用户名: 密码: 验证码:
利用地震噪声调查华北平原场地作用和浅层结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北平原是现今构造仍然非常活跃的沉积盆地,盆地内发育有多条交错的隐伏活动断裂,并历史上曾发生过如三河-平谷M-8和唐山M7.8地震,具有较高的潜在强震危险性。受断裂构造运动影响,盆地沉积结构相对比较复杂,可能会产生强烈的场地作用;但由于现今地震活动相对平静和地震台网分布稀疏等原因,该地区缺乏强震资料,目前对场地作用和与之相关的浅层结构缺乏比较系统的研究。
     由于不依赖于地震事件、可以灵活和廉价地流动观测覆盖研究区,采用地震噪声研究地震场地作用和浅层结构的方法在最近几年发展迅速并被广泛应用。本论文将主要基于地震噪声数据开展华北平原地区的场地作用和浅层结构相关研究。除了收集已有的华北地震台阵数据,我们还在平原区内的保定、沧州和北京等地开展了比较密集的地震噪声观测。利用单台三分量数据,采用噪声水平向和垂直向谱比法(NHVSR)得到峰值频率作为观测点浅层结构的基阶共振频率,研究华北地区浅层共振频率的横向变化特征和与之相关的浅层界面结构特征。利用台阵观测数据,反演浅层速度结构,并利用这些速度结构拟合限定共振频率和相应界面厚度的经验关系。此外,还对多种主动和被动地震面波勘探方法在数据采集和数据处理方面进行了实验和测试,以探讨快速和廉价探测浅层速度结构的观测模式和处理方法。
     研究结果表明,华北平原地区普遍存在着显著的浅层共振。北京-唐山-天津一带燕山山前平原区以NHVSR显示单个显著共振波峰特征为主。该区域共振频率横向变化非常突出,分布范围在十几Hz到0.2Hz之间。共振频率可能对应晚第三纪(N)以来形成的盆地底界面,厚度在0-lkm之间起伏。NHVSR或界面厚度剖面在经过一些断裂带时有明显的错断迹象。北京-唐山-天津以南平原地区NHVSR结果出现两个显著共振波峰。高频共振频率主要在1Hz附近变化,反映了沉积层内有显著波阻抗分层界面的存在。该共振频率可能对应晚更新世(Q3)底界面,厚度主要在100-300m之间变化,横向起伏和冀中坳陷和沧县隆起有对应关系。低频共振频率在0.5Hz以下,可能对应晚第三纪底界面。由于低频NHVSR相对不稳定,该频率和相关的界面特征有待下一步深入研究。
     总体而言,本研究进一步说明地震噪声能够有效应用于地震场地作用和浅层结构研究,可能探测盆地内垂直错距显著的隐伏断裂。本研究结果对地震工程和盆地结构研究具有一定的参考意义。
Northern China Plain (NCP) is a sedimentary basin that still has strong tectonic activities in current stage. Several staggered hidden active faults that had occurred large earthquakes in history such as the M-8Sanhe-Pinggu earthquake and M7.8Tangshan earthquake indicate that strong potential earthquake hazards in this area. Controlled by the tectonic faulting, the basin has relative complex structures that would produce strong site effects during the strong earthquakes. But systematical researches about site effects and associate shallow structures are lack in this area mainly because of shortage stromg motion data limited by relative low seismicity and sparse seismic station distributions in region.
     Using seismic noise data to investigate site effects and shallow structures has been fast developed and applied world wide in recent years for the noise surveys do not depend on seismic events and can cover the whole study region with cheap and flexible temporary observation. In this paper, I intend to investigate the site effects and shallow structures in NCP mainly using seismic noise data. Besides the noise data collecting from North China Seismic array, densely noise measurements were also carried out in several cities in NCP, i.e Baoding, Cangzhou and Beijing. Large three-component datasets were processed with noise horizontal to vertical spectral ratios method (NHVSR). The fundamental resonant frequencies were retrieved from the NHVSR peak frequencies, and further the lateral characters of resonant frequencies and associate shallow interfaces were discussed. With the seismic noise arrays datasets, the shallow velocity structures were inverted and were used to fit or confine the experiment relationship between resonant frequency and interface thickness. To find cheap and fast ways to retrieving shallow velocity structures, more active or passive surface wave exploration methods were experimented and tested in both data collection and data processing.
