用户名: 密码: 验证码:
非饱和土中桩的动力响应与循环荷载试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:桩的动力响应研究是桩支承建筑物抗震设计和桩基完整性检测的理论基础。由于问题的复杂性,已往研究大多将桩侧土简化为单相或饱和两相弹性介质。众所周知,工程环境所处的近地表土层往往处于非饱和状态,为固、液、气三相的多孔介质材料。因此,本文在非饱和土动力学最新研究成果的基础上,基于三相多孔介质波动方程,充分考虑各相材料间的惯性和粘性耦合效应以及毛细压力作用,通过理论分析和模型试验对非饱和土-桩动力相互作用问题,非饱和土弹性半空间中埋置振源时的基本解以及桩的长期荷载循环特性进行了系统的研究,主要研究内容包括以下几个方面:
     (1)针对半空间埋置振源下的三维Lamb问题,运用方位角的Fourier级数展开和径向Hankel变换技术,直接对频域内的非饱和土波动方程进行求解,并结合地基表面的边界条件以及荷载作用面上的连续性条件,求得了非饱和均质弹性半空间内部作用任意振源时的动力Green函数,退化到饱和土中的解与已有文献的结果相吻合。
     (2)考虑基质吸力对土体动剪切模量的影响,建立了竖向简谐振动作用下非饱和土和单桩耦合动力响应模型,求解了轴对称条件下非饱和土体的动力控制方程和基桩的一维波动方程,根据桩土界面衔接条件以及桩端不同支承形式,给出了嵌岩桩和非端承桩的桩顶复动刚度、速度导纳以及土层阻抗在频域内的解答。
     (3)通过Helmholtz矢量分解及分离变量法解耦波动方程,并将桩等效为能考虑其剪切变形的Timoshenko杆件,采用Novak三维连续介质模型对非饱和土中端承桩的稳态水平振动进行了研究;同时利用半空间水平动力Green函数,建立了非饱和土中水平受荷单桩的Fredholm积分方程,得到了单桩动力阻抗的封闭形式解答,考察了桩身位移、弯矩和剪力沿深度的分布规律。
     (4)在Novak平面应变模型的基础上,利用散射域中的水平位移衰减函数,通过位移场的叠加考虑桩-桩间的波动干扰和群桩效应,推导了水平稳态谐振下非饱和土中单桩及群桩基础的阻抗函数以及各单桩分担的荷载,并讨论了饱和度、频率和桩间距等参数对基础振动特性的影响。
     (5)推导了两种不混溶流体饱和多孔介质中Rayleigh波的弥散特征方程,讨论了波速、自由场位移分布及粒子运动轨迹,随后在求得非饱和土半空间自由波场解的基础上,采用Winkler地基梁模型,考虑上部结构惯性力的作用,对频域内全埋入单桩和部分埋入单桩在Rayleigh波作用下的横向动力响应进行了研究,分析了饱和度、轴向荷载和自由段桩长等因素与桩的地震反应之间的相互影响关系。
     (6)通过开展红黏土中单桩轴向循环荷载模型试验,对不同循环荷载比和加载频率下桩的长期动力特性进行了研究,并从桩侧土剪切刚度和侧阻退化两方面出发,对循环荷载作用下桩顶累积沉降机理进行了分析。在FLAC3D中,实现了能够反映剪切刚度疲劳退化的修正Hardin-Drnevich(H-D)模型,并对常法向刚度(CNS)循环剪切下侧阻退化进行了数值模拟。
Abstract:Pile dynamics is the theoretical basis of both seismic design for building supporting by piles and integrity testing of piles. Owing to the complexity of the problem, the soils were usually assumed to be single-phase or saturated two-phase elastic medium for simplicity in the past studies. As we know, the near-surface soil existing in engineering environment is mostly unsaturated, and consists of three-phase system: solid skeleton and pores, with water and air filled in the pores. Based on the theoretical framework of unsaturated soil, and following the motion equations for multiphase porous media, the soil-pile dynamic interaction, the fundamental solution of internal dynamic source in a semi-infinite unsaturated elastic medium, and the deformation characteristics of pile subjected to cyclic loading are investigated in this paper via analytical and experimental studies. The viscous and inertial couplings between each phase together with the capillary pressure are taken into account during the process of derivation. The main contents of this thesis are listed as follows:
     (1) The three dimensional lamb's problem under consideration is to determine the motion of an unsaturated poroelastic half-space subjected to internal excitation. By the application of the techniques of Fourier expansion and Hankel integral transforms with respect to the circumferential and radial coordinates, respectively, the general solution of the governing partial differential equations in the transformed domain is obtained. Furthermore, the closed form Green's functions of an unsaturated homogeneous elastic half-space to an arbitrary internal harmonic loading is derived, with consideration of the boundary conditions of the surface and the continuity conditions at the depth of loading. The formulas developed are confirmed in comparison with the degenerated solution of saturated soil.
     (2) Considering the effect of matric suction on the dynamic shear modulus, the interaction model between the unsaturated soil and single pile under vertical harmonic motion is proposed. The resistance factor and vibration modes of soil layer are first obtained from the direct decoupling of the governing equations under axisymmetric conditions. On the basis of the assumptions of perfect contact along the pile-soil and the supporting types at the pile tip (rigid bearing or Winkler model), the motion equation of the pile treated as a bar and described by the conventional1-D structure vibration theory is then solved. The complex stiffness at the top of the pile, the velocity mobility together with the soil impedances in the frequency domain are derived ultimately.
     (3) By virtue of the Helmholtz decomposition and variable separation method to the decoupling of motion equation, the dynamic characteristics for the horizontal vibration of an end-bearing pile in unsaturated soil are investigated through the three-dimensional continuum model proposed by Novak. The bending, shearing effects of pile are accounted for by modeling the pile as a Timoshenko beam. Moreover, utilizing the dynamic Green's function for unsaturated half-space under interior horizontal disk loading, the second kind of Fredholm integral equations describing the dynamic response of the laterally loaded single pile are established via the fictitious pile method. The semi-analytical solutions for dynamic stiffness of the pile head are developed in the frequency domain, and the distributions of pile displacement, bending moment and shear force along the depth are examined.
     (4) With the Novak plain strain model, approximate dynamic impedance of single pile subjected to lateral vibration is first derived within the framework of wave theory of three-phase porous medium. A modified attenuation function of horizontal movements in scattering domain is then obtained, and the response of single pile is further extended to pile groups by employing the principle of superstition based on pile-pile interaction factor. On the basis of the developed solutions, the effects of parameters including the saturation, the excitation frequency and the pile spacing on the dynamic behavior as well as the load sharing are studied.
     (5) The dispersion equations of Rayleigh waves in a porous medium saturated by two immiscible viscous fluids are deduced, and the variations of wave velocity, displacement distribution of free field and particle motion are discussed with the changes of soil properties. And then, considering the inertia effect of the superstructures, and within the obtained wave field solution for unsaturated soil half space, closed-form expressions for transverse seismic performance are presented through a dynamic Winkler model, for both fully-buried and partially-buried single pile in the unsaturated soil excited by incident Rayleigh waves. In addition, the influences of the saturation, the axial loading and the pile length of extended segment on the seismic response of pile are determined through numerical calculation.
     (6) The performance of small-scale model piles embedded into red clay and tested under cyclic axial loadings is presented. The influences of cyclic loading levels and rates on long-term dynamic behaviors of pile are observed, and the mechanics of accumulated settlement is analyzed from the views of shear stiffness softening and skin friction degradation. Furthermore, the modified Hardin-Drnevich (H-D) model, being capable of reflecting the fatigue degradation of shear stiffness, is achieved in the FLAC3D, and the behavior of shear resistance degradation during quasi-static cyclic shearing under constant normal stiffness (CNS) condition is numerically investigated.
引文
[1]Fredlund D. G, Rahardjo H. Soil mechanics for unsaturated soils[M]. New York: John Wiley & Sons,1993.
    [2]谢定义.对非饱和土基本特性的学习与思考[C].第二界全国非饱和土学术研讨会论文集.杭州:浙江大学出版社,2005:1-13.
    [3]Richart F. E., Woods J. R. D., J.R.Jrhal. Vibrations of soils and foundations[M]. Englewood Cliffs., NJ:Prentiee-Hall,1970.
    [4]Smeulders D., Dongen M. V., Rosette J. D. L. Waves in partially saturated porous media[J]. Transport in Porous Media,1992,9(1-2):25-37.
    [5]Yang J., Sato T. Interpretation of seismic vertical amplification observed at an array site[J]. Bulletin of the Seismological Society of America,2000,90(2): 275-285.
