用户名: 密码: 验证码:
染色体显微操作系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物工程与微电子技术、新材料技术和新能源技术并列为影响未来国计民生的四大科学技术支柱。生物工程中诸如细胞器移植、基因注入、染色体微切等技术均涉及到显微操作,其中染色体微分离、微切割与微克隆技术在染色体的进化、基因组结构的研究、基因的分离与定位及物理图谱的构建等方面有着广泛的应用。但与此同时,染色体显微切割装备又是制约该技术的主要瓶颈之一。本文通过对现有染色体显微操作系统进行分析,以提高切割精度及效率为目标,采用宏微双驱动机构开发了新的具有多自由度冗余驱动的染色体显微操作系统,并对其性能设计、标定及精度分析等问题进行了研究,主要内容如下:
     (1)针对现有染色体显微操作系统自由度低、工作空间小等不足,提出了基于宏微双驱动机构的染色体显微操作系统。从操作平台构型、各机构尺寸设计、驱动器及传感器的选择、配套生物仪器的选择等方面介绍了该系统各组成部分的设计思路及参数选取。
     (2)根据玻璃针法进行染色体切割的特点及染色体显微操作系统的组成提出染色体切割的过程应分为宏动运动及微动运动两个部分,随后分别对6-PPPS宏动台、6-PSU宏动台及6-PSS微动台进行运动学分析,再分别针对宏动及微动两种情况计算各驱动副的驱动量用于控制程序编译。
     (3)提出了用于并联机构运动学标定的滚动迭代标定法。该方法通过激光跟踪仪测量移动副及动平台的位姿变化,逐段滚动迭代求出各连杆的误差参数。通过使用滚动迭代标定法对6-PPPS宏动台进行标定并与普通标定方法进行比较,证明了该方法能够有效解决大量误差参数同时计算时运算结果不收敛以及计算时间长的问题。
     (4)提出用于精度分析的EMGJI矩阵及相应的分析方法,可在精度分析时根据机构参数与动平台位姿之间的相互关系提前对运算结果进行筛选,从而减少求导时间,提高计算效率。通过使用EMGJI矩阵对6-PPPS宏动台及6-PSU宏动台进行精度分析并与普通方法进行比较,证明了该分析方法能有效减少精度分析时的计算量。
     (5)对玻璃针针尖在染色体切割过程中的受力弯曲情况进行了分析与建模。通过实验分析了进针角度及表面摩擦力对针尖弯曲程度的影响,并对小麦染色体进行试切割。
Bioengineering shows great effect on the national economy, together withmicroelectronics, advanced materials technology and new energy technology. Most of itstechnologies such as organelle transplantation, gene injection and chromosome microdissection involve micro manipulation. Chromosome micro dissection is widely used onthe research of chromosome evolution and genome structure, etc. However, chromosomemicro manipulator is the key factor that influences the development of chromosomemicro dissection.
     This article aims to increase the chromosome dissection accuracy and efficiency. Byanalyzing current chromosome micro manipulation systems, this article proposes a novelmulti-DOF redundant chromosome micro dissection system along with the analysis of itsperformance design, calibration and accuracy. The major contents are as follows:
     (1) According to the disadvantages of current chromosome micro dissectionmanipulator such as low DOF and small work space, etc. a novel macro micro dual drivechromosome dissection system was proposed. Both design idea and parameter selectionsof its components are shown. Work space and resolution are all measured both for macroand micro manipulators.
     (2) The chromosome dissection process, which is proposed based on thecharacteristics of chromosome dissection, is composed of two separate parts. One part ismacro movement, another is micro movement. The corresponding kinematic analysis of 6-PPPS macro manipulator,6-PSU macro manipulator and6-PSS micro manipulator areincluded along with the macro and micro movements.
     (3) A new external calibration method named rolling iterative calibration methodwas proposed. This method utilizes laser tracker to measure the displacements of all thelinear joints and the pose of the moving platform. Besides, it can solve the errorparameters one after another rather than all together. Comparing the proposed methodwith common method on the6-PPPS macro manipulator, the results can demonstrate thatrolling iterative calibration method can solve the non-convergence problem duringmassive calculation.
