用户名: 密码: 验证码:
框支密肋复合板结构抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
底部大空间结构体系是为了适应现代建筑使用功能要求而出现的一种建筑结构形式。本文将节能抗震、绿色环保、轻质高强、刚度可调的密肋复合板结构与底部大空间结构结合,形成一种新型结构体系—框支密肋复合板结构,该结构体系具有刚度灵活可调和承载力分布合理等特点,拓展了密肋复合板结构的应用领域。论文在总结前期相关研究成果的基础上,引入斜交肋格的构造形式,结合试验研究、数值模拟与理论分析,对框支密肋复合板结构的受力机理、抗震设计方法、结构损伤耗能等方面进行了研究。论文主要工作如下:
     1、进行4榀不同构造形式的1/2比例框支密肋复合板结构模型低周反复加载试验,分析结构的破坏过程、滞回特性、各构件钢筋的荷载—应变曲线及刚度退化规律、强度退化特性和可修复性,得到结构在受力性能、破坏形态和抗倒塌能力方面的特点,为该结构恢复力模型的建立提供参考。
     2、采用非线性程序IDARC建立试件宏观单元模型,模拟框支密肋复合板结构的低周反复加载试验,模拟结果与试验吻合较好。并采用ANSYS软件分析试件在弹塑性阶段的细部受力特征。分析试验墙体在初始阶段及受力过程中各个控制阶段的转换层刚度比的变化,得到框支密肋复合板结构转换层刚度比独特规律,并给出最优设计刚度比。对某高层框支密肋复合板结构,进行结构近场地震响应分析,并与同等条件下框支剪力墙结构的非线性动态响应进行对比,得出框支密肋复合板结构的耗能能力与非线性地震响应特点,可为该结构非线性设计提供依据。
     3、基于正交试验设计,对框支密肋复合板结构影响因素及设计计算公式进行分析。考虑框支梁高跨比、抗震墙截面宽度与高度比、密肋墙高跨比及正交肋格洞口位置变化的因素,计算框支密肋复合板结构中框支梁、柱内力和整体最大转角值。进行各影响因素的显著性分析,提出框支正交肋格和斜交肋格密肋复合板结构中框支梁承载力内力系数设计计算公式。
     4、基于材料断裂理论中的Griffith能量释放观点和Irwin-Orowan能量平衡原理,探讨框支密肋复合墙体损伤现象及内在机理。结合墙体破坏特征,建立更合理的改进型损伤模型。并计算墙体各破坏状态的损伤指数界限值,量化分析墙体的滞回耗能能力和滞回曲线捏缩过程,可较为准确评估墙体损伤演化规律。
     5、通过结构失效判别准则,分析结构失效程度,揭示框支密肋复合板结构的多道抗震防线原理。引入结构鲁棒性概念,进行结构主要构件密肋复合墙体易损指数和框支密肋复合板结构安全储备评价指标的量化分析,深入研究框支密肋复合板结构的抗震鲁棒性,为结构的抗倒塌设计提供新方法。
To cope with function of modern building, the structure with large space at the bottom is developing. This paper introduces Multi-ribbed Composite slab structure (MRC slab structure), whose displays good performance in energy saving and earthquake resistance, environmental protection, at the same time, owing to its lightness, strength, adjustable rigidity, to this structure. The Frame-supported Multi-ribbed Composite slab structure (FSMRC slab structure) is able to realize the reasonable distributions of the stiffness and the bearing forces, expand the application scope of MRC slab structure. Based on the prior related study results and the design of oblique frame-grid, the load-bearing mechanism, seismic design method and damage is studied, through model tests, numerical simulation and theoretical analysis. The main parts of work are as follows:
     1、Four FSMRC slab specimens with different forms were tested under cyclic loading, the failure process, hysteresis characteristic, the loading-strain curves of the reinforcing bars of the members, as well as the the stiffness-degradation law, strengthen-degradation performance and repairability were anlyzed. The characteristics of mechanical behavior, failure mode and collapse-resistant capacity were obtained, to provide reference for the establishment of the restoring force model.