    [6]Yang J. Saturation effects of soils on ground motion at free surface due to inclined SV waves[J]. Journal of Engineering Mechanics, ASCE,2002,128(12): 1295-1303.
    [7]Poulos H. G Pile behaviour-theory and application [J]. Geotechnique,1989,39(3): 365-415.
    [8]Randolph M. F. Science and empiricism in pile foundation design[J]. Geotechnique,2003,53(10):847-875.
    [9]Beresnev I. A., Johnson P. A. Elastic-wave stimulation of oil production:A review of methods and results[J]. Geophysics,1994,59(6):1000-1017.
    [10]Dai J., Xu H., Snyder F., et al. Detection and estimation of gas hydrates using rock physics and seismic inversion:examples from the northern deepwater gulf of mexico[J]. The Leading Edge,2004,23(1):60-66.
    [11]Shelander D., Dai J., Bunge G. Predicting saturation of gas hydrates using pre-stack seismic data, gulf of mexico[J]. Marine Geophysical Researches,2010, 31(1-2):39-57.
    [12]Roberts P. M., Sharma A., Uddameri V., et al. Enhanced DNAPL transport in a sand core during dynamic stress stimulation[J]. Environmental engineering science,2001,18(2):67-79.
    [13]Cowin S. C. Bone poroelasticity[J]. Journal of Biomechanics,1999,32(3): 217-238.
    [14]Hughes E. R., Leighton T. G, Petley G W., et al. Estimation of critical and viscous frequencies for Biot theory in cancellous bone[J]. Ultrasonics,2003, 41(5):365-368.
    [15]Barden L. Consolidation of compacted and unsaturated clays[J]. Geotechnique, 1965,15(3):267-286.
    [16]Mancuso C., Jommi C., D'onza F. Unsaturated soils:Research and applications[M]. Berlin:Springer,2012.
    [17]Biot M. A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics,1955,26:182-185.
    [18]Biot M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I:low-frequency range[J]. Journal of the Acoustical Society of America, 1956a,28:168-178.
    [19]Biot M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II:higher-frequency range[J]. Journal of the Acoustical Society of America,1956b,28:179-191.
    [20]Stoll R. D. Acoustic waves in saturated sediments[C].Hampton L. Physics of Sound in Marine Sediments. New York:Springer,1974:19-39.
    [21]Rasolofosaon P. N. J. Plane acoustic waves in linear viscoelastic porous media: Energy, particle displacement, and physical interpretation [J]. Journal of the Acoustical Society of America,1991,89:1532-1550.
    [22]Biot M. A. Theory of deformation of a porous viscoelastic anisotropic solid[J]. Journal of Applied Physics,1956c,27:459-467.
    [23]Biot M. A. Theory of finite deformations of porous solids[J]. Indiana University Mathematics Journal,1972,21:597-620.
    [24]Plona T. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies [J]. Applied Physics Letters,1980,36:259-261.
    [25]Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics,1951, 16(4):673-685.
    [26]Domenico S. N. Effect of water saturation on seismic reflectivity of sand reservoirs encased in shale[J]. Geophysics,1974,39(6):759-769.
    [27]Lee M. W. Elastic velocities of partially saturated unconsolidated sediments[J]. Marine and Petroleum Geology,2004,21:641-650.
    [28]Mavko G., Nolen-Hoeksema R. Estimating seismic velocities at ultrasonic frequencies in partially saturated rocks[J]. Geophysics,1994,59(2):252-258.
    [29]Yang J. Influence of water saturation on horizontal and vertical motion at a porous soil interface induced by incident P wave[J]. Soil Dynamics and Earthquake Engineering,2000,19:575-581.
    [30]Yang J. Rayleigh surface waves in an idealised partially saturated soil[J]. Geotechnique,2005,55(5):409-414.
    [31]Chao G., Smeulders D. M., Dongen M. E. H. Dispersive surface waves along partially saturated porous media[J]. Journal of the Acoustical Society of America,2006,119(3):1347-1355.
    [32]Bedford A., M. S. A model for wave propagation in gassy sediments[J]. Journal of the Acoustical Society of America,1982,73(2):409-417.
    [33]Smeulders D. M. J., De La Rosette J. P. M., Dongen M E. H. V. Waves in partially saturated porous media[J]. Transport in Porous Media,1992,9(1-2): 25-37.
    [34]Smeulders D. M. J., Van Dongen M. E. H. Wave propagation in porous media containing a dilute ga-liquid mixture:Theory and experiments[J]. Journal of Fluid Mechanics,1997,343:351-373.
    [35]Brutsaert W. The propagation of elastic waves in unconsolidated unsaturated granular mediums[J]. Journal of Geophysical Research,1964,69(2):360-373.
    [36]Berryman J. G, Thigpen L., Chin R. C. Y. Bulk elastic wave propagation in partially saturated porous solids[J]. Journal of the Acoustical Society of America, 1988,84(1):360-373.
    [37]Santos J. E., Corbero J. M., Jim D. J. Static and dynamic behavior of a porous solid saturated by a two-phase fluid[J]. Journal of the Acoustical Society of America,1990a,87(4):1428-1438.
    [38]Santos J. E., Douglas J. J., Corbero J. M., et al. A model for wave propagation in a porous medium saturated by a two-phase fluid[J]. Journal of the Acoustical Society of America,1990b,87(4):1439-1448.
    [39]Santos J. E., Ravazzoli C. L., Gauzellino P. M., et al. Simulation of waves in poro-viscoelastic rocks saturated by immiscible fluids. Numerical evidence of a second slow wave[J]. Journal of Computational Acoustics,2004,12(1):1-21.
    [40]Carcione J. M., Cavallini F., Santos J. E., et al. Wave propagation in partially saturated porous media:Simulation of second slow wave[J]. Wave motion,2004, 39:227-240.
    [41]Zhao H. B., Wang X. M. Acoustic wave propagation simulation in a poroelastic medium saturated by two immiscible fluids using a staggered finite-difference with a time partition method[J]. Sci China Ser G-Phys Mech Astron,2008,51(7): 723-744.
    [42]Albers B. Analysis of the propagation of sound waves in partially saturated soils by means of a macroscopic linear poroelastic model [J]. Transp Porous Med, 2009,80(1):173-192.
    [43]Albers B. On a micro-macro transition for a poroelastic three-component model[J]. Journal of Applied Mathematics and Mechanics,2010,90(12):929-943.
    [44]李保忠.非饱和多孔介质中波的传播[D].杭州:浙江大学,2007.
    [45]徐明江.非饱和土地基与基础的动力响应研究[D].广州:华南理工大学,2010.
    [46]Brooks R. H., Corey A. T. Hydraulic propertied of porous media[R].Hydrology Paper. No.3. Fort Collins:Colorado State University,1964.
    [47]Van Genuchten M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980,44(5):892-898.
    [48]Bowen R. M. Continuum physics 3:Theory of mixture[M]. New York:Academic Press,1976.
    [49]张引科.非饱和土混合物理论及其应用[D].西安:西安建筑科技大学,2001.
    [50]赵成刚,张雪东.非饱和土中功的表述以及有效应力与相分离原理的讨论[J].中国科学(E辑:技术科学),2008,38(9):1453-1463.
    [51]Vardoulakis I., Beskos D. E. Dynamic behavior of nearly saturated porous media[J]. Mechanics of Materials,1986,5(1):87-108.
    [52]Wei C., Muraleetharan K. K. A continuum theory of porous media saturated by multiple immiscible fluids:Ⅰ. Linear poroelasticity[J]. International Journal of Engineering Science,2002a,40(16):1807-1833.
    [53]Wei C., Muraleetharan K. K. A continuum theory of porous media saturated by multiple immiscible fluids:Ii. Lagrangian description and variational structure[J]. International Journal of Engineering Science,2002b,40(16): 1835-1854.
    [54]Hanyga A. Two-fluid porous flow in a single-temperature approximation[J]. International Journal of Engineering Science,2004,42(13):1521-1545.
    [55]Lo W. C., Sposito G., Majer E. Wave propagation through elastic porous media containing two immiscible fluids[J]. Water Resources Research,2005,41(2): 1-20.
    [56]Lo W. C. Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium[J]. Advances in Water Resources,2008,31(10): 1399-1410.
    [57]Lo W. C., Sposito G., Majer E., et al. Motional modes of dilatational waves in elastic porous media containing two immiscible fluids[J]. Advances in Water Resources,2010,33(3):304-311.
    [58]Yeh C. L., Lo W. C., Jan C. D., et al. Reflection and refraction of obliquely incident elastic waves upon the interface between two porous elastic half-spaces saturated by different fluid mixtures[J]. Journal of Hydrology,2010,395(1-2): 91-102.