     (4) A method for accuracy analysis on non-redundant parallel robots with identicalserial limbs was proposed. By introducing a second level partial derivative matrix calledEMGJI matrix, the influences of geometry parameters acting on the moving platformthrough joint variables can be studied. The traditional differential method usuallyconducts partial derivative on all parameters. However, according to the rules weobtained, certain parameters can be excluded in advance from the calculation. Simulationbased on the6-PPPS and the6-PSU macro manipulators shows that calculation time onaccuracy analysis drops significantly for the proposed method comparing with traditionalmethod.
     (5) The deformation model of the glass needle during chromosome dissection hasbeen built. The influences on the deformation through puncture angle and surface frictionhas been described. The chromosome dissection experiment also demonstrates thevalidation of the proposed system.
引文
[1]. Scalenghe, F.,Turco, E.,Edstr6m, J. E., etc., Microdissection and Cloning of DNA from aSpecific Region of Drosophila melanogaster Polytene Chromosomes[J]. CHROMOSOMA,1981,82(2),pp205-216.
    [2]. Guan, X.-Y.,Trent, J. M.,Meltzer, P. S., Generation of band-specific painting probes from a singlemicrodissected chromosome[J]. Human Molecular Genetics,1993,2(8),pp1117-1121.
    [3]. Yu, J.,Qi, J.,Tong, S., etc., A region-specific microdissection library for human chromosome2p23-p25and the analysis of an interstitial deletion of2p23.3-p25.1[J]. Human Genetics,1994,93(5),pp557-562.
    [4]. Ji, F.,Qian, P.,Wu, G., etc., Experimental research of screening multidrug-resistant genes inhuman small cell lung cancer by chromosome microdissection[J]. Chinese Journal of Lung Diseases(Electronic Edition),2010,3(3),pp191-195.
    [5]. Fisher, E. M. C.,Cavanna, J. S.,Brown, S. D. M., Microdissection and microcloning of the mouseX chromosome[J]. Proceedings of the National Academy of Sciences of the United States of America,1985,82pp5846-5849.
    [6]. Goldammer, T.,Weikard, R.,Brunner, R., etc., Generation of chromosome fragment specificbovine DNA sequences by microdissection and DOP-PCR[J]. Mammalian Genome,1996,7(4),pp291-296.
    [7]. Pinton, A.,Ducos, A.,Yerle, M., Chromosomal rearrangements in cattle and pigs revealed bychromosome microdissection and chromosome painting[J]. Genetics Selection Evolution,2003,35(7),pp1-12.
    [8].戢福云,余其兴,郭一清, etc.,黄鳝单条染色体的显微分离及特异性检测[J].动物学报,2002,48(1),pp114-120.
    [9]. Sandery, M.,Forster, J.,Macadam, S., etc., Isolation of a sequence common to A-andB-chromosomes of rye (Secale cereale) by microcloning[J]. Plant Molecular Biology Reporter,1991,9(1),pp21-30.
    [10].胡赞民,崔丽华,王兰岚, etc.,王百合单条染色体和染色体片段的分离[J].遗传学报,1997,24(3),pp278-281.
    [11].邓传良,李湘阳,周坚,石蒜单染色体的显微分离及体外扩增[J].南京林业大学学报,2002,26(3),pp72-74.
    [12]. Houben, A., Chromosome Microdissection and Utilization of Microisolated DNA[J]. PlantCytogenetics,2012, pp257-270.
    [13]. Yu-ling, L. I. U.,Kunbo, W., Research Advances of Chromosome Micro-dissection Technologyand Its Utilization in Plants[J]. Journal of Anhui Agricultural Sciences,2010,38(16),pp8321-8324.
    [14].闫素丽.向日葵染色体核型分析及单染色体微切割、微分离和微克隆[D].硕士学位论文,内蒙古农业大学2009.
    [15].卢桂章,张建勋,面向生物工程实验的微操作机器人[J].南开大学学报:自然科学版,1999,32(003),pp42-46.
    [16].李旭东,宗光华,毕树生, etc.,生物工程微操作机器人视觉系统的研究[J].北京航空航天大学学报,2002,28(3),pp249-252.
    [17].王会香,陈立国,孙立宁, etc.,生物显微切割微操作仪的设计与研制[J].光学精密工程,2006,14(3),p416.
    [18]. Monajembashi, S.,Cremer, C.,Cremer, T., etc., Microdissection of human chromosomes by alaser microbeam[J]. Experimental Cell Research,1986,167(1),pp262-265.