     The results show significant shallow resonances commonly exist in NCP. The NHVSRs in mountain front plain belt from Beijing to Tangshan/Tianjing have the characters of single prominent NHVSR peak. The peak frequencies have strong lateral change varying from tens to0.2Hz. The interfaces corresponding to the peak frequencies, with thicknesses fluctuating from near zero to about1km, are probably the base of lately developed basin that started subsiding from Neogene period. Some profiles of NHVSR or interface thickness have obvious clues that connect with the faulting effects of some major seismic faults. The NHVSRs in plain south to Beijing-Tangshan belt have characters with two major NHVSR peaks. The higher peak frequencies mainly around1Hz indicate high impedance contrast existing in sedimentary layer. These interfaces probably correspond to the base of late Pleistocene layer (Q3) with the thicknesses varying chiefly from100-300m and change synchronizing with Jizhong Depression and Cangxian Rift. The lower peak frequencies are below0.5Hz and probably also correspond to the base of Neogene layer. The low frequency peaks are fully discussed in this paper as they are hard to be recognized and more future investigations are need.
     In total, the results shown in this paper further confirm the possibilities to investigate site effects and relative shallow structures with seismic noise, and also show the feasibilities to identify hidden active faults in basin with large vertical displacement with noise surveys. The study in NCP provides useful information for both seismic engineering and basin research.
引文
Aki K. Local site effects on strong ground motion[C]//Utah:Proc. Earthq. Eng. and Soil Dynamics Ⅱ, ASCE,1988.
    Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bull. Earthq. Res. Inst,1957,35:415-457.
    Andrews, D. J. (1986). Objective determination of source parameters and similarity of earthquakes of different size, in Earthquake Source Mechanics, S. Das, J. Boatwright, and C. H. Scholz (Editors), American Geophysical Union, Washington, D.C.,259-268.
    Assimaki D, Kausel E, Gazetas G. Soil-Dependent Topographic Effects:A Case Study from the 1999 Athens Earthquake[J]. Earthquake Spectra,2005,21(4):929-966.
    Asten M W. Comment on "Microtremor observations of deep sediment resonance in metropolitan Memphis, Tennessee" by Paul Bodin, Kevin Smith, Steve Horton and Howard Hwang[J]. Engineering Geology,2004,72(3-4):343-349.
    BARD P-Y, TUCKER B E. Underground and ridge site effects:A comparison of observation and theory[J]. Bull. Seismol. Soc. Am.,1985,75(4):905-922.
    Bard P-Y. The H/V technique:capabilities and limitations based on the results of the SESAME project[J]. Bulletin of Earthquake Engineering,2008,6(1):1-2.
    Bodin P, Smith K, Horton S, et al. Microtremor observations of deep sediment resonance in metropolitan Memphis, Tennessee[J]. Engineering Geology,2001,62(1-3):159-168.
    Bonnefoy-Claudet S, Cotton F, Bard P-Y. The nature of noise wavefield and its applications for site effects studies:A literature review[J]. Earth-Science Reviews,2006,79(3-4):205-227.
    Bonnefoy-Claudet S, Kohler A, Cornou C, et al. Effects of Love Waves on Microtremor H/V Ratio[J]. Bull. Seismol. Soc. Am.,2008,98(1):288-300.
    Borcherdt R D. Effects of local geology on ground motion near San Francisco Bay[J]. Bull. Seismol. Soc. Am.,1970,60(1):29-61.
    Brocher T M. Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust[J]. Bull. Seismol. Soc. Am.,2005,95(6):2081-2092.
    Bromirski P D, Duennebier F K, Stephen R A. Mid-ocean microseisms[J]. Geochemistry Geophysics Geosystems,2005,6:19 PP.
    Campillo M, Paul A. Long-Range Correlations in the Diffuse Seismic Coda[J]. Science,2003, 299(5606):547-549.
    Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969,57(8):1408-1418.
    Cara F, Giulio G D, Rovelli A. A Study on Seismic Noise Variations at Colfiorito, Central Italy: Implications for the Use of H/V Spectral Ratios[J]. Geophysical Research Letters,2003,30:4 PP.
    Castellaro S, Mulargia F, Rossi P L. Vs30:Proxy for Seismic Amplification?[J]. Seismological Research Letters,2008,79(4):540-543.
    Chang C-H, Lin T-L, Wu Y-M, et al. Basement Imaging Using Sp Converted Phases from a Dense Strong-Motion Array in Lan-Yang Plain, Taiwan[J]. Bulletin of the Seismological Society of America,2010,100(3):1363-1369.
    Chatelain J L, Guillier B, Cara F, et al. Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings [J]. Bulletin of Earthquake Engineering,2008,6(1): 33-74.
    Chavez-Garcia F J, Luzon F. On the correlation of seismic microtremors[J]. J. Geophys. Res. 2005,110:12 PP.