     2、The macro model was computed incorporated in the program IDARC, to simulate cyclic loading test of FSMRC slab structure. The calculating results have accordance well with experimental data. And detailed stress characteristics of the specimens in the elastic-plastic stage were simulated by ANSYS. Furthmore, the stiffness ratio of transfer-story was discussed in each control phrase, the unique rule on stiffness ratio of transfer story of FSMRC slab structure was given, moreover, optimal design of stiffness ratio was adviced. The computing models with high-storey FSMRC slab structure was established to make the near-field seismic response analysis, and compare with the nonlinear dynamic response of Frame-supported Shear wall structure (FSS wall structure) under the same terms. The characteristics of energy-dissipation and seismic-response were obtained, to provide the basis for the nonlinear design of the structure.
     3、Based on the orthogonal design method, the influence factors and calculation formula of FSMRC slab structure were studied. Considering the factors of height-to-span ratio of the frame-supported beam, width-to-height ratio of the aseismic wall, height-to-span ratio of MRC wall and hole-position variation of orthogonal frame-grid, the internal force of frame-supported beam, frame-supported column and maximum angle of the overall structure were analyzed. The significant degree of various influence factors were determined, in addition, the calculation formula of bearing internal-force coefficient of frame-supported beam of the structure was also given.
     4-Based on the Griffith energy release and Irwin-Orowan energy balance principle in material fracture theory, damage phenomenon and internal mechanism of FSMRC wall were examined. According to the failure features of the wall, a more reasonable improved damage model was set up. The boundary values of the damage index at different destructive state were researched, hysteretic energy dissipation and pinch process of hysteretic curve was analyzed quantitatively, so that the wall damage-evolution law was evaluated accurately.
     5^Through the structure failure criterion, the structural failure degree was analyzed. Multi lines of defense principle of FSMRC slab structure was revealed. A new definition of structural robustness was given, in accordance with the quantitative analysis on vulnerable index of MRC wall and safety evaluation indicator of FSMRC slab structure, the structural seismic robustness was studied in depth, to provide a new method for structural anti-collapse design.
引文
[1]丁大钧.墙体改革与可持续发展[J].建筑结构,2004,34(3):56-62
    [2]施楚贤.砌体结构理论与设计[M].北京:中国建筑工业出版社,2003
    [3]图尔苏穆拉托夫.柔性底层房屋的抗震性能[M].自贡市科技情报研究所译,1980
    [4]Biot, M. A.. Analytical and Experiment Methods in Engineering Seismology[J]. Proceedings of the National Academy of Sciences ASCE,1943,108-112
    [5]Polyakow, S.V.. Design of Earthquake Resistant Structure[M]. Mir Publishers, Moscow,1985
    [6]Paula, T. and Prieystley, M. J. N.. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. New Pork:John Wiley and Sons, Inc.,1992