    [19]. Fukui, K.,Minezawa, M.,Kamisugi, Y., etc., Microdissection of plant chromosomes by argon-ionlaser beam[J]. TAG Theoretical and Applied Genetics,1992,84(7),pp787-791.
    [20].王槐,周奕华,党本元, etc.,大麦染色体的激光微束切割、片段分离及体外扩增[J].科学通报,1998,43(1),pp736-740.
    [21]. Kunkel, L. M.,Tantravahi, U.,Eisenhard, M., etc., Regional localization on the human X of DNAsegments cloned from flow sorted chromosomes[J]. Nucleic Acids Research,1982,10(5),pp1557-1578.
    [22]. CF, L.,H, T.,NP, C., etc., Chromosome painting using chromosome-specific probes fromflow-sorted pig chromosomes[J]. Cytogenetics and cell genetics,1992,61(3),pp221-223.
    [23]. Schermelleh, L.,Thalhammer, S.,W. Heckl, H. P., etc., Laser Microdissection and Laser PressureCatapulting for the Generation of Chromosome-Specific Paint Probes[J]. BioTechniques,1999,27(2),pp362-367.
    [24]. Sharon, A.,N., H.,E, H. D. High bandwidth force regulation and inertia reduction using amacro/micro manipulator system[A], In The1988IEEE International Conference on Robotics&Automation[C], Philadelphia,04/24/1988-04/29/1988,1988; p6.
    [25]. Sharon, A.,N., H.,E, H. D., The macro/micro manipulator: an improved architecture for robotcontrol[J]. Robotics and computer-integrated manufacturing1993,10(3),pp209-222.
    [26]. Sharon, A.,N., H.,E, H. D. More Analysis and Experimentation on a Macro/Micro ManipulatorSystem[A], In ASME Winter Annual Meetinq[C], Boston, MA, USA, December,1987; pp417-422.
    [27]. Sharon, A. Enhancement of Robot Accuracy using a Macro/Micro Manipulator System[D].Massachusetts Institute of Technology Mechanical Engineering Department1983.
    [28].孙立宁,董为,杜志江,宏/微双重驱动机器人系统的研究现状与关键技术[J].中国机械工程,2005,16(1),pp89-93.
    [29]. Park, K. H.,Lee, J. H.,Kim, S. H., etc., High Speed Micro Positioning System Based onCoarse/Fine Pair Control[J]. Mechatronics,1995,5(6),pp645-663.
    [30].刘劲松,孙立宁,基于力反馈机器人宏/微操作系统的研究[J].电工技术学报,1996,11(3),pp37-41.
    [31]. NAGAI, K.,IWASA, S.,NAKAGAWA, Y., etc. Development of a redundant macro-micromanipulator for compliant motion[A], In Proceedings of the8th International Conference onAdvanced Robotics[C], Monterey, CA, USA,1997; pp707-712.
    [32]. Shim, J. H.,Cho, H. S., A new macro/micro robotic probing system for the in-circuit test ofPCBs[J]. Mechatronics,1999,9(6),pp589-613.
    [33]. Lee, D.-Y.,Cho, H. Precision force control via macro/micro actuator for surface mountingsystem[A], In The2002IEEE/RSJ InternationaI Conference on Intelligent Robots and Systems[C],Lausanne, Swiss,2002.
    [34].于保军,杨志刚,齐会良, etc.,基于显微视觉的宏/微双驱动微动台系统[J].农业机械学报,2008,39(2),pp125-129.
    [35]. Kwon, S. J.,Chung, W. K.,Youm, Y. On the coarse/fine dual-stage manipulators with robustperturbation compensator[A], In Proceedings of the2001IEEE International Conference on Roboticsand Automation[C], Seoul, Korea, May21-26,2001,2001; pp121-126.
    [36]. Salcudean, S. E.,Wong, N. M.,Hollis, R. L. A force-reflecting teleoperation system withmagnetically levitated master and wrist[A], In Proceedings of the1992IEEE InternationalConference on Robotics and Automation[C], Nice, France,1992; pp1420-1426.
    [37]. Hollis, R. L.,Salcudean, S. E.,Allan, A. P., A six-degree-of-freedom magnetically levitatedvariable compliance fine-motion wrist: design, modeling, and control[J]. IEEE Transactions onRobotics and Automation,1991,7(3),pp320-332.