    Chavez-Garcia F J, Sanchez L R, Hatzfeld D. Topographic site effects and NHVSR. A comparison between observations and theory[J]. Bull. Seismol. Soc. Am.,1996,86(5): 1559-1573.
    Chavez-Garcia F J, Sanchez L R, Hatzfeld D. Topographic site effects and NHVSR. A comparison between observations and theory[J]. Bull. Seismol. Soc. Am.,1996,86(5): 1559-1573.
    Chavez-Garcia F J, Stephenson W R, Rodriguez M. Lateral propagation effects observed at Parkway, New Zealand. A case history to compare 1D versus 2D site effects[J]. Bull. Seismol. Soc. Am.,1999,89(3):718-732.
    Cho I, Tada T, Shinozaki Y. A new method of microtremor exploration using miniature seismic arrays:Quick estimation of average shear velocities of the shallow soil[J]. Butsuri-Tansa, 2008(61):457-468.
    Cho I, Tada T, Shinozaki Y. Centerless circular array method:Inferring phase velocities of Rayleigh waves in broad wavelength ranges using microtremor records[J]. J. Geophys. Res.,2006,111:12 PP.
    Chopra S, Rao K, Rastogi B. Estimation of Sedimentary Thickness in Kachchh Basin, Gujarat Using SP Converted Phase[J]. Pure and Applied Geophysics,2010,167(10):1247-1257.
    Claerbout J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics,1968,33(2):264-269.
    Cornou C. Site-to-bedrock over 1D transfer function ratio:An indicator of the proportion of edge-generated surface waves?[J]. Geophysical Research Letters,2003,30(9).
    Davis P M, Rubinstein J L, Liu K H, et al. Northridge Earthquake Damage Caused by Geologic Focusing of Seismic Waves[J]. Science,2000,289(5485):1746-1750.
    Delgado J, Lopez Casado C, Giner J, et al. Microtremors as a geophysical exploration tool: applications and limitations[J]. Pure and Applied Geophysics,2000,157(9):1445-1462.
    Dunkin J W. Computation of Modal Solutions in Layered, Elastic Media at High Frequencies[J]. Bulletin of the Seismological Society of America,1965,55(2):335-358.
    Fah D, Kind F, Giardini D. Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects[J]. Journal of Seismology,2003,7(4):449-467.
    Flores-Estrella H, Yussim S, Lomnitz C. Seismic response of the Mexico City Basin:A review of twenty years of research [J]. Natural Hazards,2007,40(2):357-372.
    Geli L, Bard P-Y, Jullien B. The effect of topography on earthquake ground motion:A review and new results[J]. Bull. Seismol. Soc. Am.,1988,78(1):42-63.
    Gouedard P, Cornou C, Roux P. Phase-velocity dispersion curves and small-scale geophysics using noise correlation slantstack technique[J].Geophys. J. Int.,2008,172(3):971-981.
    Gueguen P, Cornou C, Garambois S, et al. On the limitation of the H/V spectral ratio using seismic noise as an exploration tool:application to the Grenoble valley (France), a small apex ratio basin[J]. Pure and Applied Geophysics,2007,164(1):115-134.
    Guillier B, Cornou C, Kristek J, et al. Simulation of seismic ambient vibrations:does the H/V provide quantitative information in 2D-3D structures[C]//3rd Int. Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France, paper.2006,153.
    Haskell N A. The Dispersion of Surface Waves on Multilayered Media[J]. Bulletin of the Seismological Society of America,1953,43(1):17-34.
    Henstridge J D. A signal processing method for circular arrays[J]. Geophysics,1979,44(2): 179-184.
    Herrmann, R. B. (1994). Computer programs in seismology[R]. vol IV, St Louis University.
    Hobiger M, Bard P-Y, Cornou C, et al. Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec)[J]. Geophys. Res. Lett.,2009,36(14): L14303.
    Holzer T L. Predicting Earthquake Effects-Learning from Northridge and Loma Prieta[J]. Science,1994,265(5176):1182-1183.
    Ibs-von Seht M, Wohlenberg J. Microtremor measurements used to map thickness of soft sediments[J]. Bull. Seismol. Soc. Am.,1999,89(1):250-259.
    Kawase H. Site Effects on strong ground Motions.2003. International Handhook of Earthquake and Engineering Seismology, Part B[M]. Edited by Lee W H K, Kanamori, H, Jennings P C, Kissinglinger C. Academic press, New York.
    Kawase H. The cause of the damage belt in Kobe:" The basin-edge effect," constructive interference of the direct S-wave with the basin-induced diffracted/Rayleigh waves[J]. Seismological Research Letters,1996,67(5):25.