    [7]Narendra T. Design of Reinforced Masonroy Structure[M]. New Pork:McGraw-Hill, Inc.,2001
    [8]刘大海,杨翠如,钟锡根.高层建筑抗震设计[M].北京:中国建筑工业出版社,1993
    [9]李碧熊,王哲.汶川地震中底层框架砖房震害特点及分析[J].中山大学学报,2010,49(2):22-27
    [10]Li, X. J., Zhou, Z. H.,Yu, H. Y., et al. Strong motion observations and recordings from the great Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Vibration,2008,7(3): 235-246
    [11]谭皓,李杰,张电吉等.玉树地震灾区底框砖混结构建筑的震害调查[J].浙江建筑,2011,28(1):20-23
    [12]高小旺,孟俊义,李荷等.底部两层框架上部六层砖房1/3比例模型的抗震试验研究[J].建筑科学,1994,(3):12-18
    [13]高小旺,肖伟,王菁等.底部两层框架-抗震墙砖房侧移刚度分析和第三层与第二层刚度比的合理取值[J].建筑结构,1999,(11):9-11
    [14]高小旺,孟俊义,廖兴祥,等.七层底层框架抗震墙砖房1/2比例模型抗震试验研究[J].建筑科学,1995(4):18-23
    [15]梁兴文,王庆霖,梁羽风.底部框架抗震墙砖房1/2比例模型拟动力试验研究[J].土木工程学报,1999,32(2):14-21
    [16]陶荣杰,梁兴文,王庆霖.连续墙梁有限元分析和内力简化计算[J].建筑结构,2011,41(2):85-88
    [17]薛建阳,赵鸿铁.底部两层框架-抗震墙砖房模型试验及其动力分析[J].工业建筑,2000,30(8):13-16
    [18]薛建阳,赵鸿铁,杨勇.底部两层框架-抗震墙砌体房屋的动力计算模型及侧向刚度控制[J].力学学报,2002,23(4):583-588
    [19]刘雁,邹筱静,钟文乐等.底部两层框架砖房1/5比例模型抗震实验研究[J].建筑结构学报,2001,22(2):33-38
    [20]刘锡军,邹银生.底部两层混凝士框剪八层砖房模型抗震试验研究[J].土木工程学报,2004,37(2):19-22
    [21]Seible, F., Hegemier, G. A., Igarashi, A., et al. Simulated Seismic Load Tests in Full Scale Five Story Masonry Building[J]. Journal of Structural Engineering,1994,120(3):903-924
    [22]Seible,F., Priestley, M. J. N., Kingsley, G. R., et al. Seismic Response of Full Scale Five Story Reinforced Masonry Building[J]. Journal of Structural Engineering,1994,120(3):925-947
    [23]Stafford, S. B.. Methods for Predicting the Lateral Stiffness and Strength of Multi-Storey Infilled Frames[J]. Building Science,1967, (2):247-257
    [24]Kato, H.. Research and Development on Performance Evaluation and Structural Control Methods for Buildings with Soft Storey to Ensure the Seismic Safety[J]. Building Research Institute.2004:1-8
    [25]Liang, X. W. and Wang, Q. L.. A Method for Calculating Horizontal Bearing Capacity of Continuous Masonry Wall Supported on RC Frame[J]. Proceedings of the 11th International Brick/Block Masonry Conference,1997, (1):14-16
    [26]Liang, X. W., Li, B. and Li, X.W.. Lateral Load-Carrying Capacity of Continuous Masonry Wall Supported on RC Frame[J]. Advances in Structural Engineering,2009.10(3):305-317
    [27]黄靓.框支配筋砌块砌体剪力墙多自由度子结构拟动力试验研究及非线性地震反应分析[D].湖南大学博士学位论文,2005
    [28]刘洧骥.框支配筋砌块短肢砌体剪力墙墙梁受力性能试验研究[D].哈尔滨工业大学硕士学位论文,2008
    [29]GB 50003-2011砌体结构设计规范[s].北京:中国建筑工业出版社,2011
    [30]国艳锋.带洞口配筋混凝土砌块墙梁的受力性能试验研究[D].哈尔滨工业大学硕士学位论文,2007
    [31]Green, D. R.. The Interaction of Solid Walls and Their Supporting Structures[J]. Building Science,1982, (7):33-43
    [32]Green, D.R.. Force Actions in Shear Wall Supported System[J]. Response of Multistory Concrete Structures to Lateral Force,1982,27(6):15-24
    [33]Cerny, L.. Column Supported Walls with Opening, Planning and Design of Tall Building[J]. Proceeding International Conference, New York,1972, (3):486-501
    [34]Cerny, L., Leon,R.. Column Supported Walls Concrete Framed Structures:Stability and Strength[M]. Netherlands:Elsevier Applied Science Publishers,1986
    [35]Barroso, L. R., Breneman, S. E., and Smith, H. A. Performance Evaluation of Controlled Steel Frames under Multi-level Seismic Loads[J]. Journal of Structure Engineering,2002,128(11): 1368-1378