    [38]. Unger, B.,Hollis, R. Design and operation of a force-reflecting magnetic levitation coarse-fineteleoperation system[A], In IEEE International Conference on Robotics and Automation[C], NewOrleans, USA, April26-May1,2004,2004; pp4147-4152.
    [39]. Sun, L.,Xie, H.,Rong, W., etc. Task-reconfigurable system for mems assembly[A], InProceedings of the2005IEEE International Conference on Robotics and Automation[C], Barcelona,Spain,18-22April2005,2005; pp832-837.
    [40]. Wang, W.,Duan, B.,Liu, H., etc., Inverse kinematics model of parallel macro-micro manipulatorsystem[J]. Chinese Science Bulletin,2000,45(24),pp2221-2226.
    [41]. Dong, W.,Sun, L. N.,Du, Z. J., Design of a precision compliant parallel positioner driven by dualpiezoelectric actuators[J]. Sensors and Actuators A: Physical,2007,135(1),pp250-256.
    [42]. Owinnett, J. E. Amusement device[P].1931.
    [43]. Stewart, D., A platform with six degrees of freedom[J]. Proceedings of the Institution ofMechanical Engineers,1965,180(1),pp371-386.
    [44].Fichter, E. F., A Stewart platform-based manipulator: general theory and practical construction[J].The International Journal of Robotics Research,1986,5(2),pp157-182.
    [45]. Raghavan, M., The Stewart platform of general geometry has40configurations[J]. Journal ofMechanical Design,1993,115(2),pp277-283.
    [46]. Nanua, P.,Waldron, K. J.,Murthy, V., Direct kinematic solution of a Stewart platform[J]. Roboticsand Automation, IEEE Transactions on,1990,6(4),pp438-444.
    [47]. Dasgupta, B.,Mruthyunjaya, T. S., The Stewart platform manipulator: a review[J]. Mechanismand Machine Theory,2000,35(1),pp15-40.
    [48]. Hunt, K. H., Kinematic geometry of mechanisms[M]. Cambridge Univ Press:1978.
    [49]. Herve, J. M. Design of parallel manipulators via the displacement group[A], In Proc of the9thworld Congress. On the Theory of Machine and Mechanism[C], Miland,1995; pp2079-2082.
    [50]. Herve, J. M., The Lie group of rigid body displacements, a fundamental tool for mechanismdesign[J]. Mechanism and Machine Theory,1999,34(5),pp719-730.
    [51]. Jin, Q.,Yang, T. L., Synthesis and analysis of a group of3-degree-of-freedom partially decoupledparallel manipulators[J]. Journal of Mechanical Design,2004,126p301.
    [52]. Jin, Q.,Yang, T. L. Synthesis and Analysis of a Group of3-Degree-of-Freedom DecouplingParallel Manipulators[A], In2002.
    [53]. Kong, X.,Gosselin, C. M., Type synthesis of3-DOF translational parallel manipulators based onscrew theory[J]. Journal of mechanical design,2004,126p83.
    [54]. Kong, X.,Gosselin, C. M., Type synthesis of3-DOF PPR-equivalent parallel manipulators basedon screw theory and the concept of virtual chain[J]. Journal of Mechanical Design,2005,127p1113.
    [55]. Kong, X.,Gosselin, C. M., Type synthesis of three-degree-of-freedom spherical parallelmanipulators[J]. The International Journal of Robotics Research,2004,23(3),pp237-245.
    [56]. Kong, X.,Gosselin, C. M., Type synthesis of3T1R4-DOF parallel manipulators based on screwtheory[J]. Robotics and Automation, IEEE Transactions on,2004,20(2),pp181-190.
    [57]. Gosselin, C., Determination of the Workspace of6-DOF Parallel Manipulators[J]. Journal ofMechanical Design,1990,112(3),pp331-336.
    [58]. Tahmasebi, F.,Tsai, L.-W., On the stiffnes of a novel six-degree-freedom parallelminimanipulator[J]. Journal of Robotic Systems,1995,12(12),pp845-856.
    [59]. Gosselin, C., Stiffness mapping for parallel manipulators[J]. Robotics and Automation, IEEETransactions on,1990,6(3),pp377-382.
    [60]. Thomas, M.,Yuan-Chou, H. C.,Tesar, D., Optimal actuator sizing for robotic manipulators basedon local dynamic criteria[J]. Transactions of the ASME Journal of Mechanisms, Transmissions, andAutomation in Design,1985,107(2),pp163-169.
