用户名: 密码: 验证码:
并联式六维地震模拟振动台的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模拟振动台系统是飞行模拟系统、地震工程研究以及海浪发电系统等工作中的重要试验设备之一,以往的模拟振动台多采用液压的冗余支链驱动,以提高系统的驱动能力和承载力,这种驱动方式也带来了设备庞大、使用环境受限、造价高、污染大、维护成本高以及控制难度大等问题。
     本文在分析当前模拟振动台技术上存在不足的基础上,提出了种基于多电机驱动的冗余容错六维驱动模拟器,以机构学、运动学、动力学以模糊可靠性等理论为工具,对并联式六自由度地震模拟振动台进行了研究。主要工作有:
     (1)针对液压驱动导致设备体积庞大、造价高昂、使用环境受限、造价高、污染大、维护成本高以及控制难度大等问题,提出一种以伺服电机为驱动源的冗余容错模块,建立该模块的运动学模型,发现该驱动模块具有理想的冗余容错特性,适合作为模拟驱动器。
     (2)在总结振动台应用背景的基础上,设计地震模拟振动台并联机构基本构型,其特点为:工作平台具有空间六维运动自由度,且具有很强的承载力和驱动能力。把冗余容错驱动模块应用于此基本构型,设计多种不同类型的多伺服电机驱动振动模拟器,以适应振动模拟装备巨型化发展的趋势。
     (3)应用D-H方法建立了六维振动模拟器的运动学模型,给出了位置、速度和加速度的推导公式,并用ADAMS软件模拟,得出了运动学结果。
     (4)应用拉格朗日方程法建立了振动台支链的动力学方程,并进一步推导整个系统的动力学方程,并给出了基于ADAMS软件仿真的动力学结果,验证了动力学模型的正确性。
     (5)运用ANSYS进行了整机模态分析,给出了动平台在不同维数驱动力作用下的动力特性曲线和固有频率及振动特性描述,为地震模拟器的性能分析、控制系统设计等后续工作奠定了基础。
     (6)基于振动台的运动学模型给出了运动精度的推导,并推导了支链运动精度的模糊可靠性公式。
Vibration table system is one of the important test equipment for flight simulation system, earthquake engineering research, and wave power system. The previous shaking table always used hydraulic drive with redundant branched-chain, which is to improve drive capacity and carrying capacity. But hydraulic drive brought the affect of huge equipment, use of the environment is limited, high cost, pollution, high maintenance costs, and difficult to control and other issues.
     Based on the technical shortcomings, we propose a redundancy-based fault-tolerant multi-motor drive six-dimensional drive simulator in this thesis, and do research on the 6-DOF parallel shaking table, which related to kinematics, dynamics, fuzzy reliability theory, were studied. The main tasks are as follows.
     1. Based on the shortcomings of the hydraulic drive, a servo-motor driven source of redundant fault-tolerant modules is presented, kinematic model of the module is established, the module is suitable for driving as the redundant fault-tolerant feature of the driver module is found.
     2. Based on summarizing of the application background of vibration table, we design basic configuration of parallel mechanism, which is characterized as follows:working platform with six-dimensional space freedom of movement, and has a strong bearing capacity and drive capability. The redundant fault-tolerant driver modules are used in this basic configuration, and a variety of different types of multi-servo-motor drive vibration simulators are designed in order to meet the huge vibration simulations of trends.
     3. With D-H method to establish kinematic model of simulator, we give derivation formula of vibration's position, velocity and acceleration, and obtain kinematics results with ADAMS software simulation.
     4. With Lagrange equation method, we establish dynamic equations of branched-chain, and further derive the dynamic equations of the system, and give dynamic simulation results based on the ADAMS software.
     5. Do modal analysis with software ANSYS. The dynamic analysis lay the foundation for following design, control and manufacturing.
     6. Based on the kinematic model of shaking table, we give the derivation of motion accuracy and the fuzzy reliability formulas of branched-chain movement.
引文
[1]刘辛军,汪劲松,高峰.并联机器人机构新构型设计的探讨.中国机械工程.2001,12(12):1339-1442.
    [2]Peter Vischer. Improving the accuracy of parallel robots[J]. Thesen 1570, Lausanne(EPFL).1996.
    [3]张彦斐.一种冗余输入并联机器人研究[硕士论文].河北:河北工业大学.2003.
    [4]熊心元.重载设备冗余驱动关键技术研究[硕士论文].河北:河北工业大学.2007.
    [5]黄真,赵永生.6足步行机超确定输入能量最优解析.机械工程学报.1989,25(4):20-25.
    [6]Nakamura. Advanced Robotics:Redundancy and Optimization,,1997 [J]. Addison Wesly, MA, USA.1997.
    [7]E.Sahin Conkur, Rob Buckingham. Clarifying the Definition of Redundancy as Used in Robotics[J]. Robotica,1997.
    [8]Kock S, Regelungs strategien fur, Parallel Robot, Mit Redundant Antrieben. New Machine Concepts for Handling and Manufacturing Devices on the Basis of parallel structures[J]. Braunschweig,1998 (10):51-66.
    [9]张建政.六维并联冗余振动台控制规划与实验关键技术研究[硕士论文].河北:河北工业大学.2006.
    [10]于大泳.六自由度运动模拟器精度分析及其标定[博士论文].哈尔滨:哈尔滨工业大学.2006.
    [11]余发国,高峰,史巧硕.基于G_F集的锻造机操作机构型方法.机械工程学报.2008(11):152-159.