    [59]Lu J. F., Hanyga A. Linear dynamic model for porous media saturated by two immiscible fluids[J]. International Journal of Solids and Structures,2005, 42(9-10):2689-2709.
    [60]Lu J.F., Hanyga A., Jeng D. S. A mixture-theory-based dynamic model for a porous medium saturated by two immiscible fluids[J]. Journal of Applied Geophysics,2007,62(2):89-106.
    [61]Chen W. Y., Xia T. D., Hu W. T. A mixture theory analysis for the surface-wave propagation in an unsaturated porous medium[J]. International Journal of Solids and Structures,2011,48((16-17)):2402-2412.
    [62]Chen W. Y., Xia T. D., Sun M. M., et al. Transverse wave at a plane interface between isotropic elastic and unsaturated porous elastic solid half-spaces[J]. Transport in Porous Media,2012,94(1):417-436.
    [63]Slattery J. C. Momentum, energy,and mass transfer in continua[M]. New York: Krieger Pub Co,1981.
    [64]Tuncay K., Corapcioglu M. Y. Wave propagation in poroelastic media saturated by two fluids[J]. Journal of Applied Mechanics,1997,64:313-319.
    [65]Tuncay K., Corapcioglu M. Y. Body wave sin poroelastic media saturated by two immisciblefluids[J]. Journal of Geophysical Research,1996,101(B11): 149-159.
    [66]Aroral A., Tomar S. K. Elastic waves at porous/porous elastic half-spaces saturated by two immiscible fluids[J]. Journal of Porous Media,2007,10(8): 751-768.
    [67]Sharma M. D., Kumar M. Reflection of attenuated waves at the surface of a porous solid saturated with two immiscible viscous fluids[J]. Geophysical Journal International,2011,184(1):371-384.
    [68]Sharma M. D. Rayleigh waves in a partially saturated poroelastic solid[J]. Geophysical Journal International,2012,189(2):1203-1214.
    [69]Lamb H. On the propagation of tremors over the surface of an elastic solid[J]. Philosophical Transactions of the Royal Society of London Series A,1904,203: 1-42.
    [70]Paul S. On the displacement produced in a porous elastic half-space by an impulsive line load (non-dissipative case)[J]. Pure Applied GeoPhysics,1976a, 114:605-614.
    [71]Paul S. On the disturbance produced in a semi-infinite poroelastic medium by a surface load[J]. Pure Applied GeoPhysics,1976b,114:615-627.
    [72]Norris A., N. Radiation from a point source and scattering theory in a fluid-saturated porous solid[J]. Journal of the Acoustical Society of America, 1985,77(6):2012-2023.
    [73]Bonnet G. Basic singular solutions for a poroelastic medium in the dynamic range[J]. Journal of the Acoustical Society of America,1987,82(5):1758-1762.
    [74]Boutin C., Bonnet G., Bard P. Y. Green functions and associated sources in infinite and stratified poroelastic media[J]. Geophysical Journal of the Royal Astronomy Society,1987,50:521-550.
    [75]Philippacopoulos A. J. Waves in a partially saturated layered half space:Analytic formulation[J]. Bulletin of the Seismological Society of America,1987,77(5): 1838-1853.
    [76]Philippacopoulos A. J. Lamb's problem for fluid-saturated porous media[J]. Bulletin of the Seismological Society of America,1988,78(2):908-923.
    [77]Bougacha S., Tassoulas J. L., Roesset J. M. Analysis of foundations on fluid-filled poroelastic stratum[J]. Journal of Engineering Mechanics,ASCE, 1993,119(8):1632-1648.
    [78]Cai Y. Q., Meng K., Xu C. J. Stable response of axisymmetric two-phase water-saturated soil[J]. Journal of Zhejiang University SCIENCE,2004,5(9): 1022-1027.
    [79]Simon B. R. An analytical solution for the transient respose of saturated porous elastic solid:[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1984,8(4):381-398.
    [80]Kaynia A. M., Banerjee P. K. Fundamental solutions of biot's equation of dynamic poroelasticity [J]. International Journal of Engineering Science,1993, 31(5):817-830.
    [81]Kaynia A. M. Transient green's functions of fluid-saturated porous media[J]. Computers and Structures,1992,44(1-2):19-27.
    [82]Chen J. Time domain fundamental solution to biot's complete equations of dynamic poroelasticity. Part i:Two-dimensional solution[J]. International Journal of Solids and Structures,1994,31(10):1447-1490.
    [83]Chen J. Time domain fundamental solution to biot's complete equations of dynamic poroelasticity part ii:Three-dimensional solution[J]. International Journal of Solids and Structures,1994,31(2):169-202.
    [84]Gajo A., Mongiov I. L. Analytical solution for the transient response of saturated linear elastic porous media[J]. International Journal for Numerical and Analytical Methods Geotechanics,1995,19(6):399-413.
    [85]Taguchi I., Kurashige M. Fundamental solutions for a fluid-saturated, transversely isotropic, poroelastic solid[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(3):299-321.
    [86]Kumar R., Miglani A., Garg N. R. Elastodynamic analysis of anisotropic liquid-saturated porous medium due to mechanical sources [J]. Applied Mathematics and Mechanics,2007,28(8):1049-1059.
    [87]Kumar R., Garg N. R., Miglani A. Dynamic behaviour of an anisotropic liquid-saturated porous medium in frequency domain[J]. Journal of Sound and Vibration,2004,275(3):877-891.
    [88]Ding B. Y., Yuan J. H. Dynamic green's functions of a two-phase saturated medium subjected to a concentrated force[J]. International Journal of Solids and Structures,2011,48(16-17):2288-2303.
    [89]Senjuntichai T., Rajapakse R. K. N. D. Dynamic green's function of homogeneous poroelastic half-plane[J]. Journal of Engineering Mechanics,ASCE,1994,120(11):2381-2404.
    [90]Rajapakse R. K. N. D., Senjuntichai T. Dynamic response of a multi-layered poroelastic medium[J]. Earthquake Engineering&Structural Dynamics,1995, 24(5):703-722.
    [91]Jin B., Liu H. Dynamic response of a poroelastic half space to horizontal buried loading[J]. International Journal of Solids and Structures,2001,28(44): 8053-8064.
    [92]Zhou X. L., Wang J. H., Lu J. F. Transient foundation solution of saturated soil to impulsive concentrated loading[J]. Soil Dynamics and Earthquake Engineering, 2002,22(4):273-281.
    [93]Zhou X. L., Wang J. H., Lu J. F. Transient dynamic response of poroelastic medium subjected to impulsive loading[J]. Computers and Geotechnics,2003, 30(1):109-120.
    [94]Chen S. L., Chen L. Z., Pan E. Three-dimensional time-harmonic green's functions of saturated soil under buried loading[J]. Soil Dynamics and Earthquake Engineering,2007,27(5):448-462.
    [95]丁伯阳,樊良本,昊建华.两相饱和介质中的集中力点源位移场解与应用[J].地球物理学报,1999,42(6):800-808.
    [96]丁伯阳,丁翠红,孟凡丽.集中力作用下的两相饱和介质位移场green函数[J].力学学报,2001,33(2):234-241.
    [97]丁伯阳,丁翠红,孟凡丽.集中力作用下两相饱和介质二维位移场green函数[J].应用数学与力学,2004,25(8):869-874.
    [98]丁伯阳,宋新初,袁金华.关于两相饱和介质中流相green函数的解析解[J].地球物理学报,2009,52(9):1858-1866.
    [99]丁伯阳,袁金华,潘晓东.饱和土动力学问题green函数计算的抽象集成与opp实现[J].中国科学G辑,2009,39(2):284-292.
    [100]丁伯阳,陈军,潘晓东.饱和多孔介质中lamb问题的green函数解答[J].力学学报,2011,43(3):533-541.
    [101]Huang Y., Wang X. G. The non-axisymmetrical lamb's problem in transversely isotropic saturated poroelastic media[J]. Science in China (Series E),2004, 47(5):526-549.
    [102]Wang X. G. Non-axisymmetrical vibration of elastic circular plate on layered transversely isotropic saturated ground[J]. Applied Mathematics and Mechanics (English Edition),2007,28(10):1232-1244.
    [103]Wang X. G. 3-d dynamic response of transversely isotropic saturated soilss[J]. Applied Mathematics and Mechanic (English Edition),2005,26(11): 1409-1419.
    [104]王小岗,黄义.横观各向同性饱和层状地基的三维稳态动力响应[J].工程力学,2006,23(5):133-138.