    [61]. Klein, J.,Spencer, S.,Allington, J., etc., Optimization of a parallel shoulder mechanism to achievea high-force, low-mass, robotic-arm exoskeleton[J]. Robotics, IEEE Transactions on,(99),pp1-6.
    [62]. Gao, F.,Li, W.,Zhao, X., etc., New kinematic structures for2-,3-,4-, and5-DOF parallelmanipulator designs[J]. Mechanism and Machine Theory,2002,37(11),pp1395-1411.
    [63]. Cappel, K. L. Motion simulator[P].1967.
    [64]. Ohtani, K.,Ogawa, N.,Katayama, T., etc. Project "E-Defense":3-D full-scale earthquake testingfacility[A], In the Joint NCREE/JRC Workshop[C], Taipei, Taiwan, November17-20,2003; pp223-234.
    [65]. Ohsaki, M.,Kasai, K.,Hikino, T., etc., Overview of2007E-Defense blind analysis contestresults[J].14WCEE, Beijing, Oct,2008, pp12-17.
    [66]. Kasai, K.,Ooki, Y.,Motoyui, S., etc. E-defense Tests on Full-scale Steel Buildings: Part1-Experiments Using Dampers and Isolators[A], In2007.
    [67]. Suita, K.,Yamada, S.,Tada, M., etc. E-defense Tests on Full-scale Steel Buildings Part2-CollapseExperiments on Moment Frames[A], In2007.
    [68]. Van Den Einde, L.,Restrepo, J.,Conte, J. P., etc. Development of the George E. Brown Jr.network for earthquake engineering simulation (NEES) large high performance outdoor shake table atthe University of California, San Diego[A], In the13th World Conference on EarthquakeEngineering[C], Vancouver, B.C., Canada,2004; pp1-6.
    [69].张彦斐,官金良,李为民, etc.,一种6自由度冗余驱动并联机器人运动学分析及仿真[J].机械工程学报,2005,41(8),pp144-148.
    [70]. Zhang, J.,Gao, F.,Yu, H., etc., Use of an orthogonal parallel robot with redundant actuation as anearthquake simulator and its experiments[J]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2012,226(1),pp257-272.
    [71]. Zhao, Y.,Gao, F.,Li, W., etc., Development of6-dof parallel seismic simulator with novelredundant actuation[J]. Mechatronics,2009,19(3),pp422-427.
    [72].张建政,高峰,赵现朝, etc.,六维并联地震模拟器机构的动力学分析与仿真[J].上海交通大学学报,2011,45(9),pp1263-1268.
    [73]. Zhang, J.,Gao, F.,Yu, H. N. The research on application of a multi-DOF parallel manipulator asan earthquake simulator[A], In Proceedings of the16th International Conference on Automation&Computing[C], University of Birmingham, Birmingham, UK,11September2010,2010.
    [74]. Zhang, J.,Yu, H.,Gao, F., etc. Application of a novel6-DOF parallel robot with redundantactuation for earthquake simulation[A], In IEEE International Conference on Robotics andBiomimetics[C], Tianjin, China,2010; pp513-518.
    [75]. Ge, H.,Gao, F., Type design for heavy-payload forging manipulators[J]. Chinese Journal ofMechanical Engineering,2012,25(2),pp197-205.
    [76]. Hao, G.,Feng, G.,Yue, Y., The isomorphism identification of reducible performance for parallelmechanisms[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2012,226(3),pp798-807.
    [77]. Gao, F.,Ge, H., Direct kinematic analysis of a heavy-payload forging manipulator in the graspingstage[J]. Industrial Robot: An International Journal,2012,39(3),pp11-11.
    [78]. Clavel, R. Delta, a fast robot with parallel geometry[A], In Burckhardt, C. W., the18thInternational Symposium on Industrial Robots[C], Berlin, Germany,1988; pp91-100.
    [79]. Neumann, K. E. Robot[P]. March221988,1988.
    [80].蒋大申,未来的机床——美国G&L公司的VARIAX[J].机电一体化,1995,1(1),pp9-10.
    [81]. Weck, M.,Staimer, D., Parallel kinematic machine tools-current state and future potentials[J].CIRP Annals-Manufacturing Technology,2002,51(2),pp671-683.