    [36]Lee, H. S. and Ko, D. W.. Shaking Table Tests of a High-rise RC Bearing-wall Structure with Bottom Piloti Stories[J]. Journal of Asian Architecture and Building Engineering,2002,1(1): 47-54
    [37]底层大空间剪力墙结构研究组.底层大空间剪力墙结构12层模型的试验研究[J].建筑结构学报,1984(2):1-7
    [38]黄宗瑜,沈聚敏.框支剪力墙结构地震反应研究[J].建筑结构学报,1986,7(6):40-51
    [39]Cheng, T.Z. and Thomas, H.S.. Loaded L-shaped Reinforced Concrete Columns[J]. Journal of Structural Engineering,1985, (12):2576-2595
    [40]Cheng, T.Z. and Thomas, H.S.. Loaded L-shaped Reinforced Concrete Conpression Members under Biaxial Bending[J]. Structural Journal,1987,84(3):210-211
    [41]Cheng, T.Z. and Thomas, H.S.. T-shaped Reinforced Concrete Members under Biaxial Bending and Axial Compression[J]. Structural Journal,1989,86(4):460-468
    [42]Mallikarjuna, P.. Computer Aided Analysis of Reinforced Concrete Columns Subjected to Axial Compression and Bending-I L-shaped Section[J]. Computer and Structures,1992,44(5): 1121-1138
    [43]Mallikarjuna, P.. Computer Aided Analysis of Reinforced Concrete Columns Subjected to Axial Compression and Bending-I T-shaped Section[J]. Computer and Structures,1994,53(6): 1317-1356
    [44]Sinha,S.N.. Design of Cross(+) Section of Columns[J]. The Indian Concrete Journal,1996, 70(3):153-158
    [45]王滋军,刘伟庆,汪杰,等.中高层大开间钢筋混凝士异形柱框架结构抗震性能研究[J].地震工程与工程振动,1999,19(3):59-64
    [46]刘建,潘文,杨晓东.8度区异形柱框架2剪力墙结构的振动台试验研究[J].建筑结构学报,2007,(S1):8-1
    [47]曹万林,胡国振,周明杰,等.钢筋带暗柱十字形柱抗震性能试验研究[J].世界地震工程,1999,15(2):28-33
    [48]胡振国,曹万林,周明杰,等.钢筋带暗柱L形柱抗震性能试验研究[J].世界地震工程,1999,15(4):32-37
    [49]胡国振,曹万林,王绍英.钢筋混凝土大开间异型柱框架抗震设计若干问题的研究[J].世界地震工程,2000,16(1):48-50
    [50]曹万林,黄选明,宋文勇,等.带交叉钢筋异形截面短柱抗震性能试验研究及非线性分析[J].建筑结构学报,2005,26(3):30-37
    [51]JGJ149-2006混凝土异形柱结构技术规程[s].北京:中国建筑工业出版社,2006
    [52]Gregory, C. Shelter from the Storm:Housing and the Industrial Revolution[J]. Journal of Economic History,2002,62(2):1550-1909
    [53]Kenney, W. F.. Energy Conservation in the Process Industries[M]. Orlando:Academic Press, 1984
    [54]Shang C., Wang, Y. W. and Liu, H. Y.. Study on the Standard System of the Application of Information Technalogy in China, s Construction Industry[J]. Automation in Construction, 2004(13):591-596
    [55]夏秋.略论国外与国内住宅产业发展方向[J].四川建筑,2000,20(4),21-23
    [56]Headey, S.B.. A Theory of Fluctuations in Residential Construction Starts[J]. American Economic Review,1993,5(3):359-383
    [57]Martin, W. and Martin P., Hermann, H., et al.. Applying Distance-to-target Weighing Methodology to Evaluate the Environmental Performance of Bio-based Energy, Fuels, and Materials[J]. Resources, Conservation and Recycling,2007, (50):260-281
    [58]Kohler, N. Architecture Resource and Information[J]. Journal of Architecture,2002, (12): 56-59
    [59]Chen, Z., Li, H. and Wong, C. T. C. Environmental Management of Urban Construction Projects in China[J]. Resources, Conservation and Recycling,2007, (50):260-281
    [60]Lang, S. W.. Progress in Energy-efficient Standards for Residential Buildings in China[J]. Energy and Building,2004,36(12):1191-1196
    [61]姜阵剑.国内外住宅产业化的对比分析[J].建筑经济,2004,9:51-53.