    Kennett B L N, Clarke T J. Seismic waves in a stratified half-space Ⅳ p-sv wave decoupling and surface wave dispersion[J]. Geophys. J. Roy. Astr. Soc,1983,72,633-645.
    Kohler A, Ohrnberger M, Scherbaum F, et al. Assessing the reliability of the modified three-component spatial autocorrelation technique[J].Geophys. J. Int.,2006,168(2):779-796.
    Komatitsch D, Vilotte J-P. The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures [J]. Bull. Seismol. Soc. Am.,1998,88(2): 368-392.
    Konno K, Ohmachi T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor[J]. Bull. Seismol. Soc. Am.,1998,88(1): 228.
    Lachet C, Bard P Y. Numerical and Theoretical Investigations on the Possibilities and Limitations of Nakamura's Technique[J]. Journal of Physics of the Earth,1994,42:377-397.
    Lacoss, R. T., E. J. Kelly, and M. N. Toksoz (1969). Estimation of seismic noise structure using arrays, Geophysics 34,21-38
    Langston C A. Wave-Field Continuation and Decomposition for Passive Seismic Imaging Under Deep Unconsolidated Sediments[J]. Bull. Seismol. Soc. Am.,2011,101(5):2176-2190.
    Lobkis O I, Weaver R L. On the emergence of the Green's function in the correlations of a diffuse field[J]. The Journal of the Acoustical Society of America,2001,110(6):3011.
    Longuet-Higgins M S. A Theory of the Origin of Microseisms[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1950,243(857): 1-35.
    Louie J N. Faster, Better:Shear-Wave Velocity to 100 Meters Depth from Refraction Microtremor Arrays[J]. Bull. Seismol. Soc. Am.,2001,91(2):347-364.
    Luzon F, Almendros J, Garcia-Jerez A. Shallow structure of Deception Island, Antarctica, from correlations of ambient seismic noise on a set of dense seismic arrays[J].Geophys. J. Int.,2011, 185(2):737-748.
    Malischewsky P G, Zaslavsky Y, Gorstein M, et al. Some new theoretical considerations about the ellipticity of Rayleigh waves in the light of site-effect studies in Israel and Mexico[J]. Geofisica internacional,2010,49(3):141-152.
    Mucciarelli M, Gallipoli M R, Arcieri M. The stability of the horizontal-to-vertical spectral ratio of triggered noise and earthquake recordings[J]. Bulletin of the Seismological Society of America,2003,93(3):1407.
    Mucciarelli M, Gallipoli M R, Di Giacomo D, et al. The influence of wind on measurements of seismic noise[J].Geophys. J. Int.,2005,161(2):303-308.
    Mucciarelli M, Gallipoli M R, Di Giacomo D, et al. The influence of wind on measurements of seismic noise[J].Geophys. J. Int.,2005,161(2):303-308.
    Mucciarelli M. Reliability and applicability of Nakamura's technique using microtremors:an experimental approach[J]. Journal of Earthquake Engineering,1998,2(4):625-638.
    Nakamura Y. A method for dynamic characteristics stimation of ubsurface using microtremor on the ground surface[J].23. Quarterly Report Railway Tech Res Inst,1989,30(1):25-30.
    Nakamura Y. Clear identification of fundamental idea of Nakamura's technique and its applications[C]//Proceedings of the 12th World Conference on Earthquake Engineering.2000.
    Park C B, Miller R D, Xia J. Multichannel analysis of surface waves (MASW)[JJ. Geophysics, 1999,64(3):800-808.
    Parolai S, Bormann P, Milkereit C. Assessment of the natural frequency of the sedimentary cover in the Cologne area (Germany) using noise measurements[J]. Journal of Earthquake Engineering,2001,5(4):541-564.
    Parolai S, Galiana-Merino J J. Effect of transient seismic noise on estimates of H/V spectral ratios[J]. Bulletin of the Seismological Society of America,2006,96(1):228.
    Parolai S, Picozzi M, Strollo A, et al. Are transients carrying useful information for estimating H/V spectral ratios?[J]. Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data,2009:17-31.
    Pilz M, Parolai S, Leyton F, et al. A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile[J].Geophys. J. Int.,2009,178(2):713-728.
    Poggi V, Fah D. Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations[J].Geophys. J. Int.,2010,180(1):251-267.
    Sambridge M. Geophysical inversion with a neighbourhood algorithm-Ⅱ. Appraising the ensemble[J].Geophys. J. Int.,1999,138(3):727-746.