    [82]. Bi, Z. M.,Jin, Y., Kinematic modeling of Exechon parallel kinematic machine[J]. Robotics andComputer-Integrated Manufacturing,2011,27(1),pp186-193.
    [83]. Tanikawa, T.,Arai, T.,Ojala, P., etc. Two-finger micro hand[A], In IEEE International Conferenceon Robotics and Automation[C],1995; pp1674-1679.
    [84]. Hesselbach, J.,Raatz, A. Compliant parallel robot with6DOF[A], In SPIE Microrobotics andMicroassembly III[C],2001; pp143-156.
    [85].孙立宁,安辉,压电陶瓷驱动并联微动机器人的研究[J].高技术通讯,1997,7(3),pp29-31.
    [86].王乐锋,荣伟彬,孙立宁,三支链六自由度并联柔性铰微动机器人的研究[J].光学精密工程,2007,15(4),pp529-534.
    [87].孙立宁,王振华,曲东升, etc.,六自由度压电驱动并联微动机构设计与分析[J].压电与声光,2003,25(4),pp277-279.
    [88].于靖军,毕树生,宗光华, etc.,面向生物工程的微操作机器人机构型综合研究[J].面向生物工程的微操作机器人机构型综合研究,2001,27(3),pp356-360.
    [89]. Wang, S. C.,Hikita, H.,Kubo, H., etc., Kinematics and dynamics of a6degree-of-freedom fullyparallel manipulator with elastic joints[J]. Mechanism and machine theory,2003,38(5),pp439-461.
    [90]. Yue, Y.,Gao, F.,Jin, Z., etc., Modeling and experiment of a planar3-DOF parallelmicromanipulator[J]. Robotica,2011,1(1),pp1-14.
    [91]. Yue, Y.,Gao, F.,Zhao, X., etc., Relationship among input-force, payload, stiffness anddisplacement of a3-DOF perpendicular parallel micro-manipulator[J]. Mechanism and MachineTheory,2010,45(5),pp756-771.
    [92]. Sorli, M.,Pastorelli, S., Six-axis reticulated structure force/torque sensor with adaptableperformances[J]. Mechatronics,1995,5(6),pp585-601.
    [93]. Dwarakanath, T. A.,Dasgupta, B.,Mruthyunjaya, T. S., Design and development of a Stewartplatform based force-torque sensor[J]. Mechatronics,2001,11(7),pp793-809.
    [94]. Kang, C. G., Closed-form force sensing of a6-axis force transducer based on the Stewartplatform[J]. Sensors and Actuators A: Physical,2001,90(1-2),pp31-37.
    [95].熊有伦,机器人力传感器的各向同性[J].自动化学报,1996,22(001),pp10-18.
    [96].赵现朝,高峰,并联机构的六维鼠标研制开发[J].机械设计,2003,20(6),pp15-17.
    [97]. Gao, M.,Li, T.,Yin, W. Calibration method and experiment of Stewart platform using a lasertracker[A], In Systems, Man and Cybernetics,2003. IEEE International Conference on[C],5-8Oct.2003,2003; pp2797-2802vol.3.
    [98]. Umetsu, K.,Furutnani, R.,Osawa, S., etc., Geometric calibration of a coordinate measuringmachine using a laser tracking system[J]. MEASUREMENT SCIENCE AND TECHNOLOGY,2005,16(2005),pp2466-2472.
    [99]. Bai, S.,Teo, M. Y., Kinematic Calibration and Pose Measurement of a Medical ParallelManipulator by Optical Position Sensors[J]. Journal of Robotic Systems,2003,20(4),pp201-209.
    [100]. Zhuang, H.,Yan, J.,Masory, O., Calibration of Stewart Platforms and Other ParallelManipulators by Minimizing Inverse Kinematic Residuals[J]. Journal of Robotic Systems,1998,15(7),pp395-405.
    [101]. Lu, R. S.,Li, Y. F., A global calibration method for large-scale multi-sensor visualmeasurement systems[J]. Sensors and Actuators A,2004,116(2004),pp384-393.
    [102]. Nahvi, A.,Hollerbach, J. M.,Hayward, V. Calibration of a parallel robot using multiplekinematic closed loops[A], In IEEE International Conferrence on Robotics and Automation[C], SanDiego, CA,1994; pp407-412.