    [105]王小岗.横观各向同性饱和土中柱面载荷的动力green函数[J].力学学报,2010,42(5):909-918.
    [106]王小岗.横观各向同性饱和地基三维瞬态lamb问题[J].岩土力学,2011,32(1):253-260.
    [107]王建华,陆建飞,沈为平.半空间饱和土在内部简谐垂直力作用下的green函数[J].水利学报,2001,3:54-63.
    [108]陆建飞,王建华,沈为平.半空间饱和土在内部简谐水平力作用下的green函数[J].地震学报,2001,23(2):185-191.
    [109]陈胜立,张建民,陈龙珠.饱和地基中埋置点源荷载的动力green函数[J].岩土工程学报,2001,23(4):423-426.
    [110]陈胜立,张建民,陈龙珠.饱和土埋置力源的三维动力lamb问题解答[J].固体力学学报,2004,25(2):149-153.
    [111]王小岗.横观各向同性饱和地基中埋置荷载的非轴对称瞬态响应[J].地球物理学报,2009,52(8):2084-2094.
    [112]王小岗.埋置力源下横观各向同性饱和地基的三维lamb问题解答[J].岩土工程学报,2009,31(11):1686-1691.
    [113]Novak M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal,1974,11(4):574-598.
    [114]Novak M. Vertical vibration of floating piles[J]. Journal of the Engineering Mechanies Division, ASCE,1977,103(1):153-168.
    [115]Matlock H., Foo S. H., Bryant L. L. Simulation of lateral pile behavior[C]. Proceeding of Earthquake Engineering and soil Dynamics, ASCE. Asadena, Calfomia,1978:600-619.
    [116]Nogami T,, Konagai K. Time domain axial response of dynamically loaded single pile[J]. Journal of Engineering Mechanics, ASCE,1986,112(11): 1241-1252.
    [117]Nogami T., Konagai K. Dynamic response of vertically loaded nonlinear pile foundations[J]. Journal of Geotechnical Engineering, ASCE,1987,113(2): 147-160.
    [118]Nogami T., Konagai K. Time domain flexural response of dynamically loaded single piles[J]. Journal of Engineering Mechanics, ASCE,1988,114(9): 1512-1525.
    [119]Nogami T., Otani J., Konagai K., et al. Nonlinear soil-pile interaction model for dynamic lateral motion[J]. Journal of Geotechnical Engineering, ASCE,1992, 118(1):89-106.
    [120]Ei Naggar M. H., Novak M. Nonlinear axial interaction in pile dynamics[J]. Journal of Geotechnical Engineering, ASCE,1994,124(4):678-696.
    [121]Ei Naggar M. H., Novak M. Non-linear model for dynamic axial pile response[J]. Journal of Geotechnical Engineering, ASCE,1994,120(2): 308-339.
    [122]El Naggar M. H., Novak M. Nonlinear lateral interaction in pile dynamics[J]. Soil Dynamics and Earthquake Engineering,1995,14(2):141-157.
    [123]Badoni D., Makris N. Nonlinear response of single piles under lateral inertial and seismic loads[J]. Soil Dynamics and Earthquake Engineering,1996,15(1): 29-43.
    [124]Ei Naggar M. H., Novak M. Nonlinear analysis for dynamic lateral pile response[J]. Soil Dynamics and Earthquake Engineering,1996,15(4):233-244.
    [125]Wang K., Wu W., Zhang Z., et al. Vertical dynamic response of an inhomogeneous viscoelastic pile[J]. Computers and Geotechnics,2010,37(4): 536-544.
    [126]Gazetas G, Dobry R. Response of piles in layered soil[J]. Journal of the Geotechnical Engineering Division, ASCE,1984a,110(1):20-40.
    [127]Gazetas G, Dobry R. Simple radiation damping model for piles and footings[J]. Jownal of the Geotechnical Engineering Division, ASCE,1984b,110(6): 937-956.
    [128]Baranov V. A. On the calculation of excited vibrations of an embedded foundation (in russian)[J]. voprosy Dynamiki i prochnodi, Nodh, Polytechnical Inst of Riga,1967,14(5):195-209.
    [129]Novak M., Nogami T. Soil-pile interaction in horizontal vibration[J]. Earthquake Engineering & Structural Dynamics,1977,5(3):153-168.
    [130]Novak M., Aboul-Ella F. Impedance functions of piles in layered media[J]. Journal of the Engineering Mechanics Division,ASCE,1978,104(6):643-661.
    [131]Novak M., Aboul-Ella F., Nogami T. Dynamic soil reactions for plane strain case[J]. journal of Engineering Mechanics, ASCE,1978,104(4):953-959.
    [132]Novak M., Sheta M. Approximate approach to contact effects of piles[C].O'Neil M, Dobry R. Proc Dynamic Response of Structures:Experimentation, Observation, Prediction and Control, ASCE. Florida,1980:53-79.
    [133]孔德森.桩-土相互作用计算模型及其在桩基结构抗震分析中的应用[D]. 大连:大连理工大学,2004.
    [134]Yang D. Y., Wang K. H., Zhang Z. Q., et al. Vertical dynamic response of pile in a radially heterogeneous soil layer[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(8):1039-1054.
    [135]Wang N., Wang K., Wu W. Analytical model of vertical vibrations in piles for different tip boundary conditions:Parametric study and applications[J]. Journal of Zhejiang University-Science A,2013,14(2):79-93.
    [136]"Nogami T., Novak M. Resistance of soil to a horizontally vibrating pile[J]. Earthquake Engineering and Structure Dynamics,1977,5(3):249-261.
    [137]Novak M., Nogami T. Soil-pile interaction in horizontal vibration[J]. Earthquake Engineering and Structure Dynamics,1977,5(3):263-281.
    [138]胡昌斌.考虑土竖向波动效应的桩土纵向耦合振动理论[D].杭州:浙江大学,2003.
    [139]阅仁波.考虑土体三维波动效应时桩的纵向振动特性与应用研究[D].杭州:浙江大学,2004.
    [140]Kagawa T., Kraft L. M. Dynamic characteristics of lateral load-deflection relationships of flexible piles[J]. Earthquake Engineering and Structural Dynamics,1981,9(1):53-68.
    [141]Takemiya H. Layered soil-pile-structure dynamic interaction[J]. Earthquake Engineering and Structural Dynamics,1981,9(5):437-457.
    [142]Akiyoshi T. Soil-pile interaction in vertical vibration induced through a frictional interface[J]. Earthquake Engineering and Structural Dynamics,1982, 10(1):135-148.
    [143]Vaziri H., Han Y. Impedance functions of piles in inhomogeneous media[J]. Journal of Geotechnical Engineering, ASCE,1993,119(9):1414-1430.
    [144]Han Y. C. Dynamic vertical response of piles in nonlinear soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(8): 710-716.
    [145]Chau K. T., Yang X. Nonlinear interaction of soil-pile in horizontal vibration[J]. Journal of Engineering Mechanics, ASCE,2005,131(8):847-858.
    [146]Holeyman A., Berlin R., Whenham V. Impedance of pile shafts under axial vibratory loads[J]. Soil Dynamics and Earthquake Engineering,2013,44: 115-126.
    [147]Muki R., Sternberg E. Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod[J]. International Journal of Solids and Structures, 1970,6(1):69-90.
    [148]Fowler G.F., Sinclair G. B. The longitudinal harmonic excitation of a circular bar embedded in an elastic half-space[J]. International Journal of Solids and Structures,1978,14(12):999-1012.
    [149]Pak R. Y. S., Jennings P. C. Elastodynamic response of the pile under transverse excitations[J]. Journal of Engineering Mechanics, ASCE,1987,113(7): 1101-1116.
    [150]Rajapakse R. K. N. D., Shah A. H. On the lateral harmonic motion of an elastic bar embedded in an elastic half-space[J]. International Journal of Solids and Structures,1987,23(2):287-303.
    [151]Rajapakse R. K. N. D., Shah A. H. On the longitudinal harmonic motion of an elastic bar embedded in an elastic half-space[J]. International Journal of Solids and Structures,1987,22(2):267-285.
    [152]Kuo K. A., H.E.M.Hunt. An efficient mode lfor the dynamic behaviour of a single pile in viscoelastic soil[J]. Journal of Sound and Vibration,2013,332(13): 2549-2561.
    [153]Valsangkar A. J., Pradhanang R. B. Free vibration of partially supported piles[J]. Journal of Engineering Mechanics, ASCE,1987,113(8):1244-1247.
    [154]Lee B. K.., Jeong J. S., Fan L. G, et al. Free vibrations of tapered piles embedded partially in winkler type foundations [J]. Ksce Journal of Civil Engineering,1999,3(2):195-203.