    [62]Barbier, E. B.. The Concept of Sustainable Development[J]. Environment Conserve,1987, 14(1):101-110
    [63]Wheaton, W. C., Torto, R.G. and Evans, P.. The Cyclic Behavior of the Greater London Office Market[J]. Journal of Real Estate Fianace and Economics,1997,15(1):77-92
    [64]Hendriks, C. F. and Pietersen, H. S.. Sustainable Raw Materials:Construction and Demolition Waste [M]. Paris:RILEM Publication,2000
    [65]中国住宅产业化发展的步骤、途径与策略[J].哈尔滨建筑大学学报,2000,33(1):92-96
    [66]陈彤,郭惠琴,马涛,等.装配整体式剪力墙结构在住宅产业化试点工程中应用[J].建筑结构,2011,41(2):26-30
    [67]Kim, S. E.. Multi-Storey Precast Concrete Framed Structures[M]. Boston:Blackwell Scientific Press,1996
    [68]万国良,万龙涛,刘泳霞,等.绿色节能建筑结构新体系[M].北京:科学出版社,2009
    [69]密肋壁板轻型框架结构课题组.密肋壁板轻型框架结构理论与应用研究[R].西安建筑科技大学,2000
    [70]Zhang, Y., Yao, Q. F. and Ding, Y. G.. Study on Energy-saving Residential Building Structures of Multi-ribbed Composite Walls With High Performance Concrete[C]. EETC-2005,444-450
    [71]姚谦峰,陈平,张荫,等.密肋壁板轻框结构节能住宅体系研究[J].工业建筑,2003,33(1):1-5
    [72]姚谦峰.新型节能住宅结构体系的研究与发展[J].工程力学,2001,(A01):138-155
    [73]刘扬,张荫,姚谦峰.复合板结构节能建筑的经济效益分析与研究[J].建筑节能,2008,(3):29-31
    [74]周铁钢,张荫,姚谦峰.密肋壁板轻框结构体系施[技术[J].工业建筑,2003,33(1):23-25
    [75]Zhang, Y., Yao, Q. F. and Lu, J. L.. Construction Technology of Multi-ribbed Wall-panel Structure and its Application[C]. ISSEYE-9,1574-1578
    [76]姚谦峰,周铁钢,黄炜,等.密肋壁板轻框结构节能住宅小区施工技术[J].施工技术,2002,31(8):16-18
    [77]Xia, L., Yao, Q. F., Chang, P., et al. Seismic Safety Evaluation Analysis of A New Building Structure with Multi-ribbed Composite Wall Structure[J]. International Conference on Earthquake Engineering-the 1st Anniversary of Wenchuan Earthquake,2009,5:325-328
    [78]Liu, P. and Yao, Q. F.. Reliability Analysis of Multi-ribbed Composite Wall Subjected to Non-stationary Earthquake[C]. SCAMI-2, Changsha,2007,19-21
    [79]Liu, P. and Yao, Q. F..Dynamic Reliability of Strucutres:the Example of Multi-grid Composite Walls[J]. Structural Engineering and Mechnanics,2010,36(4):463-479
    [80]谢强,姚谦峰.高层轻板框架结构的刚度和承载力分析[J].西安建筑科技大学学报,2000,32(3):205-208
    [81]谢强,姚谦峰.高层轻板框架结构地震响应分析[J].工程力学,2000,3(A03):279-283
    [82]田英侠.密肋复合墙板受力性能试验研究与理论分析[D].西安建筑科技大学硕士学位论文,2002
    [83]常鹏. 基于性能(位移)的密肋壁板结构数值计算分析与抗震设计方法研究[D].北京交通大学博士学位论文,2006
    [84]Chang, P., Yao, Q. F. and Xiong, Y. Q.. Computation Models of MCS in Nonlinear Numerical Simulation of Moderate High-rise MRSS[J]. The Ninth International Symposium on Structural Engineering for Young Experts,2006, (8):1168-1173