    [103]. Pashkevich, A.,Chablat, D.,Wenger, P., Kinematic calibration of Orthoglide-typemechanisms from observation of parallel leg motions[J]. Mechatronics,2008,19(2009),pp478-488.
    [104]. Kang, D. S.,Seo, T. W.,Kim, J., Development and kinematic calibration for measurementstructure of a micro parallel mechanism platform[J]. Journal of Mechanical Science and Technology,2008,22(2008),pp746-754.
    [105]. Besnard, S.,Khalil, W. Calibration of parallel robots using two inclinometers[A], In IEEEInternational Conference on Robotics and Automation[C], Detroit, MI, USA,1999; pp1758-1763.
    [106]. Zhuang, H., Self-calibration of parallel mechanisms with a case study on Stewartplatforms[J]. IEEE Transactions on Robotics and Automation,1997,13(3),pp387-397.
    [107]. Khalil, W.,Besnard, S. e., Self Calibration of Stewart-Gough Parallel Robots Without ExtraSensors[J]. IEEE Transactions on Robotics and Automation,1999,11(6),pp1116-1121.
    [108]. Yang, G.,Chen, I.-M.,Lee, W. K., etc., Self-calibration of three-legged modularreconfigurable parallel robots based on leg-end distance errors[J]. Robotica,2001,19(2),pp187-198.
    [109]. Chiu, Y.-J.,Perng, M.-H., Self-calibration of a general hexapod manipulator with enhancedprecision in5-DOF motions[J]. Mechanism and Machine Theory,2003,39(1),pp1-23.
    [110]. Ren, X.-D.,Feng, Z.-R.,Su, C.-P., A new calibration method for parallel kinematics machinetools using orientation constraint[J]. International Journal of Machine Tools and Manufacture,2009,49(9),pp708-721.
    [111]. Huang, P.,Wang, J.,Wang, L., etc., Kinematical calcalibration of a hybrid machine tool withRegularization method[J]. International Journal of Machine Tools&Manufacture,2011,51(2011),pp210-220.
    [112]. Abtahi, M.,Pendar, H.,Alasty, A., etc., Calibration of parallel kinematic machine tools usingmobility constraint on the tool center point[J]. The International Journal of Advanced ManufacturingTechnology,2009,45(5),pp531-539.
    [113]. Hernández-Martínez, E. E.,C.S.López-Cajún,Jáuregui-Correa, J. C., Calibration of ParallelManipulators and their Application to Machine Tools. A State of the Art Survey[J]. Ingeniería.Investigación y Tecnología,2010, XI (2),pp141-154.
    [114]. P., L.,D., S.,A., R., etc. Singularity Based Calibration of3dof Fully Parallel PlanarManipulators[A], In12th IFToMM World Congress[C], Besacon,2007.
    [115]. Gosselin, C. M. Dexterity indices for planar and spatial robotic manipulators[A], InRobotics and Automation,1990. Proceedings.,1990IEEE International Conference on[C],13-18May1990,1990; pp650-655vol.1.
    [116]. Rao, A. B. K.,P.V.M.Rao,S.K.Saha Workspace and Dexterity Analyses of HexaslideMachine Tools[A], In Proceedings of the2003IEEE International Conference on Robotics&Automation[C], Taipei, Taiwan,2003.
    [117]. Liu, X.-J.,Wang, J.,Zheng, H.-J., Optimum design of the5R symmetrical parallelmanipulator with a surrounded and good-condition workspace[J]. Robotics and Autonomous Systems,2006,54(3),pp221-233.
    [118]. Yu, A. Geometric method for the accuracy analysis of a class of3-DOF planar parallelrobots[D]. Montreal, Quebec, Canada: McGill University Department of Mechanical Engineering andCentre for Intelligent Machines2009.
    [119]. Merlet, J. P., Jacobian, Manipulability, Condition Number, and Accuracy of ParallelRobots[J]. Journal of Mechanical Design,2006,128(1),pp199-205.
    [120]. Yu, A.,Bonev, I. A.,Zsombor-Murray, P., Geometric approach to the accuracy analysis of aclass of3-DOF planar parallel robots[J]. Mechanism and Machine Theory,2008,43(2008),pp364-375.
    [121]. Briot, S. b.,Bonev, I. A., Accuracy analysis of3-DOF planar parallel robots[J]. Mechanismand Machine Theory,2008,43(2008),pp445-458.