    [155]Catal H. H. Free vibration of partially supported piles with the effects of bending moment, axial and shear force[J]. Engineering Structures,2002,24(12): 1615-1622.
    [156]Catal H. H. Free vibration of semi-rigid connected and partially embedded piles with the effects of the bending moment, axial and shear force[J]. Engineering Structures,2006,28(14):1911-1918.
    [157]Yesilce Y., Catal H. H. Free vibration of piles embedded in soil having different modulus of subgrade reaction[J]. Applied Mathematical Modelling,2008,32(5): 889-900.
    [158]任青,黄茂松,钟锐,et al.部分埋人群桩的竖向振动特性[J].岩土工程学报,2009,31(9):1384-1390.
    [159]任青,黄茂松,韩东晓.考虑轴力的部分埋入群桩基础水平振动特性[J]. 岩石力学与工程学报,2011,30(9):1933-1945.
    [160]钟锐,黄茂松,任青,et al.考虑土体非线性的部分埋入群桩竖向振动分析[J].同济大学学报,2011,39(12):1360-1366.
    [161]余云燕,余莉芬.均质土中部分埋入变模量桩的波动响应研究[J].振动工程学报,2010,23(2):200-205.
    [162]Kaynia A. M., Kausel E. Dynamic stiffnesses and seismic response of pile groups[R].Report R82-03. Cambridge,Massachusetts:Department of Civil Engineering,MIT,1982.
    [163]Kaynia A. M., Kausel E. Dynamics of piles and pile groups in layered soil media[J]. Soil Dynamics and Earthquake Engineering,1991,10(8):386-401.
    [164]Apsel R. J. Dynamic green's functions for layered media and application to boundary value problems[D]. San diego:University of California,1979.
    [165]Poulos H. G Analysis of the settlement of pile groups[J]. Geotechnique,1968, 18(4):449-471.
    [166]Miura K., Kaynia A. M., Masuda K., et al. Dynamic behaviour of pile foundations in homogeneous and non-homogeneous media[J]. Earthquake Engineering and Structural Dynamics,1994,23(2):183-192.
    [167]Nogami T. Dynamic group effect in axial responses of grouped piles[J]. Journal of Geotechnical Engineering, ASCE,1983,109(2):228-243.
    [168]Nogami T. Flexural responses of grouped piles under dynamic loading[J]. Earthquake Engineering and Structural Dynamics,1985,13(3):321-336.
    [169]王霓,严士超.土-群桩-结构系统动力特性及相互作用地震反应分析[J].建筑结构学报,1990,11(3):61-80.
    [170]严士超,李延涛.竖向地震作用下结构-群桩-土相互作用[J].振动工程学报,1991,1(2):10-21.
    [171]Dobry R., Gazetas G. Simple method for dynamic stiffness and damping of floating pile groups[J]. Geotechnique,1988,38(4):557-574.
    [172]Gazetas G, Dobry R. Dynamic pile-soil-pile interaction.Part i:Analysis of axial vibration[J]. Earthquake Engineering and Structure Dynamics,1991,20(2): 115-132.
    [173]Gazetas G, Fan K., Kaynia A., et al. Dynamic interaction factors for floating pile groups[J]. Journal of Geotechnical Engineering, ASCE,1991,117(10): 1531-1548.
    [174]Makris N., Gazetas G. Dynamic pile-soil-pile interaction part 2 lateral and seismic response[J]. Earthquake Engng and Structural Dynamics,1992,21(2): 145-162.
    [175]Han Y., Vaziri H. Dynamic response of pile groups under lateral loading[J]. Soil Dynamics and Earthquake Engineering,1992,11(2):87-99.
    [176]Gazetas G, Fan K., Kaynia A. Dynamic response of pile groups with different configuration[J]. Soil Dynamics and Earthquake Engineering,1993,12(2): 239-257.
    [177]Mylonakis G, Gazetas G. Lateral vibration and additional stress of pile groups in layered soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1999,125(1):16-25.
    [178]Chang D. W., Lin B. S., Cheng S. H. Lateral load distributions on grouped piles from dynamic pile-to-pile interaction factors[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(2):173-191.
    [179]Dai W., Roesset J. M. Horizontal dynamic stiffness of pile groups:Approximate expressions[J]. Soil Dynamics and Earthquake Engineering,2010,30(9): 844-850.
    [180]蒯行成,沈蒲生.层状介质中群桩水平动力阻抗的简化计算方法[J].振动工程学报,1998,11(3):258-264.
    [181]蒯行成,沈蒲生.层状介质中群桩竖向和摇摆动力阻抗的简化计算方法[J].土木工程学报,1999,32(5):62-70.
    [182]吴志明.层状地基中的群桩水平振动[D].上海:同济大学,2005.
    [183]赵元一.分层土中群桩动力响应数值分析[D].上海:同济大学,2010.
    [184]洪小健,顾明.基于群桩振动方程组的群桩基础阻抗函数求解及比较[J].力学季刊,2006,27(4):681-688.
    [185]Zeng X., Rajapakse R. K. N. D. Dynamic axial load transfer from elastic bar to poroelastic medium[J]. Journal of Engineering Mechanics, ASCE,1999,125(9): 1048-1055.
    [186]Jin B., Zhou D., Zhong Z. Lateral dynamic compliance of pile embedded in poroelastic half space[J]. Soil Dynamics and Earthquake Engineering,2001, 21(6):519-525.
    [187]Wang J. H., Zhou X. L., Lu J. F. Dynamic response of pile groups embedded in a poroelastic medium[J]. Soil Dynamics and Earthquake Engineering,2003, 23(3):235-242.
    [188]Zhou X. L., Wang J. H. Analysis of pile groups in a poroelastic medium subjected to horizontal vibration[J]. Computers and Geotechnics,2009,36(3): 406-418.
    [189]Cai Y., Chen G, Xu C., et al. Torsional response of pile embedded in a poroelastic medium[J]. Soil Dynamics and Earthquake Engineering,2006, 26(12):1143-1148.
    [190]Wang G., Ge W., Pan X., et al. Torsional vibrations of single piles embedded in saturated medium[J]. Computers and Geotechnics,2008,35(1):11-21.
    [191]Chen G, Cai Y., Liu F., et al. Dynamic response of a pile in a transversely isotropic saturated soil to transient torsional loading[J]. Computers and Geotechnics,2008,35(2):165-172.
    [192]Zhou X. L., Wang J. H., Jiang L. F., et al. Transient dynamic response of pile to vertical load in saturated soil[J]. Mechanics Research Communications,2009, 36:618-624.
    [193]Xu B., Lu J. F., Wang J. H. Dynamic responses of a pile embedded in a layered poroelastic half-space to harmonic lateral loads[J]. International Journal for Numerical and Analytical Methods Geotechanics,2010,34(5):493-515.
    [194]杨军,宋二祥,陈肇元.桩在饱和土中水平振动的辐射阻尼简化算法[J].岩土力学,2001,23(2):179-183.
    [195]李强.考虑三维波动的饱和土中桩纵向藕合振动理论[D].杭州:浙江大学,2004.
    [196]余俊.饱和土地基-桩基-上部结构动力相互作用理论分析与试验研究[D].长沙:湖南大学,2007.
    [197]刘林超.基于多孔介质理论的饱和土中单(群)桩纵横向振动研究[D].上海:上海大学,2009.
    [198]Wang K., Zhang Z., Leo C. J., et al. Dynamic torsional response of an end bearing pile in transversely isotropic saturated soil[J]. Journal of Sound and Vibration,2009,327:440-453.
    [199]杨骁,蔡雪琼.考虑横向效应饱和黏弹性土层中桩的纵向振动[J].岩土力学,2011,32(6):1857-1863.
    [200]Poulos H. G Cyclic stability diagram for axially loaded piles[J]. Journal of Geotechnical Engineering,ASCE,1988,114(8):877-895.
    [201]Poulos H. G. Cyclic axial loading analysis of piles in sand[J]. Journal of Geotechnical Engineering,ASCE,1989,115(6):836-854.
    [202]Poulos H. G Closure of'cyclic axial loading analysis of piles in sand'[J]. Journal of Geotechnical Engineering,ASCE,1991,117(9):1438-1440.
    [203]Uesugi M., Kishida H. Discussion of "cyclic axial loading analysis of piles in sand"[J]. Journal of Geotechnical Engineering, ASCE,1991,117(9):1435-1437.
    [204]Al-Douri R., Poulos H. G. Predicted and observed cyclic performance of piles in calcareous sand[J]. Journal of Geotechnical Engineering,ASCE,1995,121(1): 1-16.