    [85]喻磊,张荫,岳亚锋,等.钢筋混凝土框格单元结构力学性能试验研究[J].西安建筑科技大学学报,2007,39(3):314-319
    [86]孟宏睿.生态轻质水泥基墙体材料性能及密肋复合墙体弹塑性分析模型研究[D].西安建筑科技大学博士学位论文,2008
    [87]刘海涛.密肋复合板结构非线性数值模型研究与地震能量反应分析[D].北京交通大学博士学位论文,2012
    [88]姚谦峰,袁泉.小高层密肋壁板轻框结构模型振动台试验研究[J].建筑结构学报,2003,24(1):59-63
    [89]袁泉.密肋壁板轻框结构非线性地震反应分析[D].西安建筑科技大学博士学位论文,2003
    [90]Yuan, Q., Yao, Q. F. and Jia, Y. J.. Study on Hysteretic Model and Damage Model of Multi-ribbed Composite Wall[J]. EETC-2005,644-650
    [91]Yuan, Q., Yao, Q. F. and Xia, L.. Nonlinear Seismic Response Calculation Model of Multi-ribbed Composite Slab Structure[J]. ISSEYE-9,1088-1093
    [92]姚谦峰,贾英杰.密肋壁板结构十二层1/3比例房屋模型抗震性能试验研究[J].土木工程学报,2004,37(6):5-11
    [93]贾英杰.中高层密肋壁板结构计算理论及设计方法研究[D].西安建筑科技大学博士学位论文,2004
    [94]Jia, Y. J., Shi, Y. H. and Yao, Q. F.. Studies on Seismic Behavior and Static Pushover Analysis of Multi-ribbed Slab Structures[C]-ISSEYE-9,1250-1255
    [95]Wang, A. P., Yao, Q. F. and Chang, P.. A Shake-table Sutdy of the Isolated House of Multi-ribbed Wall Slab with Light-Weight Outer Frame Structure[C]. ISSEYE-9,1369-1374
    [96]张杰.密肋复合墙板受力性能及斜截面承载力实用设计计算方法研究[D].西安建筑科技大学硕士学位论文,2004
    [97]黄炜,姚谦峰,章宇明,等.密肋复合墙体抗震性能及设计理论研究[J].西安建筑科技大学学报,2005,37(1):29-34
    [98]黄炜.密肋复合墙体抗震性能及设计理论研究[D].西安建筑科技大学博十学位论文,2004
    [99]丁永刚.框支密肋壁板结构墙梁受力性能及设计计算方法研究[D].西安建筑科技大学博士学位论文,2006
    [100]喻磊.密肋复合墙板框格单元在地震作用下的受力机理及弹塑性损伤模型研究[D].西安建筑科技大学博士学位论文,2006
    [101]何明胜,姚谦峰,黄炜等.中高层密肋复合墙体延性及轴压比限值研究[J].工业建筑,2008,38(9):70-73
    [102]郭猛.框架一密肋复合墙结构抗震性能与设计计算方法研究[D].北京交通大学博士博士学位论文,2011
    [103]李鹏飞,袁泉,郭猛,等.点接触式密肋复合墙体抗震性能试验[J].中南大学学报,2011,42(11):3494-3501
    [104]GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010
    [105]梁兴文,王庆霖,易文宗,等.框支连续墙梁抗震性能研究及设计计算[J].建筑结构学报,1998,19(4):9-18
    [106]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社,2001
    [107]JGJ101-96建筑抗震试验方法规程[s].北京:中国建筑工业出版社,1996
    [108]孙国华,顾强,何若全.半刚接钢框架内填RC墙结构滞回性能试验—局部性能分析[J].土木工程学报,2010,43(1):47-55
    [109]邓大鹏.密肋复合墙体损伤机理及恢复力模型研究[D].北京交通大学硕士学位论文,2005
    [110]李正良,冯宏,陈永庆.HSRC框架柱的恢复力特性[J].西南交通大学学报,2010,45(6):888-892
    [111]江见鲸,陆新征,叶列平.混凝士结构有限元分析[M].北京:清华大学出版社,2005
    [112]Reinhorn, A.M., Valles, R.E., Kunnath,S.K.. IDARC 2D Version 7.0:User's Guide[M]. State University of New York at Buffalo,2010
    [113]Park,Y.J. and Ang, A.H.S.. Mechanistic Seismic Damage Model for Reinforced Concrete[J]. Journal of Strctural Engineering,1985,111(4):722-739
