].http://www.eddysun-ndt.com,2011-08-30.
    [148]帅家盛.全新的涡流检测仪器[J].航空制造技术,2004,(9):36~39.
    [149]盛新庆.计算电磁学要论[M].北京:科学出版社,2004:2-5.
    [150]哈林登, R F.正弦电磁场[M].上海:上海科学出版社,1964:1-39.
    [151]胡祥超,罗飞路,何赟泽.航空原位涡流无损检测传感器数控阻抗信号调理电路研究[J].传感技术学报,2010,23(8):1123-1128.
    [152] Maxim Integrated Products selection table for Digital Potentiometers [EB/OL].www.maxim-ic.com,2010-06-30.
    [153] Digital Potentiometers product selection guide [EB/OL]. www.analog.com,2010-05-30.
    [154] DCPs or DCCs product selection guide [EB/OL]. www.intersil.com,2010-05-31.
    [155] Zainal A. I, Catalin M, Gui Y. T. Pulsed eddy current testing with variable dutycycle on rivet joints [J]. NDT&E International.42(2009):599-605.
    [156] U. Godbole, A. Gokhale. Eddy Current Inspection in Aircraft Industry.National Seminar on NDE-2006.
    [157] HE Y Z, LUO F L, HU X C, et al.Defect identification and evaluation based onthree dimensional magnetic field measurement of pulsed eddycurrent[J].Insight,2009,51(6):310-314.
    [158] Yunze He, FeiLu Luo, XiangChao Hu. Pulsed eddy current technique for ECTdetection in aircraft riveted structures. NDT&E International43(2010)176-181.
    [159] SMITH R A, HUGO G R. Transient eddy current NDE for aging aircraftcapabilities and limitations [J]. Insight,2001,43(1):14-25.
    [160] LEPINE B A, GIGUERE J S R, FORSYTH D S. Applying pulsed eddy currentNDI to the aircraft hidden corrosion problem[J]. Review of Progress in QNDE,2000(11):449-456.
    [161] HE Y Z, LUO F L, HU X C. Quantitative defect detection based on3Dmagnetic field measurement of rectangular pulsed eddy current sensor [J].Chinese journal of scientific instrument.2010,31(2):347-351
    [162]何赟泽,罗飞路,胡祥超等.矩形脉冲涡流传感器的三维磁场测量与缺陷定量评估[J].仪器仪表学报,2010,31(2):347-351
    [163] ZAINAL A I, MANDACHE C, et al. Defect depth estimation using pulsededdy current with varied pulse width excitation [J]. Insight,2009,51(2):69-72.
    [164] ZAINAL A I, CATALIN M, et al. Pulsed eddy current testing with variableduty cycle on rivet joints [J]. NDT&E International,42(2009):599-605.
    [165] LI Y, TIAN G Y. Investigation of pulsed eddy current with pulse widthvariation [C]. Proceedings of the46th Annual British Conference on NDT,September2007:192-207.
    [166] TIAN G Y, SOPHIAN A. Defect Classification using a new feature for pulsededdy current sensors [J]. NDT&E International,2005,38(1):77-82.
    [167]张洪润等.传感器应用电路200例子[M].北京航空航天大学.2007:56-58.
    [168] LI S, HUANG S L, Zhao W. Development of differential probes in pulsed eddycurrent testing for noise suppression [J]. Sensors and Actuators A,135(2007):675-679.
    [169] Gerhard SCHEER, Lars FRISCHE. Borehole Inspection on Aircraft Structuresusing Multifrequency EC-Technique[C]. ECNDT2006.
    [170]白奉天.矩形线圈检测薄板缺陷的应用研究[D].长沙:国防科技大学,2003:35-37.
    [171]林俊明,林发炳等.EEC2008net电磁/超声网络智能系统的研制[J].无损检测.2010,32(8):637-640.
    [172]张开良,张小军等.基于NDT集成技术的空心轴探伤设备的研制[C].万方期刊会议论文集.2010:165-168
    [173]熊瑛,赵秀梅,林俊明.某型发动机篦齿盘均压孔裂纹研究[J].南昌航空大学学报.2007.21:75-81.
    [174]田武刚,罗飞路,潘孟春等.某型航空发动机篦齿盘裂纹的原位涡流检测[J].测试技术学报.2008.3:46-51.
    [175]崔福绵,付肃真.某型发动机九级篦齿盘均压孔裂纹及断裂分析.中国第五届航空航天装备失效分析会论文集[C].北京:国防工业出版社,2006:156-160.
    [176] Hu Xiangchao, Luo Feilu. Influences of Different Excitation Parameters uponPECT for Deep-layered Dfect Dtection with Rectangular Sensor[C].2010International Conference on Computer, Mechatronics, Control and ElectronicEngineering, Changchun, China. August24-26,2010:579-582.
    [177]胡祥超,罗飞路,何赟泽等.脉冲交变磁场测量技术缺陷识别与定量评估[J].机械工程学报,2011,47(4):17-22.
    [178] Hu Xiangchao, He Yunze, Luo Feilu. Defect Classification in Two-layerComplex Structures Based on Spectrum Analysis of Pulsed Eddy Current [J].Insight: Non-Destructive Testing and Condition Monitoring.2011,53(3):146-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700