    [205]Briaud J.-L., Felio G Y. Cyclic axial loads on piles:Analysis of existing data[J]. Canadian Geotechnical Journal,1986,23(3):362-371.
    [206]Turner J. P., Kulhawy F. H. Drained uplift capacity of drilled shafts under repeated axial loading[J]. Journal of Geotechnical Engineering Division, ASCE, 1990,116(3):470-491.
    [207]Mcmanus K. J., Kulhawy F. H. Cyclic axial loading of drilled shafts in cohesive soil[J]. Journal of Geotechnical Engineering, ASCE,1994,120(9):1481-1497.
    [208]De Nicola A., Randolph M. F. Centrifuge modelling of pipe piles in sand under axial loads[J]. Geotechnique,1999,49(3):295-318.
    [209]White D. J., Lehane B. M. Friction fatigue on displacement piles in sand[J]. Geotechnique,2004,54(10):645-658.
    [210]Lehane B. M., White D. J. Lateral stress changes and shaft friction for model displacement piles in sand[J]. Canadian Geotechnical Journal,2005,42(4): 1039-1052.
    [211]Li Z. M., Bolton M. D., Haigh S. K. Cyclic axial behaviour of piles and pile groups in sand[J]. Canadian Geotechnical Journal,2012,49(9):1074-1087.
    [212]陈竹昌,徐和.土类对轴向循环荷载下桩性状的影响[J].同济大学学报,1989,17(3):329-336.
    [213]徐和,陈竹昌,任陈宝.在轴向循环荷载作用下砂土中模型桩的试验研究[J].岩土工程学报,1989,11(4):64-71.
    [214]Chen Z. C, Jing Y. G. Determination of shaft capacity for pile under cyclic axial loading in clay[J]. china ocean engineering,1991,5(7):107-116.
    [215]彭雄志,赵善锐,罗书学,et al.高速铁路桥梁基础单桩动力模型试验研究[J].岩土工程学报,2002,24(2):218-221.
    [216]杨龙才,郭庆海,周顺华,et al.高速铁路桥桩在轴向循环荷载长期作用下的承载和变形特性试验研究[J].岩石力学与工程学报,2005,24(13):2362-2368.
    [217]黄雨,柏炯,周国鸣,et al.单向循环荷载作用下饱和砂土中单桩沉降模型 试验研究[J].岩土工程学报,2009,31(9):1440-1444.
    [218]朱斌,任宇,陈仁朋,et al.竖向下压循环荷载作用下单桩承载力及累积沉降特性模型试验研究[J].岩土工程学报,2009,31(2):186-193.
    [219]陈仁朋,任宇,陈云敏.刚性单桩竖向循环加载模型试验研究[J].岩土工程学报,2011,33(12):1926-1933.
    [220]Grashuis A. J., Dietermann H. A., Zorn N. F. Calculation of cyclic response of laterally loaded piles[J]. Computers and Geotechnics,1990,10(4):287-305.
    [221]Rajashree S. S., Sundaravadivelu R. Degradation model for onw-way cyclic lateral load on piles in soft clay[J]. Computers and Geotechnics,1996,19(4): 289-300.
    [222]Long J., Vanneste G. Effects of cyclic lateral loads on piles in sand[J]. Journal of Geotechnical Engineering, ASCE,1994,120(1):225-244.
    [223]Reese L. C., Cox W. R., Koop F. D. Analysis of laterally loaded piles in sand[C]. Proceedings of the 6th Annual Offshore Technology Conference. Houston,Texas, 1974:1-11.
    [224]Lin S. S., Liao J. C. Lateral cyclic loading of sand-installed piles[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(9):798-802.
    [225]Shirato M., Koseki J., Fukui J., et al. Effects of stress dilatancy behavior of soil on load transfer hysteresis in soil-pile interaction[J]. Soils and Foundations, 2006,46(3):281-298.
    [226]Shirato M., Koseki J., Fukui J. A new nonlinear hysteretic rule for winkler type soil-pile interaction springs that considers loading pattern dependency [J]. Soils and Foundations,2006,46(2):173-188.
    [227]Rosquqet F., Thorel L., Gamier J., et al. Lateral cyclic loading of sand-installed piles[J]. Soils and Foundations,2007,47(5):821-832.
    [228]Basack S., Purkayastha R. D. Behaviour of single pile under lateral cyclic load in marine clay[J]. Asian Journal of Civil Engineering (Building and Housing), 2007,8(4):443-458.
    [229]Achmus M., Kuo Y., Abdel R. K. Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics,2009,36(5):725-735.
    [230]Zhang C., White D., Randolph M. F. Centrifuge modelling of the cyclic lateral response of a rigid pile in soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2011,137(7):717-729.
    [231]郭玉树,亚克慕斯·马丁,阿布达雷赫曼·哈里.用循环三轴试验分析海上风 力发电机单桩基础侧向位移[J].岩土工程学报,2009,31(11):1729-1734.
    [232]任宇,朱斌,陈仁朋,et al.大型风电机组群桩基础受荷特性及长期累积沉降控制[J].土木工程学报,2010,43(3):75-80.
    [233]陈仁朋,顾明,孔令刚,et al.水平循环荷载下高桩基础受力性状模型试验研究[J].岩土工程学报,2012,34(11):1990-1996.
    [234]朱斌,杨永垚,余振刚,et al.海洋高桩基础水平单调及循环加载现场试验[J].岩土工程学报,2012,34(6):1028-1037.
    [235]Desai C. S., Drumm E. C., Zaman M. M. Cyclic testing and modeling of interfaces[J]. Journal of Geotechnical Engineering,1985,111(6):793-815.
    [236]Desai C. S., Nagaraj B. K. Modeling for cyclic normal and shear behavior of interfaces[J]. Journal of Engineering Mechanics,ASCE,1988,114(7): 1198-1217.
    [237]Desai C. S., Pradhan S., Cohen D. Cyclic testing and constitutive modeling of saturated sand-concrete interfaces using the disturbed state concept[J]. International Journal of Geomechanics,ASCE,2005,5(4):286-294.
    [238]Airey D. W., Ai-Douri R. H., Poulos H. G. Estimation of pile friction degradation from shearbox tests[J]. Geotechnical Testing Journal,1992,15(4): 388-392.
    [239]Al-Doui R. H., Poulos H. G. Static and cyclic direct shear tests on carbonate sands[J]. Geotechnical Testing Journal,1992,15(2):138-157.
    [240]Tabucanon J. T., Airey D. W., Poulos H. G. Pile skin friction in sands from constant normal stiffness tests[J]. Geotechnical Testing Journal,1995,18(3): 350-364.
    [241]Fakharian K., Evgin E. Automated apparatus for three-dimensional monotonic and cyclic testing of interfaces[J]. Geotechnical Testing Journal,1996,19(1): 22-31.
    [242]Fakharian K., Evgin E. Cyclic simple-shear behavior of sand-steel interfaces under constant normal stiffness condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(12):1096-1105.
    [243]Dejong J. T., Randolph M. F., White D. J. Interface load transfer degradation during cyclic loading:A microscale investigation[J]. Soils and Foundations, 2003,43(4):81-93.
    [244]Dejong J. T., White D. J., Randolph M. F. Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry[J]. Soils and Foundations,2006,46(1):15-28.
    [245]Tejchman J., Bauer. E. Effect of cyclic shearing on shear localisation in granular bodies[J]. Granular Matter,2004,5(4):201-212.
    [246]Tejchman J., Bauer E. Fe-modeling of shear resistance degradation in granular materials during cyclic shearing under cns condition[J]. Computers and Geotechnics,2009,36(1):249-263.
    [247]Tejchman J. Finite element investigations of granular material behaviour during cyclic wall shearing under a constant normal stiffness conditiona[J]. Canadian Geotechnical Journal,2010,47(9):982-998.
    [248]Mortara G., Boulon M., Ghionna V. N. A 2-d constitutive model for cyclic interface behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,23(11):1071-1096.
    [249]Mortara G, Mangiola A., Ghionna V. N. Cyclic shear stress degradation and post-cyclic behavior from sand-steel interface direct shear tests[J]. Canadian Geotechnical Journal,2007,44(7):739-752.
    [250]Mortara G, Ferrara D., Fotia G Simple model for the cyclic behavior of smooth sand-steel interfaces[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2010,136(7):1004-1009.
    [251]Liu H., Ling H. I. Constitutive description of interface behavior including cyclic loading and particle breakage within the framework of critical state soil mechanics[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2008,32(12):1495-1514.