    [114]Kunnath, S. K., Reinhorn, A. M. and Abel, J. F.. A Computational Tool for Seismic Performance of Reinforced Concrete Buildings[J]. Computers and Structures,1992,41(1): 157-173
    [115]Park, Y. J., Reinhorn, A. M., Kunnath. S. K.. IDARC:Inelastic Damage Analysis of Reinforced Concrete Frame-Shear Wall Structures. State University of New York at Buffalo: Technical Report NCEER-87-0008,1987
    [116]黄炜,姚谦峰,丁永刚,等.新型复合墙体的有限元建模技术研究[J].工业建筑,2005,35(11):43-46
    [117]孟海.密肋复合墙板试验研究及刚度分析[D].西安建筑科技大学硕士学位论文,2004
    [118]袁泉,姚谦峰.密肋壁板轻框结构计算模型及数值分析[J].工程力学,2001(A03):262-266
    [119]Kunnath,S.K., Reinhorn,A.M. and Park,Y.J.. Analytical Modeling of Inelastic Seismic Response of R/C Structures[J]. Journal of Structural Engineering,1990,116(4):996-1017
    [120]Wang, C, Foliente,G.C, Sivaselvan, M. V., and Reinhorn A. M.. Hysteretic Models for Deteriorating Inelastic Structures[J]. Journal of Engineering Mechnics,2001,127(11): 1200-1222
    [121]Mostaghel,N.. Analytical Description of Pinching, Degrading Hysteretic Systems[J]. Journal of Engineering Mechanics,1999,125(2):216-224
    [122]贾穗子,袁泉.密肋复合墙结构滞回退化参数及耗能减震性能[J].华中科技大学学报,2013,41(7):32-35
    [123]叶先磊,史亚杰.ANSYS工程分析软件应用实例[M].北京:清华大学出版社,2004
    [124]何本国.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2011
    [125]王新敏,李义强,许宏伟.ANSYS结构分析单元与应用[M].北京:人民交通出版社,2011
    [126]JGJ/T275-2013密肋复合板结构技术规程[s].北京:中国建筑工业出版社,2014
    [127]贾英杰,魏晓,张宇航等.框支密肋壁板结构转换层刚度比的合理取值[J].西安建筑科技大学学报,2009,41(3):328-333
    [128]于海英,王栋,杨永强,等.汶川8.0级地震强震动特征初步分析[J].震灾防御技术,2008,3(4):321-336
    [129]Riki, H., and Tauqir, A.. Design Input Motion Synthesis Considering the Effect of Uncertainty in Structural and Seismic Parameters by Feature Indexes[J]. Journal of Structural Engineering,2011,137(3):391-400
    [130]张铮,杨文平,石博强.MATLAB程序设计与实例应用[M].北京:中国铁道出版社,2003
    [131]赵凤新,张郁山.拟合峰值速度与目标反应谱的人造地震动[J].地震学报,2006,28(4):429-437
    [132]贾穗子,姚谦峰.近场地震作用下密肋耗能复合墙结构地震响应分析[J].北京交通大学学报,2011,35(4):88-92
    [133]Hall, J. F., Heaton, T. H., and Halling, M. W.. Near-source Ground Motion and Its Effects on Flexible Buildings[J]. Earthquake Spectra,1995,11(4):569-605
    [134]Roberts, M. W., and Lutes, L. D.. Potential for Structural Failure in the Seismic Near-field[J]. Journal of Engineering Mechanics,2003,129(8):927-934
    [135]Zahrah,T. F. and Hall, W. J.. Earthquake Energy Absorption in SDOF Structures [J]. Journal of Structural Engineering,1995,110(8):202-245