    [122]. Merlet, J. P. Computing the worst case accuracy of a PKM over a workspace or atrajectory[A], In The5th Chemnitz Parallel Kinematics Seminar[C], Chemnitz, Germany,2006; pp83-96.
    [123]. Ropponen, T.,Arai, T. Accuracy analysis of a modified Stewart platform manipulator[A], In1995; pp521-525vol.1.
    [124]. Veitschegger, W.,Wu, C. H., Robot accuracy analysis based on kinematics[J]. Robotics andAutomation, IEEE Journal of,1986,2(3),pp171-179.
    [125]. Wang, S. M.,Ehmann, K. F., Error model and accuracy analysis of a six-DOF Stewartplatform[J]. Journal of manufacturing science and engineering,2002,124p286.
    [126]. Su, Y. X.,Duan, B. Y., The mechanical design and kinematics accuracy analysis of a finetuning stable platform for the large spherical radio telescope[J]. Mechatronics,2000,10(7),pp819-834.
    [127]. Meng, J.,Zhang, D.,Li, Z., Accuracy analysis of parallel manipulators with jointclearance[J]. Journal of Mechanical Design,2009,131p011013.
    [128]. Briot, S.,Bonev, I. A., Accuracy analysis of3T1R fully-parallel robots[J]. Mechanism andMachine Theory,2010,45(5),pp695-706.
    [129]. Mei, J.,Ni, Y.,Li, Y., etc. The error modeling and accuracy synthesis of a3-DOF parallelrobot Delta-S[A], In2009; pp289-294.
    [130]. Xiaolin, D.,Qitao, H.,Junwei, H., etc. Accuracy synthesis of Stewart platform used in testingsystem for spacecraft docking mechanism[A], In2009; pp7-10.
    [131]. Fang-wei, P. A. N., Accuracy synthesis of new typed6DOF parallel robot based onself-adaptive genetic algorithm[J]. Journal of Machine Design,2009.
    [132].张晓辉,高峰,新型机器人手指六维力传感器系统设计[J].传感器技术,2003,22(9),pp22-24.
    [133].赵现朝. Stewart结构六维力传感器设计理论与应用研究[D].燕山大学2002.
    [134]. Merlet, J. P., Parallel Robots (Second Edition)[M]. Springer:2006.
    [135]. Carbone, G., Stiffness analysis and experimental validation of robotic systems[J]. Frontiersof Mechanical Engineering,2011,6(2),pp182-196.
    [136]. Meng, J.,Zhang, D.,Li, Z., Accuracy Analysis of Parallel Manipulators With JointClearance[J]. Journal of Mechanical Design,2009,131(011013),pp1-9.
    [137]. Craig., J. J., Introduction to Robotics: Mechanics and Control, Third Edition[M]. UpperSaddle River, New Jersey Pearson/Prentice Hall:2005.
    [138]. Nahvi, A.,Hollerbach, J. M. The Noise Amplification Index for Optimal Pose Selection inRobot Calibration[A], In IEEE International Conference on Rohotics and Automation[C],Minneapolis, Minnesota,1996; pp647-654.
    [139]. Legnani, G.,Tosi, D.,Adamini, R., etc., Calibration of Parallel Kinematic Machines: Theoryand Applications. In Industrial Robotics: Programming, Simulation and Applications, Huat, L. K., Ed.Pro Literatur Verlag, Germany/ARS, Austria:2006; p690.
    [140]. Han, C.-S.,Tesar, D.,Traver, A. The Optimum Design of a6DOF Fully ParallelMicromanipulator for Enhanced Robot Accuracy[A], In ASME Design Automation Conference[C],Montréal,1989; pp357-363.
    [141]. Gosselin, C. M., The optimum design of robotic manipulators using dexterity indices[J].Robotics and Autonomous Systems,1992,9(4),pp213-226.
    [142]. Mavroidis, C.,Dubowsky, S.,Drouet, P., etc. A systematic error analysis of roboticmanipulators: application to a high performance medical robot[A], In Proceedings of the1997IEEEIntemational Conference on Robotics and Automation[C], Albuquerque, New Mexico,1997; pp980-985.
    [143]. Yao, R.,Tang, X.,Li, T., etc., Error Analysis and Distribution of6-SPS and6-PSSReconfigurable Parallel Manipulators[J]. Tsinghua Science&Technology,2010,15(5),pp547-554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700