    [252]Gazetas G. Seismic response of end-bearing single piles[J]. Soil Dynamics and Earthquake Engineering,1984,3(2):82-93.
    [253]Kavvadas M., Gazetas G Kinematic seismic response and bending of free-head piles in layered soil[J]. Geotechnique,1993,43(2):207-222.
    [254]Makris N. Soil-pile interaction during the passage of Rayleigh waves. An analytical solution[J]. Earthquake Engineering and Structural Dynamics,1994, 23(2):153-167.
    [255]Makris N., Badoni D. Seismic response of pile groups under oblique-shear and rayleigh-waves[J]. Earthquake Engineering and Structural Dynamics,1995, 24(4):517-532.
    [256]Nikolaou S., Mylonakis G., Gazetas G., et al. Kinematic pile bending during earthquakes:Analysis and field measurements[J]. Geotechnique,2001,51(5): 425-440.
    [257]Mylonakis G., Gazetas G. Kinematic pile response to vertical P-wave seismic excitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2002,128(10):860-867.
    [258]Anoyatis G., Laora R. D., Mandolini A., et al. Kinematic response of single piles for different boundary conditions:Analytical solutions and normalization schemes[J]. Soil Dynamics and Earthquake Engineering,2013,44:183-195.
    [259]Anoyatis G., Laora R. D., Mylonakis G. Axial kinematic response of end-bearing piles to P waves[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2013,37:1-20.
    [260]柯瀚,王立忠,陈云敏.双层地基中瑞利波引起的桩土竖向共同作用[J].振动工程学报,2000,13:319-324.
    [261]王立忠,冯永正,柯瀚,et al.瑞利波作用下成层地基中单桩横向振动分析[J].振动工程学报,2001,14:205-210.
    [262]王海东,尚守平.瑞利波作用下径向非匀质地基中的单桩竖向响应研究[J].振动工程学报,2006,19(2):258-264.
    [263]冯小娟,黄义,吴炳军,et al.基于文克勒模型的饱和土中单桩对瑞利波动力响应研究[J].应用力学学报,2010,27(2):303-310.
    [264]冯永正,王立忠,陈云敏.瑞利波作用下双层地基中群桩横向动力响应[J].振动工程学报,2001,14:284-291.
    [265]蒋东旗.远场地震作用下桩基的横向地震响应研究[D].杭州:浙江大学,2002.
    [266]王海东.地基-桩-筏-上部结构动力相互作用分析与大比例模型试验研究[D].长沙:湖南大学,2005.
    [267]闫启方,刘林超.考虑波动效应的sh简谐地震波作用下单桩水平振动研究[J].岩土工程学报,2012,34(8):1483-1487.
    [268]刘林超,杨骁.地震作用下饱和土-桩-上部结构动力相互作用研究[J].岩土力学,2012,33(1):120-128.
    [269]Mamoon S. M., Ahmad S. Seismic response of piles to obliquely incident SH, SV, and P waves[J]. Journal of Geotechnical Engineering, ASCE,1990,116(2): 186-204.
    [270]Mamoon S. M., Banerjee P. K. Response of piles and pile groups to travelling SH waves[J]. Earthquake Engineering & Structural Dynamics,1990,19(4): 597-610.
    [271]Fan K., Gazetas G, Kaynia A., et al. Kinematic seismic response of single piles and pile groups[J]. Journal of Geotechnical Engineering, ASCE,1991,117(12): 1860-1879.
    [272]Kaynia A. M., Novak M. Response of pile foundations to Rayleigh waves and obliquely body wave[J]. Earthquake Engineering and Structural Dynamics,1992, 21:303-318.
    [273]Kaynia A. M., Mahzooni S. Forces in pile foundations under seismic loading[J]. Journal of Engineering Mechanics,ASCE,1996,122(1):46-53.
    [274]Ji F., Pak Y. S. Scattering of vertically-incident P-waves by an embedded pile[J]. Soil Dynamics and Earthquake Engineering,1996,15(3):211-222.
    [275]Tham L. G., Qian J., Cheung Y. K. Dynamic response of a group of flexible foundations to incident seismic waves[J]. Soil Dynamics and Earthquake Engineering,1998,17(2):127-137.
    [276]Shahmohamadi M., Khojasteh A., Rahimian M., et al. Seismic response of an embedded pile in a transversely isotropic half-space under incident P-wave excitations[J]. Soil Dynamics and Earthquake Engineering,2011,31(3): 361-371.
    [277]Lu J. F., Jeng D. S. Poroelastic model for pile-soil interaction in a half-space porous medium due to seismic waves[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2008,32(1):1-41.
    [278]Lu J. F., Jeng D. S., Nie W. D. Dynamic response of a pile embedded in a porous medium subjected to plane SH waves[J]. Computers and Geotechnics, 2006,33(8):404-418.
    [279]Lu J. F., Jeng D. S. Dynamic response of an offshore pile to pseudo-stoneley waves along the interface between a poroelastic seabed and seawater[J]. Soil Dynamics and Earthquake Engineering,2010,30(4):184-201.
    [280]Lu J. F., Zhang X., Wan J. W., et al. The influence of a fixed axial top load on the dynamic response of a single pile[J]. Computers and Geotechnics,2012,39: 54-65.
    [281]Fernandez L., Aviles J., Muria-Vila D. Fully and partially toe-restrained piles subjected to ground motion excitation[J]. Soil Dynamics and Earthquake Engineering,2012,39:1-10.
    [282]陈清军,徐植信.分析层状土介质中群桩对任意人射地震波响应的半解析法[J].工程力学,1994,11(4):27-34.
    [283]陆建飞,聂卫东.饱和土中单桩在瑞利波作用下的动力响应[J].岩土工程学报,2008,30(2):225-231.
    [284]张智卿,王奎华,谢康和,et al.成层非饱和土中桩的纵向振动特性分析[J].科技通报,2007,23(1):88-96.
    [285]张智卿,王奎华,李强,et al.非饱和土中端承桩纵向振动问题简化解[J].工程力学,2010,27(5):159-165.
    [286]张智卿,王奎华,谢康和.非饱和土层中桩的扭转振动响应分析[J].岩土工程学报,2006,28(6):729-734.
    [287]张智卿,王奎华,谢康和,et al.非饱和土中弹性支承桩的扭转振动响应分析[J].计算力学学报,2008,25(4):552-556.
    [288]Chao C. C. Dynamical response of an elastic half-space to tangential surface loadings[J]. Journal of Applied Mechanics, ASME,1960,27(3):559-567.
    [289]Pak R. Y. S. Asymmetric wave propagation in an elastic half-space by a method of potentials[J]. Journal of Applied Mechanics, ASME,1987,54(1):121-126.
    [290]Biot M. A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics,1962,33:1482-1498.
    [291]Philippacopoulos A. J. Buried point source in a poroelastic half-space[J]. Journal of Engineering Mechanics, ASCE,1997,123(8):860-869.
    [292]Lu J. F., Wang J. H., Shen W. P. The Green's function of the harmonic horizontal force applied at the interior of the saturated half-space soil[J]. Acta seismologica sinica,2001,14(2):196-202.
    [293]Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,1976,12(3):513-522.
    [294]Bolzon G., Schrefler B. A., Zienkiewicz O. C. Elastoplastic soil constitutive laws generalized to partially saturated states[J]. Geotechnique,1996,46(2): 279-289.
    [295]Conte E., Cosentini R. M., Troncone A. Shear and dilatational wave velocities for unsaturated soils[J]. Soil Dynamics and Earthquake Engineering,2009, 29(6):946-952.
    [296]Muki R. Asymmetric problem of the theory of elasticity for a semi-infinite solid and a thick plate[C].Sneddon IN, Hill R. Progress in Solid Mechanics (Ⅰ). Amsterdam:North Holland:New York:Interscience,1960:399-439.
    [297]Chen J., Hopmans J. W., Grismer M. E. Parameter estimation of two-fluid capillary pressure-saturation and permeability functions[J]. Advances in Water Resources,1999,22(5):479-493.
    [298]Wu S., Gray D. H., Richart F. E. J. Capillary effects on dynamic modulus of sands and silts[J]. Journal of Geotechnical Engineering, ASCE,1984,110(9): 1188-1203.
    [299]Qian X., Gray D. H., Woods R. D. Effects on shear modulus of unsaturated sands[J]. Journal of Geotechnical Engineering, ASCE,1993,119(2):296-314.
    [300]Cho G. C., Santamarina J. C. Unsaturated particulate materials-particle level studies[J]. Journal of Geotechnical and Environmental Engineering,ASCE,2001, 27(1):84-96.