    [12]张建政,刘伟,高峰.6-PSS并联机器人动力学模型的牛顿-欧拉方法.机械设计与研究.2008,23(3):54-58.
    [13]张建政,高峰,赵现朝.六维并联地震模拟器机构的动力学分析与仿真.上海交通大学学报.2011,45(9):1263-1268.
    [14]Pollard.W.L.G.. Spray painting machine. US Patent. No.2.213.108. Aug.26,1940.
    [15]Gough.V.E. and Whitehall.S.G.. Universal tyre test machine. Proceedings of the FISITANinth International Technical Congress. May,1962:117-137.
    [16]D.Stewart. A platform with six degrees of freedom. Proceedings of the IMechE. 1965,180 (15):371-385.
    [17]刘溯.1T3R并联机器人设计及其实验装置研制[硕士论文].重庆:重庆大学.2006.
    [18]温兆麟,陈新,敖银辉,郑德涛.并联机构应用的领域及其构型研究.机床与液压.2005(5):6-9.
    [19]延皓,叶正茂,丛大成.空间对接半物理仿真原型试验系统研究.第四届全国流体传动与控制学术会议论文集.辽宁,2006:152-157.
    [20]邱志成,谈大龙,赵明扬.并联机器人的研究现状[J].研究开发.2004(4):27-30
    [21]张崇峰.空间对接机构综述[J].世界科学.2003(11):26-27.
    [22]张龙.虚拟轴机床设计方法研究[博士论文].南京:南京理工大学,2001.
    [23]卢强.基于Stewart平台机构的并联机床设计理论及方法研究[博士论文].南京:南京理工大学,2001.
    [24]周立华等.简介德国并联机构之研究[J].机械设计.2001(1):1-51.
    [25]韩俊伟,李玉亭,胡宝生.大型三向六自由度地震模拟振动台[J].地震学报.1998,20(3):327-331.
    [26]李为民,高峰.新型并联冗余驱动地震模拟台[J].机械设计.2004,21(3)22-24.
    [27]余晓芳.基于并联机构的单向地震模拟振动台分析[硕士论文].西安:西安理工大学.2009.
    [28]王燕华,程文,陆飞等.地震模拟振动台的发展[J].工程抗震与加固改造.2007,29(5):53-56.
    [29]胡宝生.我国自行研制的第一个大型三向地震模拟振动台.世界地震工程.1995,11(4):44-46.
    [30]Aiken, I.D., Kelly, J.M. University of California, B. E. E. R. C. Earthquake simulator testing and analytical studies of two energy-absorbing systems for multistory structures[M]. Earthquake Engineering Research Center, College of Engineering, University of California.1990.
    [31]Ogawa, N.Ohtani, K.Katayama. Construction of a three-dimensional, large-scale shaking table and development of core technology[J]. Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences.2001.
    [32]Sato, M.Inoue, T. General frame work of research topics utilizing the 3-D Full-Scale Earthquake Testing Facility[J]. Journal of Japan Association for Earthquake Engineering.2004,4 (3):448-456.
    [33]Ohtani, K.Ogawa, N.Katayama, T. In Project E-Defense 3-D full-scale earthquake testing facility[J].2003:223-234.
    [34]丛大成,于大泳,韩俊伟.Stewart平台的运动学精度分析和误差补偿[J].工程 设计学报[J].2006,13(3):162-165.
    [35]J Zhang, F Gao, H Yu and X Zhao. Use of an orthogonal parallel robot with redundant actuation as an earthquake simulator and its experiments[J]. Journal of Mechanical Engineering Science.2011.
    [36]宫金良,张彦斐,高峰.一种五自由度并联卧式机床构型设计[J].机械科学与技术.2007,26(8):1067-1070.
    [37]高峰,杨加伦,葛巧德.并联机器人型综合的GF集理论.科学出版社.2011.
    [38]J Zhang, F Gao, H Yu and X Zhao. Design and development of a novel redundant and fault-tolerant actuator unit for heavy-duty parallel manipulators. Journal of Mechanical Engineering Science.2011.
    [39]张建政.并联六维运动重载动态模拟器机构设计与性能研究[博士论文].上海:上海交通大学.2012.
    [40]张彦斐等.8-PSS冗余输入地震模拟器运动特性分析.机械科学与技术.2006,(25):809-812.
    [41]戴巍.6自由度并联机器人运动学分析[硕士论文].上海:东华大学.2006.
    [42]李为民,高峰.一种自均力冗余驱动接口模块.中国机械工程.2004.
    [43]高峰,张彦斐,宫金良.PSS型冗余输入并联机构静力学与运动学分析.机械设计与研究.2006,22(1):20-23.
    [44]方重.大型模拟地震振动台主要参数的确定及技术经济分析.世界地震工程.2001,17(4):135-138
    [45]Hollerbach J H, Wamp ler CW. The calibration index and taxono-my for robot kinematic calibration methods[J]. The International Journal of Robotics Research. 1996,15:573-591.
    [46]鲁德泉,陈维山.6-RSS并联机器人动力学模型的建立.机械工程师.2007(4):27-29.
    [47]http://baike.baidu.com/view/97668.htm
    [48]洪林.并联机器人精度分析与综合研究[博士论文].天津:天津大学.2004.
    [49]范大茵,陈永华.概率论与数理统计[M].杭州.浙江大学出版社,2003
    [50]John J.Craig. Introduction to Robotics Mechanics and Control[M]. Third Edition: 19-53.
    [51]孙志礼,陈良玉.实用机械可靠性设计理论与方法[M].科学出版社.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700