    [136]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005
    [137]邱轶兵.试验设计与数据处理[M].合肥:中国科学技术出版社,2008
    [138]王振宇,刘晶波.建筑结构地震损伤评估的研究进展[J].世界地震工程,2001,17(3):43-48
    [139]Williams, M.S., Villemure, L.and Sexsmith, R... Evaluation of Seismic Damage Indices for Concrete Elements Loaded in Combined Shear and Flexure[J]. Structural Journal,1997, 94(3):315-322
    [140]Kanda, J.and Shah, H.. Engineering Role in Failure Cost Evaluation for Buildings[J]. Structural Safety,1997,19(1):79-90
    [141]Hindi, R. A. and Sexsmith, R. G.. A Proposed Damage Model for RC Bridge Columns under Cyclic Loading[J]. Earthquake Spectra,2001,17(2):261-289
    [142]封伯吴,张立翔,李桂青.混凝土损伤研究综述[J].昆明理工大学学报,2001,26(3):21-30
    [143]朱万成,赵启林,唐春安等.混凝土断裂过程的力学模型与数值模拟[J].力学进展,2002,32(4):579-598
    [144]张行.断裂与损伤力学[M].北京:北京航空航天大学出版社,2009
    [145]熊耀清.密肋复合墙体损伤演化规律及损伤模型研究[D].北京交通大学博士学位论文,2008
    [146]袁泉,姚谦峰,贾英杰.密肋复合墙板的恢复力模型与损伤模型研究[J].四川建筑科学研究,2004,30(4):5-7,19
    [147]刘佩,姚谦峰.密肋复合墙体的基于累积损伤的动力可靠度[J].振动与冲击,2008,27(3):42-46
    [148]Gulkin, P. and Sozen, M. A.. Inelastic Responses of Reinforced Concrete Structures to Earthquake Motions[J]. Journal of the American Concrete Institution,1974,71(12): 604-610
    [149]应勇,蒋欢军,王斌,等.钢筋混凝土剪力墙构件双参数地震损伤模型研究[J].结构工程师,2010,26(5):61-65
    [150]章明宇.密肋复合墙板损伤模型及基于损伤性能目标的抗震设计方法研究[D].西安建筑科技大学硕士学位论文,2006
    [151]于海洋.钢筋混凝土结构地震损伤模型研究[D].重庆大学硕士学位论文,2004
    [152]刘良林,王全凤,沈章春.基于损伤的累积滞回耗能与延性系数[J].地震学报,2008,28(4):13-19
    [153]孙国华,顾强,何若全,等.钢板剪力墙结构的耗能能力[J].计算力学学报,2013,30(3):422-428
    [154]李刚,程耿东.基于性能的结构抗震设计—理论、方法与应用[M].北京:科学出版社,2004
    [155]FEMA. NEHRP Guidelines for the Seismic Rehabilitation of Buildings[R]. FEMA-273, Washhington D.C.,1997
    [156]Wen, Y. K. and Kang, Y. J.. Minimum Building Life-cycle Cost Design Criteria. Ⅰ: Methodology and Ⅱ Applications[J]. Journal of Structural Engineering,2001,127(3): 330-346
    [157]陈永祁,龚思礼.结构在地震动时延性和累积塑性耗能的双重破坏准则[J].建筑结构学报,1986,(1):35-47
    [158]李刚,程耿东.基于分灾模式的高层结构抗震优化设计[J].大连理工大学学报,2000,40(4):483-488
    [159]叶列平,欧阳彦峰.双重抗震结构及其设计参数的分析研究[J].工程力学,2000,17(2):24-29
    [160]Baker, J. W., Schubert, M., Faber, M. H.. On the assessment of robustness[J]. Structural Safety, 2008,30(3):253-267
    [161]沈靓.汶川地震中建筑物典型震害分析与数值计算[D].合肥工业大学硕士学位论文,2010
    [162吕大刚,宋鹏彦,崔双双,等.结构鲁棒性及其评价指标[J].建筑结构学报,2011,11(32):44-54
    [163]黄靓,李龙.一种结构鲁棒性量化方法[J].工程力学,2012,29(8):213-219
    [164]方召欣,李惠强.基于能量观点的结构安全性与鲁棒性[J].建筑结构学报,2007,(s1):269-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700