    [301]Seed H. B., Idriss I. M. Soil moduli and damping factors for dynamic response analysis[R].EERC-70/10. U.C.Berkeley, Calif.:Earthquake Engineering Research Center,1970.
    [302]Martin P. P., Seed H. B. One-dimensional dynamic ground response analyses[J]. Journal of Geotechnical Engineering, ASCE,1982,108(7):935-954.
    [303]Fredlund D. G, Vanapalli S. K., Xing A., et al. Predicting the shear strength function for unsaturated soils using the soil-water characteristic curve[C].Alonso E, Delage P. Proceedings of the 1st International Conference on Unsaturated Soils. Paris, France,1995:63-69.
    [304]Ziekiewicz O. C., Chang C. J., Bettess P. Drained, undrained, consolidating and dynamic behavior assumptions in soils[J]. Geotechnique,1980,30(4):385-395.
    [305]Nogami T., Novak M. Soil-pile interaction in vertical vibration[J]. Earthquake Engineering and Structural Dynamics,1976,4:277-293.
    [306]余俊,尚守平,任慧,et al.饱和土中桩竖向振动响应分析[J].工程力学,2008,25(10):187-193.
    [307]刘林超,杨骁.基于多孔介质理论的饱和土-桩纵向耦合振动研究[J].土木工程学报,2009,42(9):89-95.
    [308]Ishihare K. Approximate forms of wave equations for water-saturated porous materials and related dynamic moduli[J]. Soils and Foundations,1970,14(10): 10-38.
    [309]Allen F. A., Richart F. E., Woods R. D. Fluid wave propagation in saturated and nearly saturated sands[J]. Journal of Geotechnical Engineering, ASCE,1980, 106(3):235-254.
    [310]胡昌斌,王奎华,谢康和.考虑桩土耦合作用时弹性支承桩纵向振动特性分析及应用[J].工程力学,2003,20(2):146-154.
    [311]Lysmer J., Richart F. E. Dynamic response of footing to vertical load[J]. Journal Soil Mechanics and Foundation Division, ASCE,1966,92(SM1):65-91.
    [312]张玉红,黄义.流体渗透系数对饱和土中桩基础阻抗函数的影响[J].西安交通大学学报,2001,35(4):407-410.
    [313]Gerolymos N., Gazetas G. Winkler model for lateral response of rigid caisson foundations in linear soil[J]. Soil Dynamics and Earthquake Engineering,2006, 26(5):347-361.
    [314]尚守平,余俊,王海东,et al.饱和土中桩水平振动分析[J].岩土工程学报,2007,29(17):1696-1702.
    [315]Nielsen M. T. Resistance of a soil layer to horizontal vibration of a pile[J]. Earthquake Engineering and Structural Dynamics,1982,10(3):497-510.
    [316]刘鑫,杨骁.悬浮桩水平振动的动力刚度[J].岩土力学,2008,29(4):1021-1026.
    [317]陆建飞.频域内半空间饱和土中水平受荷桩的动力分析[J].岩石力学与工程学报,2002,21(4):577-581.
    [318]Karasudhi P., Rajapakse R. K. N. D., Hwang B. Y. Torsion of a long cylindrical elastic bar partially embedded in a layered elastic half space [J]. International Journal of Solids and Structures,1984,20(1):1-11.
    [319]梁发云.混合桩型复合地基工程性状的理论与试验研究[D].上海:上海交通大学,2010.
    [320]姚戈,杨晓.Timoshenko模型桩水平振动的动力刚度[J].上海大学学报,2011,17(5):662-668.
    [321]余俊,尚守平,李忠.饱和土中桩水平振动引起土层复阻抗分析研究[J].岩土力学,2009,31(12):3858-3864.
    [322]韩英才,Novak M.水平荷载作用下群桩动力特性的研究[J].土木工程学报,1992,25(5):24-33.
    [323]Wolf J. P., Von Arx G. A. Impedance function of a group of vertical piles[C]. Proceeding of the Specialty Conference On Soil Dynamics and Earthquake Engineering, ASCE. Pasadena,Calif.,1978:1024-1041.
    [324]Dezi F., Carbonari S., Leoni G. A model for the 3d kinematic interaction analysis of pile groups in layered soils[J]. Earthquake Engineering and Structural Dynamics,2009,38(11):1281-1305.
    [325]Sen R., Davies T. G, Banerjee P. K. Dynamic analysis of piles and pile groups embedded in homogeneous soils[J]. Earthquake Engineering and Structural Dynamics,1985,13(1):53-65.
    [326]Mamoon S. M., Kaynia A. M., Banerjee P. K. Frequency-domain dynamic analysis of piles and pile groups[J]. Journal of Engineering Mechanics, ASCE, 1990,116(10):2237-2257.
    [327]Maeso O., Aznarez J. J., GarciA F. Dynamic impedances of piles and groups of piles in saturated soils[J]. Computers and Structures,2005,83(10):769-782.
    [328]Padron L. A., Aznarez J. J., Maeso O. BEM-FEM coupling model for the dynamic analysis of piles and pile groups[J]. Engineering Analysis with Boundary Elements,2007,31(6):473-484.
    [329]Edelman I., Wilmanski K. Asymptotic analysis of surface waves at vacuum/porous medium and liquid/porous medium interfaces[J]. Continuum Mechanics and Thermodynamics,2002,14(1):25-44.
    [330]刘林超,闫启方,杨骁.基于多孔介质理论的饱和土中群桩水平振动特性[J].岩土力学,2011,32(3):767-774.
    [331]Boer R. D., Liu Z. Propagation of acceleration waves in incompressible saturated porous solids[J]. Transport in Porous Media,1995,21(2):163-173.
    [332]Morse P. M., Ingard K. U. Theoretical ocoustics[M]. New York:McGraw-Hill, 1968.
    [333]Mylonakis G. Contributions to static and seismic analysis of piles and pile-supported bridge piers[D]. Buffalo:State University of New York at Buffalo,1995.
    [334]Degrande G, Roeck G. D., Broeck P. V. D., et al. Wave propagation in layered dry, saturated and unsaturated poroelastic media[J]. International Journal of Solids and Structures,1998,35(34):4753-4778.
    [335]周新民,夏唐代.半空间准饱和土中瑞利波的传播特性研究[J].岩土工程学报,2007,25(9):750-754.
    [336]Chen Y. S., Lo W. C., Leu J. M., et al. Effect of impermeable boundaries on the propagation of Rayleigh waves in an unsaturated poroelastic half-space[J]. Journal of Mechanics,2006,26(4):501-511.
    [337]Gazetas G., Dobry R. Horizontal response of piles in layered soils[J]. Journal of Geotechnical Engineering, ASCE,1984,110(1):20-40.
    [338]Levy M. Elastic properties of solids:Theory, elements and compounds, novel materials, technological materials, alloys, and building materials, in handbook of elastic properties of solids, liquids, and gases[M]. New York:Elsevier, 2001.27-29.
    [339]Albers B. On results of the surface wave analyses in poroelastic media by means of the simple mixture model and the Biot model[J]. Soil Dynamics and Earthquake Engineering,2006,26(6):537-547.
    [340]严人觉,王贻荪,韩清宇.动力基础半空间理论概论[M].北京:中国建筑工业出版社,1981.
    [341]Yang J. A note on Rayleigh wave velocity in saturated soils with compressible constituents[J]. Canadian Geotechnical Journal,2001,38(6):1360-1365.
    [342]冯大阔,张建民,侯文峻.三维加载条件下粗粒土与结构接触面力学特性的试验研究[J].地震工程与工程振动,2010,30(6):154-161.
    [343]Briaud J. L., Texas A. M. V., Felio G. Y. Analysis of existing cyclic vertical load tests for piles in clay[C]. Offshore Technology Conference. Houston,1986: 31-34.
    [344]Shelley E. O. Direct shear tests on mexico city clay with reference to friction pile behaviour[J]. Geotechnical and Geological Engineering,1995,13(1):1-16.
    [345]Yasuhara K., Hyde A. F. L., Toyota N., et al. Cyclic stiffness of plastic silt with an initial drained shear stress[C]. Proc Geotechnique Symp on Pre-failure Deformation of Geomterials. London:Thomas Telford Ltd.,1998:373-382.
    [346]Yasuhara K., Murakami S., Song B. W. Postcyclic degradation of strength and stiffness for low plasticity silt[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2003,129(8):756-769.
    [347]Hardin B. O., Drnevich V. P. Shear modulus and damping in soils:Design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1972,98(SM7):667-692.
    [348]蒋明镜,沈珠江.结构性粘土剪切带的微观分析[J].岩土工程学报,1992,2(2):102-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700