    SESAME-Team. Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations:measurements, processing, and interpretations[R]. ESAME European research project, EVG1-CT-2000-00026, deliverable D23.12.,2005.
    Shapiro N M, Campillo M, Stehly L, et al. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise[J]. Science,2005,307(5715):1615-1618.
    Shapiro N M, Campillo M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise[J]. Geophys. Res. Lett,2004,31(7):1615-1619.
    Steidl J H, Tumarkin A G, Archuleta R J. What is a reference site?[J]. Bull. Seismol. Soc. Am., 1996,86(6):1733.
    Tada T, Cho I, Shinozaki Y. New Circular-Array Microtremor Techniques to Infer Love-Wave Phase Velocities[J]. Bull. Seismol. Soc. Am.,2009,99(5):2912-2926.
    Taylor M, Yin A. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 2009,5(3):199-214.
    Thomson W T. Transmission of Elastic Waves through a Stratified Solid medium[J]. Jour. Appl. Phys.,1950,21,89-93.
    Tokimatsu K. Geotechnical site characterization using surface waves[C]//Balkema,1997,3: 1333-1368.
    Tsai V C, Moschetti M P. An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results[J].Geophys. J. Int.,2010,182(1):454-460.
    Vasconcelos I, Snieder R. Interferometry by deconvolution:Part 1-Theory for acoustic waves and numerical examples[J]. Geophysics,2008,73(3):S115.
    Wathelet M, Jongmans D, Ohrnberger M, et al. Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion[J]. Journal of seismology,2008,12(1): 1-19.
    Woolery E W, Street R.3D near-surface soil response from H/V ambient-noise ratios[J]. Soil Dynamics and Earthquake Engineering,2002,22(9-12):865-876.
    Ye H, Zhang B, Mao F. The Cenozoic tectonic evolution of the Great North China:two types of rifting and crustal necking in the Great North China and their tectonic implications[J]. Tectonophysics,1987,133(3-4):217-227.
    陈棋福,刘澜波,王伟君,et al.利用地脉动探测北京城区的地震动场地响应[J].科学通报,2009,53(18):2229-2235.
    陈望和,倪明云.河北第四纪地质[M].北京:地质出版社,1987.
    陈颙,史培军.白然灾害[M].北京:北京师范大学出版社,2007.
    高占武,徐杰,宋长青.华北沧东断裂的构造特征[J].地震地质,2000,22(4).
    何正勤,叶太兰,丁志峰.华北东北部的面波相速度层析成像研究[J].地球物理学报,2009,52(5):1233-1242.
    河北省地质局区域地质测量大队.中华人民共和国地质图-保定幅[J].1964.
    嘉世旭,张先康.华北不同构造块体地壳结构及其对比研究[J].地球物理学报,2005,48(3):611-620.
    蒋溥,王启鸣,徐峰.唐山地震引起的几个异常破坏区的原因探讨[J].地震地质,1979,1(1):90-98.
    刘保金,胡平,陈颙贞等.北京平原西北部地壳浅部结构和隐伏活动断裂——由地震反射剖面揭示[J].地球物理学报,2009,52(8).
    刘桂梅.《河北省城市活断层探测与地震危险性评价项目》专题报告-保定市活断层控制性浅层地震勘探[R].2010.
    刘杰,郑斯华,黄玉龙.利用遗传算法反演非弹性衰减系数、震源参数和场地效应[J].地震学报,2003,25(2):211-218.
    刘曾武,寇殿卿,吕根盛.唐山地震玉山低烈度异常原因的探讨[J].地震工程与工程振动,1982(2).
    马淑芹,栗连弟,卞真付.用Nakamura技术评估天津地区场地效应[J].中国地震,2007,23(1).
    马淑芹,王湘南,卞真付.用Nakamura方法评估北京地区场地效应[J].中国地震,2008,24(1).
    谭毅培,王伟君,齐诚,et a1.北京地区地壳三维结构的综合建模[J].震灾防御技术,2009,4(1):41-56.
    徐杰,高古武,宋长青.太行山山前断裂带的构造特征[J].地震地质,2000,22(2):111-122.
    杨成林.瑞雷波勘探[M].北京:地质出版社,1993.
    张宗祜,刘志刚,孙晓明.地质调查项目成果报告-华北地下水可持续开发利用前景成果报告[R].中国地质科学院水文地质环境研究所,2006.
    章文波,谢礼立,郭明珠.利用强震记录分析场地的地震反应[J].地震学报,2001a,23(6):604-614.
    章文波,周雍年,谢礼立.场地放大效应的估计[J].地震工程与工程振动,2001b,21(4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700